
Satz 3.14: Satz über die Invarianz der Ordnungsrelation auf Viergeraden von Verschiebungen:

Die Ebene \(\mathcal{E} \) erfüllt die Axiome (A1) - (A8).

Ist \((g, \prec)\) eine orientierte Gerade und \(\tau: \mathcal{E} \to \mathcal{E} \) eine Verschiebung mit \(\tau(g) = g \), so folgt für alle \(A, B \in g \) mit \(A \prec B \) auch \(\tau(A) \prec \tau(B) \).

Beweis:

Gebe ohne Einschränkung \(\tau \neq \text{id}_\mathcal{E} \).

Wir konstruieren zunächst ein spezielles linkstapesor \((A_0, B_0)\) mit der behaupteten Eigenschaft.

Sei \(x_0 \in g \) beliebig. Nach Axiom (A7) gibt es dann ein \(y_0 \in g \) mit \(\tau(\{x_0, y_0, \tau(x_0)\}) \).

Weiter sei \(x_1 \in E \setminus g \) beliebig, und sei \(\tau_1: E \to E \) die Verschiebung mit \(\tau_1(x_0) = x_1 \).

Setze \(g_1 := g(\{x_0, \tau_1(x_0)\}) \) und \(g_2 := g(\{x_1, \tau_1(x_0)\}) \).

Skizze:
Weil \(g(X_0, T(X_0)) \) nicht parallel zu \(g_2 \) ist, sind
\(g_1 = g(X_0, T(X_0)) \) und \(g_2 \) nach Satz 2.4.1 ebenfalls nicht parallel, sei \(X \) der Schnittpunkt von \(g_1 \) und \(g_2 \).

Axiom (A8) und \(\pi(x, x, T(x)) \) liefern wegen \(g(X_0, X) \parallel g_1 \) auch: \(\pi(x, x, T(X_0)) \).

Darin liefert erneute Anwendung von Axiom (A8) wegen \(T_1(g) \parallel g \): \(\pi(x, x, T_1(x, x, T(X_0))) \).

Satz 2.4.1, angewandt auf \(T_1 \), liefert \(g_2 \parallel g(T_1(X_0), T(X_0)) \) und daher ergibt sich durch erneute Anwendung von Axiom (A8):
\[\pi(x, x, T_2(x, T(X_0), T(X_0))) \].

Ist also \(X_0 < Y_0 \), so folgt insgesamt
\[X_0 < Y_0 < T(X_0) < T(Y_0) \],
und das Paar \((A_0, B_0) = (X_0, Y_0) \) erfüllt die Ungleichungen \(A_0 < B_0 \) und \(T(A_0) < T(B_0) \).

Ist andernfalls \(Y_0 < X_0 \), so folgt
\[T(Y_0) < T(X_0) < Y_0 < X_0 \],
und wir setzen \((A_0, B_0) = (Y_0, X_0) \).

Lind nun \(X_0, X_1, X_2, X_3, X_4, X_5, X_6 \in g \) mit
\[X_1 < X_2 < A_0 < X_3 < X_4 < B_0 < X_5 < X_6 \],
so liefert wiederholte Anwendung von Satz 3.1.3:
\[T(X_1) < T(X_2) < T(A_0) < T(X_3) < T(X_4) < T(B) < T(X_5) < T(X_6) \].

Also ist \(T(A) < T(B) \) für alle \(A, B \in g \) mit \(A < B \).

Im folgenden erfüllt die Ebene \(E, g_1 \) die Axiome (A1) - (A8).
Definition 3.15: Strahlen und Strecken:

i) Für eine orientierte Gerade g, <1 in (E, G_1) und $A \in g$ sind die beiden abgeschlossenen Strahlen mit Anfangspunkt A und Trägergerade g gegeben durch

$$s_1 = \{ P \in g \mid A \leq P \} \quad \text{und} \quad s_2 = \{ Q \in g \mid Q \leq A \}.$$

Für $P \in s_1 \setminus [A]$ und $Q \in s_2 \setminus [A]$ schreiben wir auch

$$s_1 = \lambda(A, P) = AP^+ = AQ^-,$$

$$s_2 = \lambda(A, Q) = AQ^+ = AP^-.$$

s_1 und s_2 heißen zueinander entgegengesetzte Strahlen.

ii) Für $A, B \in E$ mit $A \neq B$ ist die Strecke AB definiert durch

$$AB := \{ P \in g \mid A, B \mid \} = [A, B].$$

A und B heißen die Endpunkte der Strecke AB.

Bemerkung 3.16:

 Sind s_1, s_2 entgegengesetzte Strahlen mit Anfangspunkt A und Trägergerade g, so gilt:

$$s_1 \cap s_2 = [A], \quad s_1 \cup s_2 = g.$$

Zwei Punkte $P, Q \in g \setminus [A]$ gehören genau dann den verschiedenen Strahlen s_1, s_2 an, wenn $\{P, A, Q\}$ gilt.
Korollar 3.17:
finden g_1, g_2, g_3 paarweise verschiedene parallele Geraden in \mathbb{E}, so schreiben wir $\angle(g_1, g_2, g_3)$, falls für eine - und damit nach Sätzen 3.17 für jede - Gerade $g \in \mathbb{E}$, die nicht zu g_1, g_2, g_3 parallel ist, gilt:
im S_i für $1 \leq i \leq 3$ der Schnittpunkt von g mit g_i, so gilt $\angle(S_1, S_2, S_3)$.

Satz 3.18, der Satz von Pasch:
sei $g \in \mathbb{E}$ und seien $A, B, C \in \mathbb{E} \setminus g$ paarweise verschieden. Dann schneidet g entweder genau zwei oder gar keine der drei Strecken $\overline{AB}, \overline{AC}, \overline{BC}$.

Beweis:
setze $g_1 := g(\overline{A, B}), g_2 := g(\overline{A, C}), g_3 := g(\overline{B, C})$.
Wir unterscheiden zwei Fälle.

1. Fall: g ist zu einer der Geraden g_1, g_2, g_3 parallel, etwa $g \parallel g_3$.
Wegen $A, B, C \in \mathbb{E} \setminus g$ ist $g \cap g_3 = \emptyset$, also auch $g \cap BC = \emptyset$.

Skizze

[Diagramm]

$g_1 \parallel g_2$
Sind A, B, C E \mathbb{E} nicht in einer Geraden liegend, so ist nichts mehr zu zeigen.

Andernfalls besitzt g mit g_1 bzw. g_2 genau einen Schnittpunkt S_1 bzw. S_2.
Nach Axiom (AB) gilt nun folgende Kette von Äquivalenzumformungen:

$S_1 \in AB \iff \exists u (A, S_1, B) \iff \exists v (A, S_2, C) \iff S_2 \in AC$

Damit folgt in diesem Fall die Behauptung.

2. Fall: g ist in keiner der Geraden g_1, g_2, g_3 parallel.

Liegen h_1 bzw. h_2 bzw. h_3 die Parallelen zu g durch A bzw. B bzw. C. Dann ist $h_1 \parallel h_2 \parallel h_3 \parallel h_4$.
Gilt $\exists v (h_1, h_2, h_3)$.
Weiter gilt wegen $(A, B, C) = \emptyset$ genau einer der folgenden 4 Fälle:

i) $\exists w (g, h_1, h_2)$
ii) $\exists v (h_1, g, h_2)$
iii) $\exists v (h_2, g, h_3)$
iv) $\exists v (h_2, h_3, g)$

Gilt i) oder iv), so schneidet g keiner der drei Strecken $\overline{AB}, \overline{AC}, \overline{BC}$.
Gilt iii, so schneidet \(g \) die beiden Strecken \(AB \) und \(AC \), aber \(BC \) nicht.

Gilt iii, so schneidet \(g \) die beiden Strecken \(BC \) und \(AC \), aber \(AB \) nicht.

Fakt und Definition 3.19:

Es sei \(g \in G \). Dann ist auf \(E \setminus g \) eine Äquivalenzrelation \(\sim \) gegeben durch:

\[(H) \quad A \sim B \iff \overline{AB} \cap g = \emptyset.\]

Die Äquivalenzrelation \(\sim \) enthält genau zwei Äquivalenzklassen \(H_1, H_2 \); sie heißen die zu \(g \) gehörigen offenen Halbebenen.

Wir sagen auch: \(g \) trennt die zueinander entgegengesetzten offenen Halbebenen.

\(H_1 := H_1 \cup \overline{g} \) und \(H_2 := H_2 \cup \overline{g} \) heißen die zugehörigen abgeschlossenen Halbebenen.

Beweis:

Klar ist: \(\sim \) ist reflexiv und symmetrisch.

Legen nun \(A, B, C \in E \setminus g \) paarweise verschieden mit \(A \sim B \) und \(B \sim C \). Dann schneidet \(g \) die Strecken \(\overline{AB} \) und \(\overline{BC} \) nicht. Nach Fakt 3.18 ist also auch \(\overline{AC} \cap g = \emptyset \) und damit \(A \sim C \).

 Folglich ist \(\sim \) eine Äquivalenzrelation.

Ist \(A \in E \setminus g \) und \(B \in g \), so gilt es nach Axiom (A7) ein \(B \in g \) mit \(\exists \alpha(\alpha, A, B) \), und damit ist \(\overline{AB} \cap g = \emptyset \).

\(A \) und \(B \) gehören also zu zwei verschiedenen Äquivalenzklassen.
Es kann aber keine dritte Äquivalenzklasse geben, denn sonst gäbe es ein $C \cap g \neq \emptyset$ mit $A \cap g \neq \emptyset$ und $B \cap g \neq \emptyset$. Das ist aber nach Satz 3.18 nicht möglich.

Satz 3.20:

Für vier paarweise verschiedene nicht kollineare Punkte $A, B, C, D \in E$ sind folgende Aussagen äquivalent:

1. Es gibt zwei parallele Geraden $g_1, g_2 \in G$ und zwei parallele Geraden $h_1, h_2 \in G$ mit
 \[g_1 \cap h_1, g_2 \cap h_2, g_1 \cap h_2, g_2 \cap h_1 \]
2. Es gibt eine Verschiebung $\tau : E \rightarrow E$ mit:
 \[\tau(A) = B \quad \text{und} \quad \tau(D) = C. \]

Beweis: Siehe Aufgabe 9.

Skizze

\[\begin{array}{c}
\begin{array}{ccc}
A & B & C \\
D & & \end{array} \\
\begin{array}{ccc}
g_1 & h_1 & g_2 \\
& h_2 & \end{array}
\end{array} \]

Definition 3.21:

Vier paarweise verschiedene nicht kollineare Punkte $A, B, C, D \in E$ bilden die Eckpunkte eines Parallelogramms, falls die beiden äquivalenten Bedingungen in Satz 3.20 gelten.
die Strecken AB, BC, CD, DA heißen die Seiten, die Strecken AC, BD die Diagonalen des Parallelogramms.

Satz 3.22, Satz vom Diagonalschnittpunkt:
Sind A, B, C, D wie in Definition 3.21, so haben die Diagonalen AC, BD des zugehörigen Parallelogramms genau einen Schnittpunkt.
Beweis:

Skizze

sei $T: E \to E$ die Verschiebung mit $T(A) = B$ und $T(D) = C$

Setze $B' = T(B)$

Nach Satz 3.14 gilt: $2w(A, B, B')$.

(Weil etwa $A < B$, so auch $B = T(A) < T(B) = B'$.)

A, B' liegen also bezüglich $g(B, D)$ in verschiedenen Halbebenen. Nach Satz 3.20 sind auch B, B', C, D die Eckpunkte eines Parallelogramms, wobei gilt:

$g(B, D) \parallel g(B', C)$

 Folglich liegen B', C bezüglich $g(B, D)$ in der gleichen Halbebene, daher liegen A, C bezüglich $g(B, D)$ in verschiedenen Halbebenen, das heißt:

$AC \cap g(B, D) \neq \emptyset$.

Vollig analog folgt: $g(A, C) \cap BD \neq \emptyset$.

Weiter folgt nun $g(A, C) \cap g(B, D) = AC \cap g(B, D) = g(A, C) \cap BD$ und daher:

$AC \cap BD \neq \emptyset$.