Übungsaufgaben Wahrscheinlichkeitstheorie I

Prof. Dr. B. Fritzsche - Sommersemester 2017 Serie G - Abgabetermin: 23.05.2017

- G1. Seien $(\Omega, \mathfrak{A}, P)$ ein W-Raum. Weisen Sie die Gültigkeit folgender Aussagen nach:
 - (a) Seien $A, B, C \in \mathfrak{A}$ derart gewählt, dass $C \subseteq A$ erfüllt ist und zudem jeweils stochastische Unabhängigkeit von A und B sowie von B und C bezüglich P vorliegt. Dann gilt $A \setminus C \in \mathfrak{A}$ und es liegt stochastische Unabhängigkeit von $A \setminus C$ und B bezüglich P vor.
 - (b) Sei $(A_k)_{k=1}^3$ eine bez. P stochastisch unabhängige Folge aus \mathfrak{A} . Dann sind $A_1 \cup A_2$ und A_3 bez. P stochastisch unabhängig.
 - (c) Seien $B \in \mathfrak{A}, I$ ein nichtleerer Abschnitt von \mathbb{N} und $(A_j)_{j \in I}$ eine Folge von paarweise disjunkten Mengen aus \mathfrak{A} derart, dass für jedes $j \in I$ stochastische Unabhängigkeit von A_n und B bez. P vorliegt. Dann ist $\bigcup_{j \in I} A_j \in \mathfrak{A}$ und es liegt stochastische Unabhängigkeit von $\bigcup_{j \in I} A_j$ und B bez. P vor.
 - (d) Seien $B \in \mathfrak{A}$ sowie $(A_n)_{n \in \mathbb{N}}$ eine isotone Folge aus \mathfrak{A} derart, dass für jedes $n \in \mathbb{N}$ stochastische Unabhängigkeit von A_n und B bezüglich P vorliegt. Dann ist $\bigcup_{n \in \mathbb{N}} A_n \in \mathfrak{A}$ und es liegt stochastische Unabhängigkeit von $\bigcup_{n \in \mathbb{N}} A_n$ und B bezüglich P vor.
 - (e) Seien $B \in \mathfrak{A}$ sowie $(A_n)_{n \in \mathbb{N}}$ eine antitone Folge aus \mathfrak{A} derart, dass für jedes $n \in \mathbb{N}$ stochastische Unabhängigkeit von A_n und B bezüglich P vorliegt. Dann ist $\bigcap_{n \in \mathbb{N}} A_n \in \mathfrak{A}$ und es liegt stochastische Unabhängigkeit von $\bigcap_{n \in \mathbb{N}} A_n$ und B bezüglich P vor.
- G2. Seien $n \in \mathbb{N} \setminus \{1\}, \Omega_n := \{1, \dots, n\}$ sowie ν_n die diskrete Gleichverteilung auf $(\Omega_n, \mathfrak{P}(\Omega_n))$. Weisen Sie die Gültigkeit folgender Aussagen nach:
 - (a) Es ist $(\Omega_n, \mathfrak{P}(\Omega_n), \nu_n)$ ein W-Raum.
 - (b) Seien $A, B \in \mathfrak{P}(\Omega_n)$. Dann sind folgende Aussagen äquivalent:
 - (i) A und B sind stochastisch unabhängig bezüglich ν_n .
 - (ii) Es ist $n \cdot \text{card } (A \cap B) = \text{card } A \cdot \text{card } B$.
 - (c) Sei n keine Primzahl und seien k und l dann existierende Zahlen aus $\{2, \ldots, n\}$, für welche $k \cdot l = n$ erfüllt ist. Weiterhin sei $A := \{1, \ldots, k\}$ sowie $B := \{r \cdot k : r \in \{1, \ldots, l\}\}$. Dann gilt $\{A, B\} \subseteq \mathfrak{P}(\Omega_n) \setminus \{\emptyset, \Omega_n\}$ und es liegt stochastische Unabhängigkeit von A und B bezüglich ν_n vor.
 - (d) Ein Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ heißt frei von stochastischer Unabhängigkeit, falls jedes geordnete Paar [A, B] von bezüglich P stochastisch unabhängigen Ereignissen mindestens eines der Ereignisse \emptyset oder Ω enthält. Weisen Sie nach, dass folgende Aussagen äquivalent sind:
 - (iii) Es ist $(\Omega_n, \mathfrak{P}(\Omega_n), \nu_n)$ frei von stochastischer Unabhängigkeit.
 - (iv) Es ist n eine Primzahl.
- G3. Sei $(\Omega, \mathfrak{A}, P)$ ein Wahrscheinlichkeitsraum.
 - (a) Sei I eine nichtleere Indexmenge sowie $(A_k)_{k\in I}$ eine Familie von Ereignissen aus \mathfrak{A} . Weiterhin bezeichne \mathcal{H}_I das System der (nichtleeren) endlichen Teilmengen von I. Beweisen Sie die Äquivalenz der folgenden beiden Aussagen:
 - (i) Die Familie $(A_k)_{k\in I}$ ist stochastisch unabhängig bezüglich P.
 - (ii) Für jedes geordnete Paar $[J,K] \in \mathcal{H}_I \times \mathcal{H}_I$, für welches $J \cap K = \emptyset$ erfüllt ist, gilt⁽¹⁾

$$P\left(\left[\bigcap_{j\in J}(\Omega\setminus A_j)\right]\cap\left[\bigcap_{k\in K}A_k\right]\right)=\left[\prod_{j\in J}P(\Omega\setminus A_j)\right]\cdot\left[\prod_{k\in K}P(A_k)\right].$$

- (b) Seien $n \in \mathbb{N}$ und $(A_k)_{k=1}^n$ eine Folge aus \mathfrak{A} . Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (i) Die Familie $(A_k)_{k=1}^n$ ist stochastisch unabhängig bezüglich P.
 - (ii) Für jede Wahl von $B_j \in \{A_j, \Omega \setminus A_j\}$ für alle $j \in \mathbb{Z}_{1,n}$ gilt $P\left(\bigcap_{j=1}^n B_j\right) = \prod_{j=1}^n P(B_j)$.
- (1) Vereinbarung: $\bigcap_{j \in \emptyset} B_j := \Omega$; $\prod_{j \in \emptyset} P(B_j) := 1$

G4. Es bezeichne $\mathfrak{B}_{[0,1)}$ die σ -Algebra aller Borelschen Teilmengen von [0,1) sowie λ die Einschränkung des auf \mathfrak{B}_1 definierten Lebesguemaßes auf $\mathfrak{B}_{[0,1)}$. Begründen Sie, dass $([0,1),\mathfrak{B}_{[0,1)},\lambda)$ ein Wahrscheinlichkeitsraum ist und die gemäß

$$A_n := \bigcup_{j=1}^{2^{n-1}} \left[\frac{2j-2}{2^n}, \frac{2j-1}{2^n} \right)$$

gebildete Folge (A_n) bez. λ stochastisch unabhängig ist.