Serie 8

- 1. Beweisen Sie folgende Homöomorphien:
 - **a)** (L) $B_r^n(0) \setminus \{0\} \approx S^{n-1} \times [0, \infty)$, mit $B_r^n(0) = \{x \in \mathbb{R}^n \mid ||x||_2 \le r\}$, r > 0, $S^{n-1} = \partial B_1^n(0)$. (1 Pkt.)

b)
$$\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 1\} \approx \mathbb{R}^2 \setminus \{0\}.$$
 (1 Pkt.)

c)
$$\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1\} \approx S^2 \setminus \{(x,y,0) \mid x^2 + y^2 = 1\}.$$
 (1 Pkt.)

d) (L)
$$\{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2\} \approx S^1 \times S^1$$
, für $0 < r < R$. (2 Pkte.)

- **2.** Ein metrischer Raum (X,d) heißt **wegzusammenhängend**, wenn für alle $p,q \in X$ eine stetige Abb. $c \colon [0,1] \to X$ existiert mit c(0) = p und c(1) = q. c heißt Weg von p nach q.
 - a) (L) Zeige: X wegzusammenhängend und $X \approx Y \Rightarrow Y$ wegzusammenhängend. (1 Pkt.)

b) (L) Zeige:
$$\{(x, y, z) | x^2 + y^2 = z^2\} \not\approx \mathbb{R}^2$$
. (3 Punkte)

- 3. a) Zeige: Kompakte metrische Räume sind vollständig. (2 Pkte.)
 - b) (L) Es sei H der Vektorraum aller Folgen $(x_n) \in \mathbb{R}^{\mathbb{N}}$ mit $\sum_{n \in \mathbb{N}} |x_n|^2 < \infty$, versehen mit der Norm $\|(x_n)\|_2 = \sqrt{\sum_{n \in \mathbb{N}} |x_n|^2}$. Zeige: Die Einheitssphäre $S = \{x \in H \mid \|x\|_2 = 1\}$ ist abgeschlossen, beschränkt, aber nicht kompakt. (Hinweis: Betrachte die Folge der "Einheitsvektoren" $(0, \dots, 0, 1, 0, \dots)$) (2 Pkte.)
- **4.** (L) Es sei $g: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion und $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \int_0^y g(x,t) dt.$$

Zeige: Dann ist auch f wieder eine stetige Funktion auf \mathbb{R}^2 . (2 Pkte.)

Rückgabe: Freitag, 05.06.09 in den Briefkästen