Probeklausur - Lineare Algebra I

Mathias Becker 20.Dezember 2007

Name :

Vorname:

Matrikelnummer:

Studiengang:

Seminargruppe:

Bearbeitungsdauer: 120 Minuten

Die Punkte dienen nur als Orientierung. Kleinere Abweichungen sind möglich.

Aufgabenteil I

Dieser Aufgabenteil besteht aus mehreren, sehr kurzen Aufgaben. Es sind keine vollständigen Beweise gefordert. Versuchen Sie nicht mehr als 5 Minuten für jede Aufgabe in diesem Teil zu verwenden.

Aufgabe I.1

Sei $A \in \mathbb{R}^{mxn}$ und ein lineares Gleichungssystem gegeben durch Ax = b. Bezeichne L die Menge aller $x \in \mathbb{R}^n$, die dieses Gleichungssystem lösen. Entscheiden Sie, ob die folgenden Aussagen immer wahr oder falsch sind.

Aussage	wahr	falsch
$b \in \mathbb{R}^n$	0	0
$L \neq \{\}$	0	o
falls das GS homogen ist, so ist L ein Unterraum von \mathbb{R}^n	0	o
$f \ddot{u} x_1, x_2 \in L \text{ ist } x_1 + x_2 \in L$	0	o
falls $n > m, b \neq 0$ dann besteht L nicht aus genau einem Element	o	0
falls $n < m, b = 0$ dann ist $dim(L) \ge 1$	o	0

Aufgabe I.2

Sei (R, +, *) ein Ring. Welche ZUSÄTZLICHEN Eigenschaften müssen erfüllt sein, damit (R, +, *) ein Körper ist?

Aufgabe I.3

Sei (K, +, *) ein Körper. Ist (K, *) eine abelsche Gruppe? Begründen Sie kurz!

Aufgabe I.4

Sei die Abbildung f definiert durch:

$$f: \quad \mathbb{R} \quad \to \quad \mathbb{R}/\mathbb{Q}$$

$$x \quad \mapsto \quad x + \mathbb{Q}$$

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind.

Aussage	wahr	falsch
f ist injektiv	0	0
f ist surjektiv	0	o
f ist bijektiv	0	0
$f(1)$ ist das Nullelement von \mathbb{R}/\mathbb{Q}	0	o
$f(0)$ ist das Nullelement von \mathbb{R}/\mathbb{Q}	0	o
$0 + \mathbb{Q}$ liegt im Kern von f	o	o
Der Kern von f enthält nur die 0	0	0
Das Bild von f enthält $0 + \mathbb{Q}$	0	0

Aufgabe I.5

Wir betrachten den Vektorraum $(\mathbb{R}^2, \mathbb{R}, +, *)$. Sei nun g eine beliebige Gerade in \mathbb{R}^2 . Ist die Menge aller Punkte von g ein linearer Unterraum von \mathbb{R}^2 ? Begründen Sie kurz!

Aufgabe I.6

Wir betrachten den Vektorraum ($\mathbb{R}^3, \mathbb{R}, +, *$). Sei U die Menge aller Vektoren

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3,$$

für die gilt $x_1 + x_2 = x_3$. Die Menge U ist ein Unterraum (das können Sie als gegeben ansehen). Geben Sie eine Basis von U an!

Aufgabenteil II

Die Aufgaben in diesem Teil verlangen Beweise. Pro Aufgabe sollten sie etwa 15-20 Minuten aufwenden.

Aufgabe II.1

Sei (G, +) eine Gruppe. Sei G' die Menge derjenigen Elemente aus G, die sich kommutativ mit allen Elementen aus G verhalten:

 $G':=\{g'\in G: \text{ für jedes }g\in G \text{ gilt }g'+g=g+g'\}$

Zeigen Sie, dass G' eine Untergruppe von G ist!

Aufgabe II.2

Sei $A \in \mathbb{R}^{mxn}$ und $B \in \mathbb{R}^{nxk}$. Zeigen Sie, dass folgende Gleichung gilt!

$$(AB)^T = B^T A^T$$

Aufgabe II.3

Sei n eine natürliche Zahl. Gegeben seien folgende Vektoren des \mathbb{R}^n :

Set
$$n$$
 the flat unital Ezam. Gegeben selen folgende vektoren des $v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ \vdots \\ n+1 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ \vdots \\ n+2 \end{pmatrix}, \dots, v_n = \begin{pmatrix} n \\ n+1 \\ n+2 \\ \vdots \\ 2n-1 \end{pmatrix}$

Bestimmen Sie die Dimension des von diesen Vektoren erzeugten Unterraumes (gemeint ist als Unterraum des Vektorraumes $(\mathbb{R}^n, \mathbb{R}, +, *)$)!

Aufgabe II.4

Seien V, V', V'' endlichdimensionale K-Vektorräume sowie

$$f: V \to V'$$
 und $g: V' \to V''$

zwei lineare Abbildungen. Zeigen Sie:

- a) Die Abbildung $g \circ f : V \to V''$ ist linear.
- b) Falls $Ker(f) \neq \{0\}$, so ist auch $Ker(g \circ f) \neq \{0\}$.
- c) Falls f surjektiv ist und $Ker(g) \neq \{0\}$, so ist auch $Ker(g \circ f) \neq \{0\}$.
- d)Finden Sie ein Beispiel dafür, dass $Ker(g) \neq \{0\}$ und $Ker(g \circ f) = \{0\}$.