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ABSTRACT. This paper presents a set of necessary and sufficient conditions for a n-dimensional semi-
Riemannian manifold to be conformal to an Einstein space. We extend results due to C.N. Kozameh, E.T.
Newman and K.P. Tod who solved the problem in the four dimensional Lorentz case for manifolds with
non-degenerate Weyl tensor, i.e. for space-times with J 6= 0. In particular, in n-dimension we will find
tensorial conditions if the Weyl tensor operates injectively on the alternating two-forms. Moreover, in the
four dimensional Riemannian case we can always decide whether a manifold is locally conformal to an
Einstein space.

1. INTRODUCTION

Already in the 1920’s conformal transformations of Einstein spaces have been studied by Brinkmann
[3], [4]. The aim of the present paper is to find necessary and sufficient tensorial conditions for manifolds
being conformally related to Einstein spaces. Conformal Einstein spaces are of particular interest in
General Relativity and Quantum Gravity. But also from the mathematical viewpoint these manifolds are
very important, since a conformal class of such manifolds which we will consider is represented (up to
scaling) by exactly one Einstein space.

In 1985, Kozameh, Newman and Tod [11] found a set of two independent conditions being necessary
and sufficient for a conformal Einstein space-time with J 6= 0. To solve the problem in n-dimension
for manifolds with any signature we will modify the ideas of Kozameh, Newman and Tod. One of
their ideas is to generalize the problem and to ask: Under which tensorial conditions is a manifold
conformally related to a C-space, i.e. a space with harmonic Weyl tensor? This question is a much more
easier one than the one above, since it is linear in the gradient of the conformal factor. With the solution
of the linear problem it is possible to give necessary and sufficient conditions for a conformal Einstein
space.

We consider smooth semi-Riemannian manifolds (Mn; g) of dimension n � 4, because in three
dimension every Einstein space is conformally flat and thus the problem is trivially solved by the Weyl-
Schouten theorem [15, Thm. C.9]. A manifold having a Weyl tensor with vanishing divergence is called
C-space or space with harmonic Weyl tensor. A semi-Riemannian manifold (Mn; g) is conformal to
such a C-space if and only if there exists a smooth function � :M ! R satisfying

0 = (div4W )(X;Y;Z) + (3� n)W (X;Y;Z; gradg�) :

In section 3 we show that if we consider W as endomorphism of �2(M):

W : �
2
(M)! �

2
(M) ; ! 7!W [!]

and if this endomorphism is injective in every point of M , i.e. (detW )(p) 6= 0 for all p 2 M , then the
gradient of � can be written as:

gradg� =
1

(n� 3)(n� 1)

nX
i;k=1

�i�kW
�1

[(div4W )Ei
](Ei; Ek)Ek ;

where W�1 is the inverse map of W 2 End(�2(M)). Let T be the vector field given by the right
hand side of this Equation, then T can be defined for all manifolds with detW 6= 0. Since every
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Einstein space is a C-space, we use in section 4 this special vector field to give a tensorial condition for
a conformal Einstein space. Let FV be the (0; 2) tensor field given by

FV (X;Y ) := hrXV; Y i+ hX;V i hY; V i �
1

n
[div(V ) + hV; V i] hX;Y i ;

then a semi-Riemannian manifold with (detW )(p) 6= 0 for all p is locally conformally related to an
Einstein space if and only if

RicÆ + (n� 2)FT = 0 ;

where RicÆ denotes the traceless Ricci tensor. In section 5 we extend these results to the four dimen-
sional Riemannian case. If we consider Riemannian four manifolds with W 6= 0, then we can use the
identity WabciW

abcj
= Æ

j

i
jW 2j to derive T, since W 6= 0 implies jW2j = 1

4WabcdW
abcd 6= 0. That

means for every point p with W
jp 6= 0, the vector field T is given by:

T =
2

jW 2j

4X
i;k=1

W [(div4W )Ei
](Ei; Ek)Ek :

Moreover, we will show that a connected Einstein manifold is conformally flat or there is no open subset
with W = 0. Thus, the problem to find necessary and sufficient tensorial conditions for a conformal
Einstein space is solved in the four dimensional Riemannian case.

This work has developed from my diploma thesis at the University of Leipzig under guidance of Prof.
Dr. H.-B. Rademacher.

2. PRELIMINARIES

Let (Mn; g) be a (smooth) semi-Riemannian manifold of dimension n � 4, i.e. g is a non-degenerate
inner product. We denote by r the Levi-Civita connection and by R the Riemannian curvature tensor:

R(X;Y )Z = rXrY Z �rYrXZ �r[X;Y ]Z :

Mostly, we consider R as (0; 4) tensor and use hX;Y i instead of g(X;Y ) : The Ricci tensor Ric
is given by Ric(X;Y ) = tracefV 7! R(V;X)Y g and the normalized scalar curvature by S =

1
n(n�1)

trace(Ric) : Using the Kulkarni-Nomizu product:

(g ? h)(X;Y;Z; T ) := g(X;T )h(Y;Z) + g(Y;Z)h(X;T ) � g(X;Z)h(Y; T ) � g(Y; T )h(X;Z)

we obtain the Weyl tensor W and the Schouten tensor h (cf. [15, Cor. B.8]):

W := R� g ? h ; h :=
1

n� 2

�
Ric�

n

2
Sg
�
:

Let X(M) be the set of all vector fields and Tr
s
(M) be the set of all (r; s) tensor fields of M : There

exist two differential operators for vector fields:

div : X(M)! C1(M) ; V 7! C(rV ) ;

rot : X(M)! T0
2(M) ; V 7! dV # ;

where C is the natural contraction, V# is the corresponding one-form to V (i.e. V#
(X) = hV;Xi for

all X) and d is the exterior derivative of alternating forms. It is easy to verify (cf. [17, Exercise 3.18]):

(1) rot(V )(X;Y ) = hrXV; Y i � hX;rY V i :

One can generalize the divergence operator on tensor fields:

divr : T
0
s
(M)! T0

s�1 ; A 7! Cr(s+1)(rA) ;

where Crs is the metric (r; s) contraction and rA is the (0; s+ 1) tensor field given by:

(rA)(X1; :::;Xs; V ) := (rVA)(X1; :::;Xs) :
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Using a frame field E1; :::; En, i.e. hEi; Eji = �iÆij ; �i = �1, we obtain:

(2) (divrA)(X1; :::;Xs�1) =

nX
i=1

�i(rEi
A)(X1; :::;Xr�1; Ei;Xr; :::;Xs�1) :

Moreover, there is a generalization of the rotation operator on tensor fields:

rot : T0
2(M)! T0

3(M) ; A 7! rot(A) ;

where rot(A) is given by

rot(A)(X;Y;Z) := (rXA)(Y;Z) � (rYA)(X;Z) :

With the help of these differential operators the second Bianchi identity now supplies the following
relations between the Riemannian curvature tensor and the Ricci tensor, as well as between the Weyl
and the Schouten tensor (cf. [2, (16.3)]):

(3) div4R = rot(Ric) ; div4W = (n� 3)rot(h) :

Two semi-Riemannian manifolds (M; g) and (N;h) are called conformally equivalent if there exist a
diffeomorphism f : M ! N and a smooth function  : M ! (0;1) satisfying f�h =  �2g.
Since this diffeomorphism f is an isometry from (M; g :=  �2g) to (N;h), we consider conformal
transformations of the type: (M; g) ! (M; g :=  �2g). The corresponding symbols for (M; g) will be
denoted by r; R;W ; ::: Now let (M; g) ! (M; g :=  �2g) be such a conformal transformation with
 = e� and � : M ! R smooth, then the Levi-Civita connections and the Weyl tensors satisfy the
relations (cf. [12, Lemma A.1] and [15, Prop. C.4]):

(4) rXY = rXY � [(X�)Y + (Y �)X � hX;Y i gradg�] ;

(5) W =  �2W :

3. SPACES WITH HARMONIC WEYL TENSOR

Definition 1. A semi-Riemannian manifold (Mn; g) of dimension n � 4 is called C-space or space
with harmonic Weyl tensor (cf. [2, (16.D)]) if the divergence of the Weyl tensor vanishes:

div4W = 0 :

Lemma 1. Let (M; g) ! (M; g :=  �2g) with  = e� be a conformal transformation. The diver-
gences of the Weyl tensors satisfy for all X;Y;Z 2 X(M):

(div4W )(X;Y;Z) = (div4W )(X;Y;Z) + (3� n)W (X;Y;Z; gradg�) :

Proof. Use the formulae (2), (5) and (4) and the first Bianchi identity. �

Now we want to find tensorial conditions for manifolds being conformally related to C-spaces. First
of all, we define the Weyl tensor as an operator on (0; 2) tensor fields.

Definition 2. Let A 2 T04(M) have the same symmetries like the Riemannian curvature tensor. A is an
endomorphism of T02(M) in the following way:

A : T0
2(M)! T0

2(M) ; b 7! A[b] := C34C16(A
 b) ;

where A 
 b is the (0; 6) tensor field given by (A 
 b)(X;Y;Z; T; U; V ) := A(X;Y;Z; T ) b(U; V ).
Using a frame field E1; :::; En, we obtain:

A[b](X;Y ) =

X
i;j

�i�jA(Ei; X; Y;Ej)b(Ej ; Ei) :

When �
2
(M) denotes the set of all skew-symmetric (0; 2) tensor fields, the first Bianchi identity implies

for all ! 2 �
2
(M):

A[!](X;Y ) =
1

2

X
i;j

�i�jA(Ei; Ej ;X; Y )!(Ei; Ej) ;
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and thus A is in particular an endomorphism of �2(M).
For vector fields X and Y let X ^ Y be the two-form with

(X ^ Y )(U; V ) := det

�
hX;Ui hX;V i
hY;Ui hY; V i

�
;

then the operation above satisfies:

(6) A[X ^ Y ](Z; T ) = A(X;Y;Z; T ) :

Definition 3. Let T be a vector field. Then we call the (0; 3) tensor CT given by

CT (X;Y;Z) := (div4W )(X;Y;Z) + (3� n)W (X;Y;Z; T )

conformal C-space integrability tensor.

Definition 4. We consider W as an endomorphism of �2(M). If the smooth function detW : M ! R

is different from zero for all p 2M , the Weyl tensor W is called non-degenerate.

If W is non-degenerate, there exists an endomorphism W�1 of �
2
(M) satisfying W�1 Æ W =

Id�2(M). Moreover, from Equation (5) we can conclude that non-degeneracy is preserved under con-
formal transformations.

Proposition 1. Let (Mn; g) be a semi-Riemannian manifold with non-degenerate Weyl tensor, then the
following holds:
a) Every vector field T satisfying the relation

CT = 0

is locally a gradient, i.e. every point has a neighbourhood U and a smooth function � : U � M ! R

with gradg� = T
jU .

b) There is at most one vector field T with CT = 0.

Proof. a) We show that CT = 0 implies rot(T ) = dT#
= 0: Taking the divergence with respect to the

third argument of the (0; 3) tensor CT , we obtain using a frame field E1; :::; En:

0 = div3(CT )(X;Y )

= div3(C45(rW + (3� n)W 
 T#
))(X;Y )

= (div3div4W )(X;Y ) + (3� n)
P
�jC45[(rEj

W )
 T#
+W 
 (rEj

T#
)](X;Y;Ej) :

div3(div4W ) = 0 is a consequence of (3) and div3(div4R) = 0, and thus we conclude:

0 =
PP

�i�j [(rEj
W )(X;Y;Ej ; Ei)T

#
(Ei) +W (X;Y;Ej ; Ei)(rEj

T#
)(Ei)]

= �(div4W )(X;Y; T ) + 1
2

PP
�i�jW (X;Y;Ej ; Ei)[(rEj

T#
)(Ei)� (rEi

T#
)(Ej)]

= (3� n)W (X;Y; T; T ) +W [dT#
] :

Since W 2 End(�2
(M)) is injective, the claim follows from W [dT#] = 0 and the Poincaré Lemma.

b) We have to prove that the homogeneous problem:

0 =W (X;Y;Z; T ) for all X;Y;Z 2 X(M)

has only the trivial solution. Using the operation of W on �
2
(M), this is equivalent to:

0 =W [Z ^ T ] for all Z 2 X(M) :

Since W is injective, we conclude from the last Equation:

0 = Z ^ T for all Z ;

and thus we obtain T = 0 : �

The last proposition implies that for manifolds with non-degenerate Weyl tensor there is (up to scal-
ing) at most one way to transform a manifold conformal into a C-space. The question is now: How can
we express the gradient of the conformal factor? Since the covariant derivative preserves the symmetries
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of a tensor, we can define the divergence of the Weyl tensor with respect to a vector field as alternating
two-form:

(div4W )Z 2 �
2
(M) ; where (div4W )Z(X;Y ) := (div4W )(X;Y;Z) :

Let (Mn; g) be conformal to a C-Space. Then there exists a function � : M ! R satisfying for all
X;Y;Z 2 X(M)

0 = (div4W )(X;Y;Z) + (3� n)W (X;Y;Z; gradg�) :

This Equation is under consideration of formula (6) equivalent to:

0 = (div4W )Z + (3� n)W [Z ^ gradg�] for all Z :

If W is non-degenerate, we obtain for all Z 2 X(M)

Z ^ gradg� =
1

n� 3
W�1

[(div4W )Z ] :

Use a frame field E1; :::; En and choose Z = Ei, then the last Equation implies for all k 6= i:

�iEk� =
1

n� 3
W�1

[(div4W )Ei
](Ei; Ek) :

After multiplication by �i the left hand side is independent of i and so the right hand side has to be equal
for all i 6= k:

Ek� =
1

(n� 1)(n� 3)

nX
i=1

�iW
�1

[(div4W )Ei
](Ei; Ek)

Definition 5. Let (Mn; g) be a manifold with non-degenerate Weyl tensor. When E1; :::; En is a frame
field, the following vector field can be defined on M :

T :=
1

(n� 1)(n� 3)

nX
i;k=1

�i�kW
�1

[(div4W )Ei
](Ei; Ek)Ek :

From the calculation above respectively from Proposition 1 we can see that T is the only possible
solution of CT = 0, and thus we can formulate the following theorem:

Theorem 1. A semi-Riemannian manifold (Mn; g) having a non-degenerate Weyl tensor is locally con-
formally related to a C-space if and only if

CT = 0 :

Proof. The calculation above supplies the necessity of condition CT = 0.
Proposition 1 implies that T is locally a gradient, and so we obtain the claim from Lemma 1. �

4. CONFORMAL EINSTEIN SPACES

Definition 6. A semi-Riemannian manifold (M; g) of dimension n � 3 is called Einstein space if the
traceless Ricci tensor

RicÆ := Ric� (n� 1)Sg

vanishes. In this case, S is constant.

We consider, because of the argument in the introduction, manifolds of dimension n � 4. Let
(M; g) ! (M; g :=  �2g) with  = e� be a conformal transformation. The Ricci tensor has the
following transformation behaviour (cf. [12, Lemma A.1]):

(7) Ric = Ric+ (n� 2)[r2�+ d�
 d�] + [4�� (n� 2) hgradg�; gradg�i] g ;

wherer2� is the Hessian of � (i.e. r2�(X;Y ) = hrXgradg�; Y i) and (d�
d�)(X;Y ) = (X�)(Y �).
If (M; g) is an Einstein space, we conclude taking the trace of the last Equation for the Ricci tensor of
(M; g) the condition:

(8) 0 = Ric� (n� 1)Sg + (n� 2)[r2�+ d�
 d�]�
n� 2

n
[4�+ hgradg�; gradg�i] g :
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Definition 7. Let V be a vector field, then the traceless (0; 2) tensor field FV given by

FV (X;Y ) := hrXV; Y i+ hX;V i hY; V i �
1

n
[div(V ) + hV; V i] hX;Y i

is called Schwarzian tensor (cf. [18, Introduction]).

Remark 1. Compare formula (1), then the Poincaré Lemma implies: The (0; 2) tensor FV is symmetric,
if and only if V is locally a gradient.

With the help of Definition 7 Equation (8) can be written as follows:

(9) 0 = RicÆ + (n� 2)Fgradg� ;

i.e. a manifold is conformal to an Einstein space if and only if there exists a function � : M ! R that
satisfies (9). In [4], Brinkmann considered solutions of the form: Fgradg� = 0 which is equivalent to

r2e� =
4e

�

n
g. In this case, also (M; g) is an Einstein manifold. In [18], Osgood and Stowe call a

conformal diffeomorphism f : (M; g) ! (M; g = e�2�g) between Riemannian manifolds a Möbius
transformation, if the gradient of � satisfies Fgradg� = 0.

Proposition 2. Every Einstein space has harmonic Weyl tensor, i.e. it is a C-space.

Proof. Let (M; g) be an Einstein space: Ric = (n � 1)Sg and S = const : Then the Schouten tensor
is given by: h =

1
n�2

�
(n� 1)Sg � n

2
Sg
�
=

1
2
Sg : Since S is constant, the Schouten tensor is parallel,

and thus we obtain from (3): div4W = 0 : �

In section 3 we showed that if the Weyl tensor is non-degenerate, there is only one possible gradient
of the conformal factor, and thus we can formulate a necessary and sufficient tensorial condition for a
manifold to be conformal to an Einstein space:

Theorem 2. A semi-Riemannian manifold with non-degenerate Weyl tensor is locally conformally re-
lated to an Einstein space if and only if the vector field T given in Definition 5 satisfies:

(10) RicÆ + (n� 2)FT = 0 :

Proof. Let (10) be satisfied. Since RicÆ is symmetric, FT is symmetric and thus T is locally a gradient.
From Equation (9) we conclude that the manifold is locally conformal to an Einstein space.
Conversely: Let (M; g) be a manifold which has non-degenerate Weyl tensor and is conformal to an
Einstein space (M; g = e�2�g). Because of Proposition 1, there is (up to scaling) only one way to
transform (M; g) conformal into a C-space. Since (M; g) is a C-space (Proposition 2), we obtain T =

gradg�. Equation (9) now supplies the claim. �

Theorem 3. A simply connected semi-Riemannian manifold having a non-degenerate Weyl tensor is
conformally related to an Einstein space if and only if:

RicÆ + (n� 2)FT = 0 :

Proof. If (M; g) is a conformal Einstein space, the condition follows from the last theorem.
Conversely: Since M is simply connected and FT has to be symmetric, it follows from the Poincaré
Lemma that T is (globally) a gradient of a smooth function � : M ! R. Thus, (M; g) is (globally)
conformally related to an Einstein space (M; g = e�2�g). �

Remark 2. Let (Mn; g) ! (M; g := e�2�) be a conformal transformation, so that (M; g) is an Einstein
space. Proposition 2 implies:

0 = Cgradg�
= div4W + (3� n)C45[W 
 d�] :

Take the divergence with respect to the first argument of this tensor, we obtain:

0 = div1div4W + (3� n)W [r2�] + (3� n)(n� 3)W [d� 
 d�] :

Since (M; g) is an Einstein space, we conclude from Equation (8) andW [�g] = 0 (for any � :M ! R):

0 = div1div4W +
n� 3

n� 2
W [Ric] + (3� n)(n� 4)W [d� 
 d�] :
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In four dimension this expression does not depend on the conformal factor, and the symmetric (0; 2)

tensor field

B := div1div4W +
1

2
W [Ric] ;

called Bach tensor (cf. [1]), has to vanish identically for every four dimensional conformal Einstein
space. However, the vanishing of the Bach tensor B is not sufficient for a four manifold being locally
conformally related to an Einstein space (cf. [20]). Kozameh, Newman and Tod [11] found an additional
condition to the vanishing of the Bach tensor for space times with J 6= 0, so that these two conditions
are necessary and sufficient for a conformal Einstein space. We can verify that J 6= 0 is equivalent to
the non-degeneracy of the Weyl tensor. Moreover, the result of Kozameh, Newman and Tod [11] can be
extended to four manifolds of any signature:
A four manifold with non-degenerate Weyl tensor is locally conformally related to an Einstein space if
and only if

CT = 0 and B = 0 :

To prove that these two conditions are sufficient, the following is to be needed: If the Weyl tensor is
non-degenerate, every symmetric traceless (0; 2) tensor k satisfying W [k] = 0 and W�

[k] = 0 has to
vanish identically, where W� denotes the dual Weyl tensor, i.e. W�

= � ÆW and � is the Hodge star.
This claim can be seen by using the Hodge duality on four manifolds.
Furthermore, in four dimensions it is possible to define the vector field T without calculating W�1.
Kozameh, Newman and Tod [11] used special identities of the Weyl tensor. With the help of the Einstein
summation convention two of these identities are given as follows:

W cd

kb
W

ef

cd
W lb

ef
=

1

4
Æl
k
W 3

and

W � cd

kb
W

ef

cd
W lb

ef
= (�1)

ind(M;g) 1

4
Æl
k
(W �

)
3 ;

where ind(M; g) is the number of negative eigenvalues of g and W3 as well as (W �
)
3 are given by

W 3
=WabcdW

cd

ef
W abef and (W �

)
3
=W � cd

ab
W

� ef

cd
W � ab

ef
. If the Weyl tensor is non-degenerate, we

can verify that W3 or (W �
)
3 is different from zero, so that one of these identities can be used to derive

the vector field T. In order to see the calculation of T with such identities compare also next section.

Example 1. a) Spaces with degenerate Weyl tensor are
- self-dual manifolds (i.e. W�

= 0, cf. [5]) and
- conformally flat manifolds.
b) Examples of manifolds with non-degenerate Weyl tensor are
- the Schwarzschild exterior space-time (cf. [17, §13]) and
- the Riemannian product (M2n; g) = (M1 �M2; g1 � g2) (n � 2) of two space forms (Mn

1 ; g1) and
(Mn

2 ; g2) with constant sectional curvatures K1 and K2, so that K1 is different from �K2, i.e. (M; g)

is not conformally flat.
c) A manifold with degenerate Weyl tensor on a hypersurface is the Reissner-Nordström solution (cf.
[7, (5.5)]): Let

ds2 = �

�
1�

2m

r
+
e2

r2

�
dt2 +

dr2�
1� 2m

r
+

e2

r2

� + r2
�
d�2 + sin

2 � d�2
�

with e > m be the line element on M := R �R>0 �r S
2. Then (M;ds2) is a four dimensional Lorentz

manifold. On the hypersurface N :=

n
p 2M ; r(p) = e

2

m

o
the Weyl tensor vanishes, but on M � N

the Weyl tensor is non-degenerate.

Remark 3. The second example in b) provides C-spaces which are not conformal to Einstein spaces:
Since the Weyl tensor is parallel, (M; g) is a C-space, but (M; g) is an Einstein space if and only if
K1 = K2 : Hence (M; g) is for K1 6= �K2 a C-space which is not conformally related to an Einstein
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space, because from Proposition 1 we know that every conformal transformation of (M; g) into a C-
space (M; g) has to be a scaling.

When the Weyl tensor is non-degenerate, we have found necessary and sufficient conditions for a
manifold to be conformal to an Einstein space. But what happens when the Weyl tensor is degenerate on
the manifold or on a subset of it? Wünsch [21] found necessary and sufficient conditions for space-times
of Petrov type III, but the method he used seems not to be extendible to dimensions other than four. If
the Weyl tensor is degenerate on a subset U � M , it is very difficult to express solutions of CT = 0

in known terms. Moreover, if d(p) := dimkerW
jp is greater than or equal to n � 1 for all p 2 U , the

vector field T is generally not unique in U . In particular, if d varies on a subset the case is very tricky,
because the number of restrictions changes.

However, if the set (detW )
�1

(0) contains no interior points, the results given in this section can be
extended. Let (M; g) be a manifold such that the interior of N := (detW )

�1
(0) is empty, then (M; g)

is locally conformally related to an Einstein space if and only if (M �N; g
jM�N ) is locally conformally

Einstein and the vector field T, defined on M � N , is extendible to a vector field on M . This claim
follows from continuous reasons, since the extension of T on M , if there is any, is unique, and this
uniqueness is all what we need for the Proof.

5. THE FOUR DIMENSIONAL RIEMANNIAN CASE

We consider four dimensional Riemannian manifolds. The Riemannian metric induces a positive
definite inner product on the alternating two-forms. Since W is self-adjoint with respect to this product,
W is a diagonalizable endomorphism of �2(M). That means

W = AT

0
B@

�1 0

. . .
0 �6

1
CAA : �

2
(M) ! �

2
(M) ;

where �1; :::; �6 :M ! R are smooth functions and ATA = Id�2(M). Denote by jW 2j the trace of the
endomorphism W ÆW , then we obtain jW2j = �21+ :::+�26 and thus, if W is not zero in p 2M , jW2j
is different from zero in p. In four dimensions we have for the Weyl tensor the following relation (cf.
[5, Eq. (31)]):

WabckW
abcl

= jW 2jÆl
k
;

which in our notation can be written as follows:

(11)
4X
i=1

W [W [Ei ^X]](Ei; Y ) =
1

2
jW 2j hX;Y i :

Let (M; g) be conformal to an Einstein space (M; g = e�2�g). From Proposition 2 we know that (M; g)

is a C-space, and thus Cgradg� vanishes identically:

0 = (div4W )Z �W [Z ^ gradg�] for all Z :

Apply W to the last Equation, then we conclude using (11) for all X 2 X(M):

0 =

X
i

W [(div4W )Ei
](Ei;X)�

1

2
jW 2j(X�) ;

i.e. if jW 2j is different from zero, we obtain for the gradient of �:

gradg� =
2

jW 2j

X
i;k

W [(div4W )Ei
](Ei; Ek)Ek :

Definition 8. Let (M; g) be a Riemannian manifold of dimension four. Then

M1 := fp 2M ; jW 2j(p) 6= 0g
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is an open subset of M , and the following vector field can be defined on M1:

T :=
2

jW 2j

4X
i;k=1

W [(div4W )Ei
](Ei; Ek)Ek :

Moreover, denote by M2 the interior of M �M1 :

With the help of (11), it is possible to define the vector field T even if the Weyl tensor is degenerate,
since non-degeneracy means that for all i = 1; :::; 6 the eigenvalue function �i has no zeros in M1. The
uniqueness of the vector field T follows from the special structure of the Weyl tensor in four dimension.
If (M1; gjM1

) has non-degenerate Weyl tensor and is locally conformally related to a C-space, then the
vector fields T given in Definition 5 and 8 are equal.

Lemma 2. Let (M; g) be a four dimensional Riemannian manifold.
a) IfM2 6= ;, then (M2; gjM2

) is conformally flat, in particular (M2; gjM2
) is locally conformally related

to an Einstein space.
b) If M1 6= ;, then (M1; gjM1

) is locally conformally related to an Einstein space if and only if the
vector field T given in Definition 8 satisfies

RicÆ + 2FT = 0 :

Proof. a) This follows from the Weyl-Schouten theorem (cf. [15, Thm C.9]), since W
jM2

= 0.
b) Let (M1; gjM1

) be conformal to an Einstein space (M1; e
�2�g

jM1
). Since this Einstein space is a

C-space, we obtain from the calculation above T = gradg� : Equation (9) now implies the claim.
Conversely: Since FT has to be symmetric, T is locally a gradient. Thus, (M1; gjM1

) is locally conformal
to an Einstein space. �

Proposition 3. If (M; g) is a connected (Riemannian) Einstein space, then M1 or M2 is empty.

Proof. We can see from Theorem 5.26 in Besse [2] that in geodesic normal coordinates the metric g is
real analytic. For this reason also the Weyl tensor W is in these coordinates real analytic and thus, if the
Weyl tensor vanishes on an open subset U of M , the Weyl tensor has to vanish identically in M . �

Remark 4. The last Proposition and formula (5) imply that if a connected Riemannian manifold with
non-empty M2 is locally conformal to an Einstein space, then this manifold is conformally flat.

Theorem 4. Let (M; g) be a connected Riemannian manifold of dimension four, so that there is a
point p 2 M with W

jp 6= 0, i.e. in particular (M; g) is not conformally flat. Then (M; g) is locally
conformally related to an Einstein space if and only if the following two conditions hold:

(i) On M1 the vector field T given in Definition 8 satisfies:

0 = RicÆ + 2FT :

(ii) M2 is empty and if M �M1 is not empty, then T is extendible to a vector field of M .
If in addition M is simply connected and (i) as well as (ii) are satisfied, then (M; g) is conformal to an
Einstein space.

Proof. Let (M; g) be locally conformal to an Einstein space. Then Lemma 2 implies (i). From Proposi-
tion 3 and Equation (5) it is clear that M2 has to be empty. If M �M1 is not empty, let p be any point of
M �M1. Then there is a neighbourhood U of p and a smooth function � : U ! R, so that (U; e�2�g

jU )

is an Einstein space. Since the gradient of � corresponds to the vector field T on U � U \ (M �M1),
T is uniquely extendible on U [M1. Thus, we obtain the second condition.
Conversely: Let (i) and (ii) be satisfied. Then there exists a unique vector field bT 2 X(M) which is
equal to T on M1. Because of continuous reasons and (i), bT satisfies on M :

0 = RicÆ + 2F
bT
:
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Since F
bT

has to be symmetric, bT is locally a gradient, and we obtain the claim from (9).

If in addition M is simply connected, then bT is globally a gradient, i.e. there exists a smooth function
� :M ! R satisfying gradg� = bT . Thus, (M; e�2�g) is an Einstein space. �

This theorem includes also self-dual manifolds, i.e. four manifolds being half conformally flat
(W�

= 0, cf. [5]). A generalization of the last theorem to the four dimensional Lorentz case seems
to be very difficult, because if W is different from zero, we can generally not follow that jW2j or a
other trace-invariant of the Weyl tensor is different from zero. Moreover, the result used in the Proof of
Proposition 3 is given in Besse [2] only in the Riemannian case.
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