Übungen zur Vorlesung

Mathematik 2 für Physiker und Meteorologen

Blatt 1

Aufgabe 1 (2 Punkte). Beweise die umgekehrte Dreiecksungleichung im metrischen Raum (X, d):

$$|d(x,y) - d(y,z)| \le d(x,z)$$
 für alle $x, y, z \in X$,

sowie im normierten Raum $(V, \|\cdot\|)$:

$$|||x|| - ||y||| \le ||x - y||$$
 für alle $x, y \in V$.

Aufgabe 2 (2 Punkte). Sei M eine Menge und $d: M \times M \to \mathbb{R}$ die diskrete Metrik:

$$d(x,y) := \begin{cases} 0 & \text{falls } x = y \\ 1 & \text{sonst} \end{cases}.$$

Wie sehen im Raum (M, d) die konvergenten Folgen aus? Beweise deine Vermutung.

Aufgabe 3 (3 Punkte). Sei (X, d) ein metrischer Raum, (x_n) eine Folge in X. Zeige, dass die Folge (x_n) genau dann konvergiert, wenn sie beschränkt ist und genau einen Häufungspunkt besitzt.

Aufgabe 4 (2 Punkte). Sei $(V, \|\cdot\|)$ ein normierter Raum über \mathbb{K} ($\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$). Seien $(x_n), (y_n)$ Folgen in V und (λ_n) eine Folge in \mathbb{K} und es gelte $x_n \to x$, $y_n \to y$, $\lambda_n \to \lambda$. Zeige, dass $x_n + y_n \to x + y$ und $\lambda_n x_n \to \lambda x$ gilt.

Aufgabe 5 (2 Zusatzpunkte). Die Folge (x_n) sei eine bijektive Abbildung von \mathbb{N} auf \mathbb{Q} . Zeige, dass jedes $y \in \mathbb{R}$ Häufungspunkt der Folge ist. (Hinweis: Eine Möglichkeit ist, zunächst zu zeigen, dass jedes Intervall (a,b) (a < b) unendlich viele Punkte aus \mathbb{Q} enthält.)

Aufgabe. Sei (X,d) ein metrischer Raum und $q: X \times X \to \mathbb{R}$

$$q(x,y) := \frac{d(x,y)}{1 + d(x,y)}.$$

Zeige, dass (X, q) ebenfalls ein metrischer Raum ist, und dass eine Folge (x_n) in (X, d) konvergiert, genau dann wenn sie in (X, q) konvergiert.

Die schriftlich bearbeiteten Übungsaufgaben sind vor der Vorlesung am Mittwoch, dem 12.04.2017 abzugeben.