Klausur zur Differential- und Integralrechnung I

Aufgabe 1: (5 Punkte)

a) Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahl:

$$\frac{(1+i)^4}{(1-i)^3} + \frac{(1-i)^4}{(1+i)^3}$$

b) Es seien a, b komplexe Zahlen mit $|a| \neq |b|$ und z eine unimodulare komplexe Zahl. Beweisen Sie, dass dann $\bar{b}z + a \neq 0$ ist und die komplexe Zahl

$$w:=\left(ar{a}z+b
ight)\Big/\Big(ar{b}z+a\Big)$$

wieder unimodular ist. ($z \in \mathbb{C}$ unimodular genau dann, wenn |z| = 1.)

Aufgabe 2: (4 Punkte)

Eine reelle Zahlenfolge $\{a_n\}_{n>1}$ werde rekursiv definiert durch:

$$a_1 = 2,$$
 $a_{n+1} = \sqrt{a_n} + \frac{1}{n}$ für $n = 1, 2, ...$

Zeigen Sie, dass die Folge konvergiert und bestimmen Sie den Grenzwert.

Aufgabe 3: (4 Punkte)

Zeigen Sie mittels (ε, n_0) -Abschätzung, dass die reelle Zahlenfolge $\{a_n\}_{n\geq 1}$ mit $a_n=\sqrt{4n^2+5n+2}-2n$ den Grenzwert $\frac{5}{4}$ besitzt, d. h. geben Sie zu jedem beliebigen $\varepsilon>0$ ein $n_0=n_0$ $(\varepsilon)\in\mathbb{N}$ an, so dass $\left|a_n-\frac{5}{4}\right|\leq \varepsilon$ für alle $n\geq n_0$ gilt.

Aufgabe 4: (4 Punkte)

Untersuchen Sie, ob die folgenden Grenzwerte existieren und berechnen Sie diese gegebenenfalls:

a)
$$\lim_{x \to 1} \left(\frac{1}{x+3} - \frac{2}{3x+5} \right) \frac{1}{x-1}$$
 b) $\lim_{x \to -\infty} \sqrt{x^4 + 1} - x^2$

Aufgabe 5: (7 Punkte)

a) Bestimmen Sie die Summe der Reihe:

$$\sum_{n=1}^{\infty} \frac{i^{n^2}}{2^n}$$
 dabei i imaginäre Einheit

b) Zeigen Sie die Konvergenz und bestimmen Sie die Summe der Reihe:

$$\sum_{n=1}^{\infty} \frac{6^n}{\left(3^{n+1} - 2^{n+1}\right)\left(3^n - 2^n\right)}$$

c) Bestimmen Sie den Konvergenzradius der Potenzreihe:

$$\sum_{n=0}^{\infty} \frac{1}{4^n} (z-5)^{2n+1}$$

Aufgabe 6: (8 Punkte)

- 1. Wann heißt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ gleichmäßig stetig?
- 2. Muss jede gleichmäßig stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ auch beschränkt sein, d.h. gibt es dann eine Konstante $C \in \mathbb{R}$ mit $|f(x)| \le C$ für alle $x \in \mathbb{R}$ (Beweis oder Gegenbeispiel)?
- 3. Sei $f: \mathbb{R} \to \mathbb{R}$ gleichmäßig stetig. Zeigen Sie, dass dann eine Konstante $C \in \mathbb{R}$ existiert mit

$$|f(x)| \le C(|x|+1)$$
 für alle $x \in \mathbb{R}$.

4. Zeigen Sie, dass jedes reelle Polynom von mindestens zweitem Grad nicht gleichmäßig stetig auf ganz R ist.