WS2017/18

Universität Leipzig Mathematisches Institut Prof. Dr. László Székelyhidi Dr. Stefano Modena

Partielle Differentialgleichungen I

Blatt 8

Lösungen bitte zur Übung am 1. Dezember 2017 mitbringen

Aufgabe 29. Sei $n \geq 2$, $U \subset \mathbb{R}^n$ offen und $u \in C(U)$.

(a) Zeigen Sie, dass u harmonisch ist, falls u die folgende Eigenschaft hat:

$$\forall x \in U \ \exists r_j \to 0 \ \text{so dass} \ \int_{B(x,r_j)} u(y) dy = u(x).$$

(b) Beweisen Sie, dass u genau dann subharmonisch ist (d.h. $u(x) \leq f_{\partial B(x,r)} u(y) dS(y)$ für alle $B(x,r) \subset U$), wenn

$$u(x) \le \int_{B(x,r)} u(y) dy \quad \forall B(x,r) \subset U.$$

Hinweis: Betrachten Sie die harmonische Ersetzung von u in B(x,r).

Aufgabe 30. Sei u harmonisch auf \mathbb{R}^n und u(x',0)=0 für alle $x'\in\mathbb{R}^{n-1}$. Zeigen Sie, dass

$$u(x', -x_n) = -u(x', x_n)$$

für alle $(x', x_n) \in \mathbb{R}^n$.

Hinweis: Zeigen Sie, dass die Funktion

$$v(x) := \begin{cases} u(x', x_n) & x_n \ge 0 \\ -u(x', -x_n) & x_n < 0 \end{cases}$$

auf \mathbb{R}^n harmonisch ist. Betrachten Sie hierzu die Lösung des Dirichletproblems $\Delta w = 0$ auf $B_r(0)$ und w = v auf $\partial B_r(0)$ für beliebiges r > 0 und zeigen Sie, dass $w(x', x_n) + w(x', -x_n) = 0$.

Aufgabe 31. Sei $\mathbb{R}^n_+ := \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n > 0\}$. Zeigen Sie, dass es eine nichttriviale Funktion $u \in C^2(\mathbb{R}^n_+) \cap C(\overline{\mathbb{R}^n_+})$ gibt mit

$$\Delta u = 0 \text{ in } \mathbb{R}^n_+, \qquad u = 0 \text{ auf } \partial \mathbb{R}^n_+.$$

Warum ist dies kein Widerspruch zum Maximumprinzip? Beweisen Sie weiterhin, dass $u \equiv 0$ gilt, falls u zusätzlich beschränkt ist.

Aufgabe 32 (Méthode de Balayage). Sei $U \subset \mathbb{R}^n$ offen und beschränkt und sei $\{B_i, i \in \mathbb{N}\}$ eine Familie von offenen Kugeln mit $\overline{B_i} \subset U$ für alle $i \in \mathbb{N}$ und $U = \bigcup_{i \in \mathbb{N}} B_i$. Definiere für $u \in C^0(U)$ die harmonischen Ersetzungen $T_i u$ durch

$$(T_i u)(x) = \begin{cases} u(x) & \text{für } x \in U \setminus B_i, \\ \int_{\partial B_i} P_i(x, y) u(y) dS(y) & \text{für } x \in B_i, \end{cases}$$

wobei P_i den Poissonkern zu B_i bezeichnet. Sei $u_0 \in C^0(\overline{U})$ eine subharmonische Funktion und definiere die Folge $(u_k)_{k \in \mathbb{N}}$ in $C^0(\overline{U})$ iterativ durch

$$u_{k+1} = (T_{k+1} \circ T_k \circ \cdots \circ T_1) u_k.$$

Zeigen Sie, dass $u_{\infty} := \lim_{k \to \infty} u_k$ existiert und dass u_{∞} harmonisch ist.