	CONTENTS			
1	GUIDELINES IN THE DEVELOPMENT OF THE THEORY OF CHEMICAL REACTIVITY USING THE POTENTIAL ENERGY SURFACE (PES) CONCEPT	1		
	1.1 The Potential Energy Surface (PES) Concept 1.2 The Dimensionality Problem	2		
	1.3 On the Definition of a Reaction Path (RP)	. 4		
	1.4 The Hierarchy and Competition of Reaction Theories	11		
	1.5 What about the Calculation of Absolute Reaction Rates?	17		
	1.6 Potential Energy Calculation and Gradient Revolution 1.7 The "State of the Art" in Everyday Study of Chemical	19		
	Reactivity	23		
K	eferences	26		
2	ANALYSIS OF MULTIDIMENSIONAL POTENTIAL ENERGY SURFACES - STATIONARY AND CRITICAL POINTS	31		
	2.1 Basic Definitions and Notations	31		
	2.2 Geometrical Properties of PES	33		
	2.3 Stationary Points	35		
	2.4 Location of Stationary Points 2.4.1 The Newton Process and its Modifications	38		
	2.4.1 The Newton Process and its modifications 2.4.2 Update Methods	41 48		
	2.4.3 Quasi-Newton Methods	60		
	2.4.4 Descent Methods	66		
	2.4.5 A Global Newton-like Method	71		
	2.5 Testing of Numerical Procedures 2.6 Zero Eigenvalues of the Hessian	76		
	2.6.1 Translational and Rotational Invariance	78 78		
	2.6.2 "True" Zero Eigenvalues: Catastrophe Points	86		
	2.6.3 Flat Bottoms and Double Minimum Potentials	95		
Re	eferences	97		
3	ANALYSIS OF MULTIDIMENSIONAL POTENTIAL ENERGY SURFACES			
	- PATHS -	101		
	3.1 the Simple Valley Floor Line	101		
	3.2 Mathematics of Valley Floors	107		
	3.2.1 Gradient Extremals (GE) 3.2.2 GE and Bifurcation Points	107		
	3.2.3 GE for Higher-Dimensional Cases	111 121		
	3.3 Steepest Descent Paths	122		
	3.4 The Independence of Steepest Descent Paths from			
	Parameterization and Coordinate System	126		
	3.4.1 Parameterization 3.4.2 Invariance from Coordinate System	126		
	3.4.2 Invariance from Coordinate System 3.4.3 Mass-Weighted Cartesian Coordinates	128 132		
Re	eferences			
Δ	QUANTUM CHEMICAL PES CALCULATIONS:			
•	THE PROTON TRANSFER REACTIONS	120		
	4.1 The Problem in Visualization of PES Properties	138 139		
	4.1.1 RP Energy Profiles and Surfaces Derived from	~~ <i>~</i>		
	Usual PES Sections	139		
	4.1.2 Graphical Presentation of Three-center Problems	144		

	4.1.3	Interaction Surface of an Attacking Species with a Fixed Valence System	144
	4.1.4	Empirically Derived Diagrams of more Complex	144
		Reactions PES	147
	4.1.5	Energy Profiles from Mathematically Defined	
		RP Calculations	148
		Summary	150
Refer	ences		150
4.2	PES P	roperties Along the Bimolecular Single Proton	
	Trans	fer	152
		Formulation of the Reaction Mechanisms	152
		The Proton Transfer Energy	154
	4.2.3	Discussion of most Recent PES Data of Bimolecular	
		Single Proton Transfer	155
•	4.2.4	Gas-Phase Results and Medium Influenced	
	125	Experimental Data Theoretical Approach to Medium Influence and	162
	4.2.3	the PES Concept	167
	4.2.6	Proton Transfer, Transition State Theory, and	107
		Quantum Chemistry	173
Refer	ences		176
Index			180