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Introduction and Results.

It is a basic feature of conformal geometry that the Euclidean space En admits

a conformal compacti�cation which is the standard sphere Sn. Vice versa, if one

starts with the standard sphere (Sn; g) then, by stereographic projection, there is a

conformal factor ':Sn ! R with exactly one zero p 2 Sn such that (Sn n fpg; 1
'2
g)

is isometric with the Euclidean space. A more sophisticated example of this type of

a conformal inversion is a complete metric on an even{dimensional Euclidean space

constructed in [KR2] which carries a twistor spinor with exactly one zero point p:

If we send that point p to in�nity by a suitable conformal factor we obtain a Ricci


at metric which is asymptotically 
at at the end corresponding to the point p:

In dimension 4 this is a version of the Eguchi{Hanson metric, cf. [KR1]. We will

describe this metric in more detail in the following Examples. In each of these two

cases, the metric and its asymptotic behaviour at in�nity comes from a smooth

metric around a particular point p after a type of a conformal inversion. So in some

sense geometric properties in the large can be translated into purely local properties,

and vice versa.

In more generality and in this context, one can ask two natural questions as follows:

1. Suppose (M; g) is a Riemannian manifold with one end. Can one �nd a com-

pacti�cation of this end by one additional point 1 and by a conformal factor

' with one zero at 1 ?

2. Vice versa, suppose (M; g) is a Riemannian manifold and suppose ':M ! R

is a function with an isolated zero at p. What can be said about the asymptotic

behaviour of (M n fpg; 1
'2
g) in a neighborhood of this end?
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Examples: 1. Let g be the standard 
at metric on Rn , and let g = 1
'2
g.

(a) For '(x1; : : : ; xn) = x21+: : :+x
2
n we obtain Ricg = 0. In fact, g is again Euclidean.

This transformation is nothing but the standard conformal inversion x 7! kxk�2 � x.

(b) For '(x1; : : : xn) = x41 + : : : + x4n we obtain

Ricgjx = '�1
h
12(n� 2)A+

�
12(x21 + : : : + x2

n
)� 16(n� 1)'�1(x61 + : : : + x6

n
)
�
E
i
:

where A = ((�ijx
2
i
))i;j and where E is the identity matrix. Depending on the

direction x = (x1; : : : ; xn), this expression tends to in�nity for x ! 0. Along the

diagonal x1 = : : : = xn we obtain Ricgjx = (x1)
�2E, up to a non-zero constant

factor. Nevertheless, the eigenvalues of the Ricci tensor of g tend to zero. The same

happens for any function with a zero of order k > 2 at the origin. In this case

Ricg �Ricg = (k � 2)jjxjj�2 for jjxjj ! 0, up to a bounded function. This indicates

that one has to be careful with the order of the zero.

2. On the n{dimensional sphere Sn we �x a point p: In terms of geodesic polar

coordinates (r; �) 2 (0; �) � Sn�1 around p for the function '(r; �) = 1 � cos r

the manifold (Sn n fpg; '�2g) is isometric to Euclidean space, the corresponding

transformation is the stereographic projection.

3. Here we describe explicitely the metric we already mentioned above: We consider

the complete metric on the 2m{dimensional Euclidean space R2m of the form

g = dr2 + r2(1 + r2m)h(1+r2m)�1(y) (1)

in polar coordinates (r; y) 2 R
+ � S2m�1; the metric ht on the sphere S2m�1 is

the Berger metric or the so-called canonical variation of the standard metric. This

means that we take the standard metric orthogonal to the direction of the canonical

S1{action on S2m�1; and in the direction of this action we multiply the metric by

the positive number t = (1 + r2m)�1: As we show in [KR2] the function '(r; y) =

r2
p
1 + r2n satis�es the following: The manifold (R2m n f0g; g = 1

'2
g) is in inverted

polar coordinates (�; y) = (1=r; y) of the form

g =
1

(1 + 1
�2m

)1�
1

m

d�2 + (1 + �2n)
1

mh�
1� 1

1+�2m

� :

The holonomy group is the special unitary group SU(m); in particular it is a Ricci 
at

K�ahler metric which is locally irreducible. In addition the metric is asymptotically

Euclidean of order 2m: In dimension 4 this is a form of the Eguchi{Hanson metric, in

higher dimensions it occurs in the work of Calabi [Ca], where it is used for obtaining

complete metrics with holonomy SU(m) on a complex line bundle over the (m� 1){

dimensional complex projective space.

4. With the help of the metric g on R2m given in Equation 1 and the fuction � and a

covering argument one can show that there are Ricci 
at manifolds with an arbitrary
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number of asymptotically euclidean ends which are obtained from a smooth metric

by a conformal inversion:

The metric g as well as the function � is de�ned on R
2m : Now M := R

2m �
f(x1; : : : ; x2m�2; 0; 1) ; xj 2 Rg is di�eomorphic to R

2m�2 � R
+ � S1: Hence on

the covering ~M := R
2m�2 � R

+ � (�1; k); k 2 Z
+ resp. ~M := R

2m�2 � R
+ � R we

obtain a metric ~g and a function ~� with the following properties: The function ~�

has k resp. 1 zeros corresponding to k resp. 1 asymptotically euclidean ends of

the conformally equivalent and Ricci 
at metric ~��2~g on ~M � ~��1(0):

Concerning Question 1, an answer was recently given by M.Herzlich in [He], un-

der suitable assumptions on the decay of the Weyl curvature. The most essential

assumption here is the asymptotical 
atness at the end.

In this paper we are going to given an answer to Question 2 as follows:

Theorem: Let (M; g) be a Riemannian manifold together with a non-constant

function ':M ! R which has at least one zero. Assume that the metric g = 1
'2
g is

Ricci 
at outside the zero set of '.

Then the zero set of ' consists of isolated points, and (M n '�1(0); g) is asymp-

totically Euclidean of order 2 at each end corresponding to a point in '�1(0) in

suitable coordinates. These coordinates are inverted normal coordinates around the

corresponding zero of ', after a conformal change of the metric g with a nonzero

conformal factor.

Moreover, the metric g is either 
at or locally irreducible. The function ' is unique

(up to scaling), unless g is locally conformally 
at.

We call a coordinate system z = (z1; : : : ; zn) with �
2 =

P
k
z2
k
> �1 for some �1 > 0

asymptotically Euclidean of order � for the metric g if the metric coe�cients gij with

respect to these coordinates satisfy:

gij = �ij +O(��� );
@

@zk
gij = O(����1);

@2

@zk@zl
gij = O(����2)

for �2 =
P

k
z2
k
!1. A shorthand notation for this asymptotic behaviour is

gij = �ij +O00(��� ):

A Riemannian manifold N is called asymptotically Euclidean of order � if the com-

plement of a compact subset carries asymptotically Euclidean coordinates of order

�:

Before giving the proof in the next section, we want to formulate a few corollaries

which illustrate the theorem.
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Corollary 1: If in addition to the assumptions in the theorem either the manifold

M is compact or the Riemannian manifold (M; g) = (M n '�1(0); g) is complete

then (M; g) is conformally di�eomorphic with the standard sphere.

We can also apply these results to manifolds carrying twistor spinors with zeros. A

spinor �eld  on a Riemannian spin manifold is called twistor spinor, if it satis�es

the twistor equation

rX +
1

n
X �D = 0

for every vector �eld X. Here rX is the spinor derivative of the spinor �eld  in

direction of the vector �eld X. D denotes the Dirac operator, the dot � denotes the
Cli�ord multiplication and n = dimM is the dimension of the manifold, cf. [BFGK,

ch.1.4]. If the twistor spinor  has a nontrivial set of zeros then the length of  , the

function ' = h ; i satis�es the assumption of our Theorem, cf. [BFGK, ch.2.3].

Here h ; i denotes the induced hermitian inner product on the spinor bundle. Hence

we obtain as

Corollary 2 ( [KR3, Thm.1.2]): Let (M; g) be a simply{connected Riemannian

spin manifold carrying a twistor spinor  with a non{empty set Z of zeros and

assume that the metric is not conformally 
at. Then every twistor spinor on (M; g)

vanishes exactly at Z : For the dimension N of the space of twistor spinors and the

holonomy Hol of the conformally equivalent and Ricci 
at metric (M; g) one of the

following holds:

a) n = 2m;m � 2;Hol = SU(m) and N = 2:

b) n = 4m;m � 2;Hol = Sp(m) and N = m+ 1:

c) n = 8;Hol = Spin(7) and N = 1:

d) n = 7;Hol = G2 and N = 1:

The metric we described in Example 3 (cf. [KR2]) gives an example for case a) for

every m: The covering argument given in Example 4 shows that there is for any

k 2 Z
+[ f1g a Riemannian spin manifold which is not conformally 
at and which

carries a twistor spinor with exactly k zeros. In addition we obtain from Corollary

1 the following Corollary due to Lichnerowicz whose �rst proof used the solution of

the Yamabe problem:

Corollary 3 (Lichnerowicz [Li;Thm.7]): A compact Riemannian spin manifold

carrying a non{trivial twistor spinor with zero is conformally equivalent to the stan-

dard sphere.
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Proofs.

Proof of the theorem: We start with the following well known formula for the

behaviour of the Ricci tensor under conformal changes g = 1
'2
g :

Ricg �Ricg = '�2
�
(n� 2) � ' � r2'+

h
' ��'� (n� 1) � jjr'jj2

i
� g
�
; (2)

see [Be; 1J]. With respect to the metric g; r and r2 denote the gradient and the

Hessian, respectively. � denotes the Laplacian, i.e. the (positive) trace of the

Hessian. By assumption we have Ricg = 0. For the trace this implies the equation

1

n(n� 1)
Sg =

jjr'jj2
'2

� 2

n

�'

'

where S = Sg denotes the scalar curvature of g. Now let us consider an arbitrary

trajectory of the gradient r', parametrized by arc length t. Then we have

r' = '0(t)
@

@t
; '0(t) =

d'(t)

dt
:

Along this trajectory we assume '(0) = 0 and '(t) > 0 for 0 < t < ", " > 0 being a

constant.

Claim 1: �'(0) = n'00(0); '0(0) = 0:

Proof: From the �rst equation above we obtain

2

n
�' = � S

n(n� 1)
'+

'02

'
:

Since S is bounded, this implies '0(0) = 0 and

2

n
�'(0) = lim

t!0

'02(t)

'(t)
= lim

t!0

2'0(t)'00(t)

'0(t)
= lim

t!0
2'00(t) = 2'00(0):

In particular it follows that r2'(0) = '00(0) � g.

Claim 2: Without loss of generality we may assume that lim
t!0

n'00(t)��'(t)

'(t)
= 0:

Proof: If ()0 denotes the traceless part of a (0; 2)-tensor, then the �rst formula

implies

(r2')0 = �(n� 2)'Ric0:

Hence the limit in Claim 2 vanishes if at that point Ric0 vanishes. Fortunately, there

is a conformal change of the metric g such that in the new metric Ric0 = 0 holds

at one point. This can be seen in normal coordinates around that point, see [KR3,

Lemma 3.2].
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Claim 3: (�')0(0) = '000(0) = 0. If moreover '00(0) = 0 then all derivatives of �'

and all derivatives of ' vanish at t = 0.

Proof: From the formulae above we obtain

1

n� 1
S(0) = lim

t!0

n'02(t)� 2'(t)�'(t)

'2(t)

= lim
t!0

2n'0(t)'00(t)� 2'0(t)�'(t)� 2'(t)(�')0(t)

2'(t)'0(t)

= lim
t!0

n'00(t)��'(t)

'(t)
� lim
t!0

(�')0(t)

'0(t)
= � lim

t!0

(�')0(t)

'0(t)
:

This implies (�')0(0) = 0, similarly for the higher derivatives of �'. We also have

from Claim 2 that

1

n(n� 1)
S(0) = lim

t!0

'02 � 2''00

'2
= lim

t!0

2'0'00 � 2'0'00 � 2''000

2''0
= � lim

t!0

'000

'0
:

This implies '000(0) = 0 and the rest of Claim 3.

Claim 4: '00(0) > 0.

Proof: Without loss of generality, we can use Claims 1 to 4 above, in particular

'0(0) = 0. We set '(t) = exp(y(t)), necessarily with limt!0 y(t) = �1; limt!0 y
0(t) =

+1. From '0 = y0';'00 = (y02 + y00)' and from Claim 2 we obtain

1

n(n� 1)
S(t) =

'02 � 2''00

'2
+
2''00 � 2

n
'�'

'2

= �(y02 + 2y00) + o(t):

By scaling of the metric g we may assume that �n(n� 1) < S(0) < n(n � 1) and

hence

�1 < �(y02 + 2y00) < 1

in a certain interval (0; "). This is a Riccati equation for y0, and a Riccati comparison

argument (see [Ka;1.6]) implies that the solution satis�es

y0
�1 < y0 < y01 where (y0

�1)
2 + 2y00

�1 = �1:

Regarding the pole of the solution at t = 0, the comparison solutions y�1 are

y0
�1(t) = cot( t

2
) and y01(t) = coth( t

2
):

It follows that

y�1(t) = 2 log(sin( t
2
)) + C�1 and y1(t) = 2 log(sinh( t

2
)) + C1

with constants C�1 � C1. This implies

exp(C�1) sin
2( t

2
) = exp(y�1(t)) < '(t) < exp(y1(t)) = exp(C1) sinh

2( t
2
)):
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In any case '00(t) is strictly positive for 0 � t < ", bounded away from 0. Compare

the analogous comparison solution y0(t) = 2 log t + C for (y00)
2 + 2y000 = 0 leading

to '0(t) = exp(C)t2, the well known solution in the 
at case, see the introduction

above.

Claim 5: The zeros of ' are isolated. This follows from the fact that each zero is

also a critical point, together with r2'(0) = '00(0) � g, a positive de�nite Hessian.

Claim 6: If x 2 U 7! f(x) 2 R is a smooth function de�ned on an open neigborhood

U of 0 in Rn with asymptotic behaviour

f(x) = 1 +O(r2);

where r2 =
P

j
x2
j
for r ! 0 and if x = z

kzk2
; �2 =

P
j
z2
j
= r�2 then we obtain the

following asymptotic behaviour

F (z) := f(x(z)) = 1 +O00(��2)

for �!1: This is the shorthand notation for the following equations:

F (z) = 1 +O(��2);
@F

@zj
= O(��3);

@2F

@zi@zj
= O(��4)

Proof: This one concludes from the chain rule, since

@

@zi
= r2

@

@xi
� 2xi

X
k

xk
@

@xk
:

Claim 7: The metric g is asymptotically Euclidean of order 2 at each end.

Proof: Assume that x = (x1; : : : ; xn) are geodesic normal coordinates around

p 2 '�1(0) with respect to a metric g satisfying Claim 3 and Claim 4 above. Hence

the corresponding metric coe�cients gij(x) = g(@=@xi; @=@xj) satisfy

gij = �ij +O(r2);

with r2 =
P

k
x2
k
: Then the metric coe�cients hij = r�4g(@=@zi; @=@zj) of the con-

formally equivalent metric h = r�4g with respect to the inverted normal coordinates

z = (z1; : : : ; zn); zi = r�2xi and �
2 =

P
k
z2
k
= r�2 satisfy:

hij = �ij +O00(��2): (3)

This is well known, cf. [LP, ch.6], [KR3, ch.2]. As in Claim 6 it again follows from

the chain rule.

From Claim 3 we know that �'(0) > 0; by scaling we may assume �'(0) = n:

Then we conclude from Claim 3 and Claim 4 that

'(x) = r2(1 +O(r2));
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which implies by Claim 6 that in inverted normal coordinates z : r4'�2(z) = 1 +

O00(��2): This together with Equation (2) �nally shows that the coe�cients g
ij
of

the metric g = '�2g = (r4'�2)(r�4g) are the following, with respect to the inverted

normal coordinates:

g
ij
= (1 +O00(��2))(�ij +O00(��2)) = �ij +O00(��2):

Claim 8: The metric g is either 
at or locally irreducible.

Proof: (Cf. [KR3, Proof of Thm.1.2]) Claim 7 implies that for su�ciently large

�1 > 0 all principal curvatures �j of the hypersurfaces S� := fzj�2 =
P

k
z2
k
g for

� > �1 satisfy �j > (2�)�1: This shows that all geodesics 
 which start in the

direction of growing �, i.e. g(
0(0); @�) > 0 are de�ned for all positive real numbers

and limt!1 �(
(t)) = 1: In geodesic normal coordinates the Ricci{
at metric g is

analytic (cf. [Be, ch.5F]), hence the Riemann curvature tensor does not vanish on

an open set unless the metric itself is 
at.

Now we assume that the curvature tensor does not vanish on an open subset and

we assume that the metric g is locally reducible. Then we can choose a geodesic


 : [0;1) ! M n fpg with limt!1 �(
(t)) = 1 which in an open neigborhood U

of 
(0) lies in the factor U1 of the Riemannian product U = U1 � U2 and such

that the Riemann curvature tensor R2 at 
(0) of the factor U2 does not vanish.

Hence we can choose analytic parallel vector �elds X(t); Y (t) along 
 tangential

to U2 which span a tangent plane with non{zero sectional curvature K(X;Y ) =

K2(X;Y ); where K2 is the sectional curvature of the factor U2: Hence the function

t 7! K(X;Y ) is a non{zero constant k for small t: Then the analyticity implies that

limt!1K(X(t); Y (t)) = k: But the asymptotic behaviour of the coordinate system

z implies that K(X(t); Y (t)) = O(��4(
(t))) = 0; a contradiction.

Claim 9: The function ' is uniquely determined up to multiplication with a constant,

unless g is locally conformally 
at.

Proof: If the functions '1 and '2 both satisfy the assumptions of the Theorem

then outside the discrete set (see Claim 3) '�11 (0) [ '�12 (0) the metrics gi = '�2
i
g

are both Ricci 
at. Hence the metrics g1 and u
�2g1 with u := '1'

�1
2 are both Ricci


at.

Then Equation (1) implies the equations r2u = �u
n
g1 and 2f�u = n � g1(ru;ru):

Here the Hessian r2; the Laplacian � and the gradient r have to be taken with

respect to the metric g1: If t denotes the arc length on the trajectories of ru and u0 =
du

dt
then the �rst equation implies that g1 is a warped product metric dt2+ u0(t)2g�;

the second equation implies that 2uu00 = u02: Up to a shift of the parameter and the

choice of constants we have u0(t) = t: The metric g� must be Einstein with scalar

curvature n(n � 1): Then g2 is of the form dt2 + g�; i.e. it is locally reducible in

contradiction to Claim 7.

Proof of Corollary 1: If M is compact, then the zero set '�1(0) of ' is a �nite

set fp1; : : : ; pmg: Then the manifold (M; g) = (M � Z ; '
�2g) is a complete, Ricci
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at manifold which is locally irreducible and has m ends. Then we conclude from

the splitting theorem due to Cheeger{Gromoll, that (M; g) can have only one end,

i.e. m = 1:

Since the end of (M; g) is asymptotically Euclidean of order 2 it follows from the

volume comparison theorem due to Bishop in a formulation of Gromov that (M; g)

is isometric to the Euclidean space (cf. [KR2; Lemma 2.3]). Hence (M; g) is confor-

mally equivalent to the standard sphere since it is a conformal one{point compacti-

�cation of the Euclidean space.

If (M; g) is complete then one concludes as above that it is isometric to Euclidean

space.

Proof of Corollary 2: As remarked above the length ' = h ; i of a twistor

spinor  with zero satis�es the assumption of our Theorem. Since ' is uniquely

determined (up to scaling) all twistor spinors have the same set of zeros. Under

the conformal equivalence the twistor spinors on (M; g) correspond to the parallel

spinors on (M; g): Hence the list in Corollary 3 coincides with the list of possible

holonomies of irreducible manifolds carrying parallel spinors, which is given in [Wa].
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