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Abstract: We study conformal vector �elds on space-times which in addition

are compatible with the Ricci tensor (so-called conformal Ricci collineations). In

the case of Einstein metrics any conformal vector �eld is automatically a Ricci

collineation as well. For Riemannian manifolds, conformal Ricci collineation

were called concircular vector �elds and studied in the relationship with the

geometry of geodesic circles. Here we obtain a partial classi�cation of space{

times carrying proper conformal Ricci collineations. There are examples which

are not Einstein metrics.
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As a well-established concept in General Relativity, collineations are sym-
metry properties of space-times, compare [DS], [Ha]. One can regard them

as vector �elds preserving certain geometric quantities which are of rel-
evance in General Relativity, like the metric tensor itself, the curvature
tensor or the Ricci tensor. Preserving a geometric quantity is usually un-

derstood as the vanishing of the Lie derivative of this geometric quantity

in direction of this vector �eld. If X denotes the vector �eld, we have the

Killing �eld equation

LXgab = 0
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and the equations for curvature collineations or Ricci collineations

LXR
a
bcd = 0 or LXRab = 0;

respectively, compare [BQ], [CNP], [Fa], [HC], [HRV]. With respect to the

Einstein tensor Gab = Rab�
R

2
gab or the traceless Ricci tensor R

(0)
ab = Rab�

R

n
gab we can similarly talk about an Einstein collineation if LXGab = 0 or

a traceless Ricci collineation if LXR
(0)
ab = 0. Similarly, matter collineations

are considered where the energy-momentum tensor is preserved by the 
ow

in the same manner [HRV].

In the context of a conformal class of metrics there is the more general

concept that only the conformal class is preserved under the collineation.

This is motivated by the idea that all changes are only conformal: Under
the 
ow of X the metric gab preserves its conformal class, or the Ricci
tensor Rab or any other quantity preserves its conformal class (which may

be distinct from the conformal class of the metric). In particular, this
concerns the case of a conformal Killing �eld characterized by the equation

LXgab = 2�gab

where the scalar factor � is nothing but the divergence of X, up to a

constant, compare [SD], [KR4]. In the same context, we de�ne a conformal

Ricci collineation (CRC) by the combination of the two equations

LXgab = 2�gab and LXRab = 2�gab:

This means that the conformal classes of both the metric and the Ricci

tensor are preserved under the 
ow induced by X. However, we do not
require that the Ricci tensor itself is preserved. So our conformal Ricci

collineations are more general than the ones considered in [Fa]. In partic-

ular for a CRC the 
ow preserves the eigendirections of the Ricci tensor,

not necessarily the Ricci tensor itself, see Lemma 2. This assumption is

less restrictive than the classical Ricci collineations.

We call X a proper conformal Ricci collineation (PCRC) if X is neither

a Killing �eld nor homothetic, i.e., if � is not constant. This is a natural

generalization of the special case of Einstein metrics satisfying Rab =
R

n
gab

with a constant scalar curvature R. In this case it is clear that the two
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equations for a CRC are equivalent and that they reduce to only one equa-

tion. Moreover it is well known that for Einstein metrics gab the equation

LXgab = 2�gab implies

Lgrad�gab = 2rarb� = 2�gab

for a certain scalar function �. In other words: If an Einstein metric carries

a proper conformal Killing �eld then it carries in addition the conformal

gradient �eld grad� [Ke2], [KR3]. The classi�cation of all Einstein metrics

admitting conformal Killing �elds is essentially based on this method [Ka],

[KR3]. In the more general case of a metric gab admitting a PCRC we

obtain a similar classi�cation. This is based on the following lemma:

Lemma 1: For a conformal vector �eld X on an n-manifold, satisfying

LXg = 2�g , the following conditions (a) and (b) are equivalent:

(a) LXRab = 0 (Ricci collineation)

(b) rarb� = 0

Moreover, the following conditions (i) { (v) are equivalent:

(i) LXRab = 2� � gab for a function � (conformal Ricci collineation)

(ii) LX(Rab �
R
n
gab) = 0 (traceless Ricci collination)

(iii) grad(divX) is a conformal vector �eld

(iv) rarb� �
��
n
gab = 0

(v) X is concircular in the sense of [Ish], [Ta].

Recall that a vector �eld X is called concircular if the local 
ow gen-
erated by X consists of concircular mappings, i.e., conformal mappings

preserving geodesic circles. A transformation of the metric g 7! �g = 1
 2
g

is concircular if and only if r2 = � 

n
g (see [Y2], [Ta], [Fe]) or, equiv-

alently, if the two Ricci tensors of g and �g have the same traceless part,

see [KR1]. It seems to be interesting that by Lemma 1 conformal Ricci
collineations are precisely the in�nitesimal concircular transformations, i.e.
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those preserving geodesic circles. Therefore, conformal Ricci collineations

could also be called concircular collineations. In the slightly di�erent ter-

minology of [Ca], a concircular vector �eld X is de�ned as a vector �eld

satisfying rYX = �Y for a certain function � and for any vector Y .

Corollary 1: If M is compact and if g is positive de�nite admitting a

PCRC then (M; g) is conformally di�eomorphic with the standard sphere.

This follows from the well known theorem [Ta] that a non-constant solution

� of the equation rarb��
��
n
gab = 0 on a compact Riemannian manifold

is possible only for the sphere, up to conformal di�eomorphisms. If, more-

over, the scalar curvature is constant, then (M; g) is isometric with the

standard sphere, as stated in [YO]. If the two vector �elds X and grad�
are parallel everywhere then (M; g) is also isometric with the standard

sphere, see Proposition 1.

Proof of Lemma 1: The following equations are well known as part of
the integrability condition for the equation LXg = 2�g , see [Y1;p.160]:

LXRab = �(n� 2)rarb� ��� � gab
LXR = �2(n� 1)�� � 2R � � :

Therefore, the implication (b) ) (a) is obvious. Furthermore, the trace

of LXRab is �2(n � 1)�� . Consequently, (a) implies �� = 0 on the
one hand and rarb� �

��
n
gab = 0 on the other hand, that is (b).

Another consequence is the equation (LXRab)
Æ = LX(Rab)

Æ where ( )0

denotes the traceless part of a tensor. This implies (i) , (ii) . In

particular it follows that � and � are coupled by the equations

� = �
n� 1

n
��; rarb� = �

�

n� 1
gab

if (i) is satis�ed. (i), (iv) follows from ( LXRab)
Æ = �(n�2)(rarb�)

Æ .

(iii) , (iv) is obvious by de�nition. For (iv) , (v) see Theorem 1 in

[Ish]. 2
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Lemma 2: If X is a conformal Ricci collineation, then the eigendirec-

tions of the Ricci tensor are preserved under the 
ow of the vector �eld

X:

Proof. For a point p 2 M in a neighborhood of p the 
ow �t is de�ned.

From the de�nition of the Lie derivative we obtain:

LXgj�sp(V;W ) =
d

dt

�����
t=s

gj�tp
�
�t
�
V; �t

�
W

�

= 2�(�sp)gj�sp (�
s
�
V; �s

�
W )

It follows that

gj�sp(�
s
�
V; �s

�
W ) = gp(V;W )�s(p)

where �s(p) := exp
R s
0 �(�

tp)dt :Now choose an orthonormal basis e1; : : : ; en
of eigenvectors for the Ricci tensor in the point p; i.e. we have Ricp(ei; ej) =
�iÆij: Here �i are the eigenvalues of the Ricci tensor at p:

d

dt

�����
t=s

Ricj�tp
�
�t
�
ei; �

t
�
ej

�
= LXgj�sp (�

s
�
ei; �

s
�
ej)

= 2�(�sp)gj�sp (�
s
�
ei; �

s
�
ej)

= 2�(�sp)�s(p)Æij

Hence

Ricj�sp (�
s
�
ei; �

s
�
ej) = Ricjp(ei; ej) + 2Æij

Z s

0
�(�tp)�t(p)dt

=

�
�i + 2

Z s

0
�(�t)�t(p)dt

�
Æij

=

�
�i + 2

Z s

0
�(�t)�t(p)dt

�
�s(p)

�1gj�sp (�
s
�
ei; �

s
�
ej)

i.e. the 
ow �t preserves the eigendirections.

Examples for CRC on space-times:

1. If (M; g) satis�es the Einstein equation with or without cosmologi-
cal constant then any conformal Killing �eld is also a CRC in our
sense. Conformal Killing �elds on semi-Riemannian Einstein spaces

(including space-times) were classi�ed in [KR3] after previous work

in [Br], [YN], [Half], [Ka], [Ke1], [Ke2].
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2. The metric gab = �dt2 + cos2(t)g��� carries a PCRC, namely, the

gradient �eld X = gradf = cos(t) @
@t

where the function is f(t) =

sin(t). This is independent of the metric g��� on the 3-dimensional
spacelike level. gab is not an Einstein metric unless g��� is of constant

curvature. In any case, for the function f(t) = sin(t) one calculates

r2f = f 00g = �fg and r2f 00 = f 0000g = fg: These are precisely the

two equations for a CRC. Here we have � = f 00 = �f; � = �3f .

3. The same holds if we replace cos(t) by sin(t); sinh(t); cos(t) or exp(t).

Up to the choice of additional constants, these possibilities are the

only ones where X is a (non-null) gradient and a PCRC which is lin-

early dependent of grad(divX), compare Proposition 1 below. This

means that the conformal 
ow behaves exactly as in the case of a

constant curvature metric (de Sitter, anti { de Sitter) except that
the levels g�ab are (more or less) arbitrary.

With regard to the relation between the given conformal vector �eld X

and it divergence, there are essentially two extremal cases:

1. X is parallel to the gradient of the function � = 1
4
div(X),

2. X is orthogonal to the gradient of �.

In the �rst case there is a local classi�cation as follows:

Proposition 1: Assume that (M; g) is a space-time admitting a proper

conformal Ricci collineation (PCRC) X which is parallel to the gradient of

the function � = 1
4
div(X). Then on an open and dense subset the metric

is a warped product

gab = �dt2 + �02(t)g���

where g��� (�; � = 1; 2; 3) is a metric on a 3-dimensional hypersurface M�

,

timelike or spacelike depending on the sign of �dt2 and where the warping

function �(t) = 1
4
div(X) satis�es the equation �00 + c� = 0 for a constant

c 6= 0. Furthermore, � = 3c�.

If we assume that M is compact and g is positive de�nite then (M; g) is

isometric with the standard sphere. This holds in any dimension.
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Proof: We start with the equations

LXgab = 2�gab and LXRab = 2�gab

where by assumption � is not constant.

By Lemma 1 we have

LXRab = �(n� 2)rarb� ��� � gab;

0 = (LXRab)
Æ = �(n� 2)(rarb�)

Æ;

thus rarb� = ��
n
gab, i.e. grad� is conformal. Here n denotes an arbitrary

dimension, for space-times we have n = 4.

Subcase 1: If g(grad�; grad�) 6= 0 on an open subset then by a standard

lemma [Fi], [KR2] the equation rarb� = ��
n
gab implies that locally the

metric is of the form of a warped product

gab = �dt2 + �02(t)g���

where the function � depends only on the parameter t and where �0 = d�

dt
:

Now if X is linearly dependent of grad� then there is a scalar function
�(t) such that X = �grad� = ��0 @

@t
. Since X is conformal, this is possible

only if
2�g(Y; Z) = L�grad�g(Y; Z)

= �Lgrad�g(Y; Z) + (Y �)g(grad�; Z) + (Z�)g(grad�; Y )

= 2�r2�(Y; Z) + (Y �)(Z�) + (Z�)(Y �)

= �
2��

n� 1
g(Y; Z) + (Y �)(Z�) + (Z�)(Y �)

for any Y; Z. This is impossible unless � is constant and not zero. Hence

we have X = 1
c
� grad� for a constant c and, consequently, �00 = �c� and

(n� 1)c� = � .

Subcase 2: If grad� is an isotropic vector �eld on an open subset then

0 = g(rY grad�; grad�) =
��

n
g(Y; grad�)
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for any vector �eld Y . This is possible only if �� = 0, hence r2� = 0 and,

consequently, � = 0. This is the case of a Ricci collineation in the classical

sense, compare Lemma 1. Note that in this case grad� is parallel and

nowhere vanishing because by assumption � is not constant. Furthermore,

by assumption we have X = �grad� for a certain function �. By the

same argument as above in Subcase 1 it follows that � is constant. But
then 2�gab = LXgab = �Lgrad�gab = 2�rarb� = 0, hence � = 0 in

contradiction to our assumptions. Hence Subcase 2 cannot occur.

On a compact M the only possibility for � is a solution of �00 = �c� for a

positive c, hence a sine or cosine function. This in turn forces the warped

product to be a part of the standard sphere. 2

The second case cannot occur for a PCRC according to the following
lemma:

Proposition 2: Assume that (M; g) is a space-time admitting a confor-

mal Ricci collineation (CRC) X which is orthogonal to the gradient of the

function � = 1
4
div(X). Then either X is a homothetic vector �eld (i.e., �

is constant) or X is a Ricci collineation in the classical sense, and more-

over grad� is a parallel null (or isotropic) vector �eld. In the latter case

X and grad� cannot be parallel because this would contradict Proposition

1.

Proof: The Subcase 1 of an isotropic vector �eld grad� is the same as

in Proposition 1 above. In this case X is necessarily a Ricci collineation
in the classical sense, and � satis�es r2� = 0 . Now let us assume that

g(grad�; grad�) 6= 0 on an open subset and that X is orthogonal to grad�.

As in the proof of Proposition 1 we obtain a warped product structure of

the metric and

�2�(�0)2 = 2�g(grad�; grad�) = LXg(grad�; grad�)

= 2g(rgrad�X; grad�) = 2(�0)2g(r @

@t

X; @
@t
) = 0:

The last equation follows because on the one hand X and @

@t
are orthog-

onal, hence @
@t
hX; @

@t
i = 0, and because on the other hand the t-lines are
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geodesics. In any case, if � 6= 0 on an interval it follows that �0 = 0, i.e.,

� is constant. This means that X is homothetic. 2

It seems to be an open question what happens in the mixed case if X and

grad� are neither linearly dependent nor orthogonal. An example seems

to be known only in the conformally 
at case: The translational vector

�eld on the 
at Minkowski space induces a CRC after conformal inversion.
This is not a gradient �eld, and it is not linearly dependent of the gradient

of its divergence [KR2].

As far as the global structure is concerned, the most important case seems

to be the following:

Corollary 2: Assume that (M; g) is a space-time admitting a proper

conformal Ricci collineation (PCRC) X such that the gradient of � =
1
4
divX is timelike and such that X is linearly dependent of grad�. Assume

furthermore that for an open t-interval of values of the function � the t-level

of � is a complete (necessarily spacelike) hypersurface of M . Then X =
cgrad� for a constant c (thus X is also a gradient �eld) and (M; g) contains

a Lorentzian warped product gab = �dt2 + �02(t)g��� where g��� (�; � =
1; 2; 3) is a complete Riemannian metric which is independent of t and

where the warping function �(t) is de�ned on a certain interval and satis�es

the equation �00 + k� = 0 for a constant k 6= 0.

Proof: By Proposition 1 the metric is locally a warped product gab =
�dt2+�02(t)g��� where g

�

�� can be chosen as the metric on one of the com-

plete levels. Since the 
ow of X moves the levels onto one another, their
metric can change only by a homothetic factor depending on t which is
nothing but the warping function. Then the assertion follows from Propo-

sition 1. 2

Depending on the sign of k, the solution can be global in t or not: In the
`elliptic case' k > 0 we run into a singularity at each zero of �0 unless the

metric on the levels is of constant positive curvature. In the `hyperbolic
case' k < 0 there are solutions which are forward complete (if �0(t) = sinh t

or �0(t) = exp t) or complete (if �0(t) = cosh t).
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Similar results were formulated in [Ta] for complete Riemannian mani-

folds, where the condition on the existence of an PCRC is replaced by

the assumption that the manifold carries a concircular vector �eld (or in-

�nitesimal concircular transformation). However, in the Riemannian case

emphasis was given to the case k = 0 which does not seem to be primarily

interesting here.
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