Prof. Dr. Huber-Klawitter

- 1.) Definieren Sie den Begriff des Gruppenhomomorphismus. 2P.
- 2.) Wahr oder falsch? Begründen Sie Ihre Antwort mit etwa 2-3 Sätzen.
 - (a) Jede algebraische Körpererweiterung ist endlich.
 - (b) Sei L/K algebraisch, $a \in L$ Nullstelle des Polynoms P und $(P) \subset K[X]$ das von P erzeugte Hauptideal. Dann ist K[X]/(P) ein Körper.
 - (c) Sei L/K eine Körpererweiterung, $a \in L$. Dann ist K(a)/K endlich. 6P.
- 3.) Wahr oder falsch? Begründen Sie Ihre Antwort mit etwa 2-3 Sätzen.
 - (a) Jede normale Körpererweiterung ist Zerfällungskörper eines Polynoms.
 - (b) Wenn L/K endliche Galoiserweiterung ist und F ein Zwischenkörper, dann ist F/K galois.
 - (c) Jede algebraische Erweiterung von \mathbb{F}_p ist separabel. 6P.
- 4.) Sei G eine Gruppe, $N \subset G$ die Untergruppe, die von den Elementen der Form $ghg^{-1}h1-1$ für $g,h \in G$ erzeugt wird. Zeigen Sie, dass N ein Normalteiler ist und G/N eine abelsche Gruppe. 6P.
- 5.) Sei $P = X^6 25$, L der Zerfällungskörper von P über \mathbb{Q} . Zeigen Sie: $L = \mathbb{Q}(\sqrt[3]{5}, \zeta_3)$ für eine primitive 3-te Einheitswurzel ζ_3 . Bestimmen Sie $[L:\mathbb{Q}]$ und die Ordnung von $\operatorname{Gal}(L/\mathbb{Q})$. Ist $\operatorname{Gal}(L/\mathbb{Q})$ abelsch? Ist $\operatorname{Gal}(L/\mathbb{Q})$ auflösbar? Begründen Sie Ihre Antworten.
- 6.) Sei K ein Körper, E ein Zwischenkörper von K(X)/K ungleich K. Zeigen Sie:
 - (a) $[K(X) : E] < \infty$.
 - (b) E/K ist transzendent.

8P.

Gesamtpunktzahl: 42

mit 17 Punkten ist die Klausur bestanden