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The reaction path is an important concept of theoretical chemistry.

We employ the definitions of the intrinsic reaction coordinate (IRC),

the gradient extremal (GE), and the Newton trajectory (NT).

The usual imagination in chemistry is that a minimum energy path is

in a convex region of the potential energy surface.

We describe different schemes of convexity to handle the situation.

It comes out that NTs are the best ansatz for the problem:

NTs, which monotonically increase (or monotonically decrease), are automati-
cally strictly pseudo-convex throughout, and they go throughout along a valley
between minimum and saddle point.
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1. Introduction

¢ The minimum energy path (MEP) or reaction path of an adiabatic potential
energy surface (PES) is roughly defined as a line in coordinate space, which
connects two minima by passing the saddle point (SP), the transition structure
of a PES [1]. The energy of the SP is assumed to be the highest value tracing
along the reaction path.

e The MEP is a geometrically defined pathway. It means that only properties of
the PES are taken into account, and that no dynamic behavior of the molecule
is taken into consideration. We use here the driven coordinate method in the
modern form of RGF [2-4], called Newton trajectory (NT) [5].

e Usually, in one’s imagination the MEP is situated in a valley of the PES. All
the different forms of a reaction path should connect minimum and SP of index
one going through a valley. However, it contradicts the examples where the
IRC does not fulfill the property: it is known that the IRC can go over a ridge
of the PES.

e NTs can also go over a ridge of the PES, then they have a turning point [6].
Consequently, the classification of IRC and NTs belonging to MEPs or not, is
of interest.

e We show that the IRC is an MEP if it does not cross the pseudo-convexity
boundary of the PES, which is defined by a simple formula [7]. For NTs, the
turning-point-case divides them into those which can serve as reaction paths,
and others: if the NT does not contain a TP at the pathway from minimum up
to the SP of index one, it can be used as a reaction path model [8].

e We show that NTs have a nice property: if they monotonically increase from
minimum to SP then they automatically take a course throughout in a valley

[7]. To our knowledge, NTs are the sole curves with this property.



2. Steepest Descent — IRC

e The steepest descent (SD) from the SP is a simple definition of a reaction
path, which is well-known as the intrinsic reaction coordinate (IRC). Using the
arc-length s for the curve parameter, an SD curve x(s) is defined by the system

of vector equations
dx(s) _  G(x(s))
s = IG&) W

where G(x) is the gradient vector of the PES.

e Starting at any x, with G(x;) # 0, the solution of the differential equation
leads monotonically decreasing to a minimum (or another deeper lying StP).
The stationary points are the fixed points of the method — there the gradient
is zero. In every non-stationary point the tangent of eq.(1) is defined and there
cannot be a branching [9].

e SD curves can go down over a ridge. They do not always mirror the struc-
ture of valleys or ridges. The first derivatives of the PES are not sufficient to

characterize the curvature of valleys, or ridges.
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FIG. 1. Steepest descent over a ridge
On a ridge the SD does not go along a minimum. It goes down along a maximum

seen across the pathway: this contradicts the definition of a MEP.



3. Turning point (TP)

Fig.2 compares the distinguished coordinate method (right) with a Newton
trajectory (left). If one starts at the global minimum A along the z direction,
and minimizes orthogonally to z axis, then one follows the NT to 0° up to its
first turning point. There the distinguished coordinate method (right) leaps,
but the NT (left) continues. The z axis is the search direction, r = (1,0). The
right hand side is a copy of Fig.6 of K.Miiller [10]. The pieces of the curves

found there are from one and the same NT, see the left Figure.

Definition 1 A point s a turning point of a Newton trajectory if the tangent

x(t) is orthogonal to the search direction r which is parallel to G(x(t)).

For the NT of Fig. 2, it is (0, —1) the tangent at the TPs.
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FIG. 2. Newton trajectory and distinguished coordinate method



4. Pseudo-convexity index

It is useful to have a criterion being simple and easy to calculate, if we follow
curves through regions of valleys on a way from minimum upon saddle. Such
a criterion is the index of pseudo-convexity. It is defined by the well known

Rayleigh quotient with the adjoint A of the Hessian H .

Definition 2 The pseudo-convexity index (pcx index) is the function

(2)

FIG. 3. Pseudo-convexity boundary = on MB potential

Conclusion 1 On a gradient extremal (GE) the relations of Table I hold for the
signs of the eigenvalue \ belonging to the gradient, for the index of the curve

point x, and for the pcx index &.

Consequently, the pcx index is positive in the neighborhood of an SP of index
one in direction of the negative eigenvalue, but the pcx index is negative in

direction of the positive eigenvalues.



TABLE I. Relation between index, eigenvalue A, and pcx index &

ind2 (X) 010 1 1

Ao -] -

& |4+ |-]- |+

Conclusion 2 A gradient extremal crosses the boundary of pseudo-convexity =

in a VRI point.

Proposition 3 The pseudo-convezity index £ is zero at turning points and ex-

traneous singularities of solutions of the Branin equation.

In other words: the set = is the set of all prospective TPs of NTs.

(Of course, not every NT has a TP.)

Definition 4 Two manifolds, M, and M,, are transversal in a common point x,

if the tangential spaces of the manifolds in x span the whole IR",

t.e. IR" = Tle -+ TxMz.

M, M, M, My
FIG. 4. Transversal (left) and tangential (right) curves

Let M be a compact, connected 1-codimensional differentiable manifold in R",
i.e. dimM =n—1. Then IR"\ M consists of two open components, one of which

is bounded. It is the interior of M. We use for M an equipotential surface.



We need definitions which connect the pcx index and convexity properties of the PES.

Definition 5 [11] A set K C IR™ is named convex, if for all z,y € K with x # y
the convex combination is lying in K: Az + (1 — Ny e K for A€ (0,1).

Let K be convex, E : K — IR. The set L, = {x € K| E(x) < a} is named lower
level set. Let A € (0,1). A function E is named

e pseudo-convex (pcx) if (x —y)I!VE(y) > 0= FE(x) > E(y),

e strictly pseudo-convex (s.pcx) if (x —y)"VE(y) > 0= E(x) > E(y).

Definition 6 M is named global boundary to vector field Ng of the tangents of

Newton trajectories, if Ng s transversal to M.
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FIG. 5. Global boundary &, to Newton trajectory 7

7]

In Fig. 5 the Newton trajectory 7 (bold) transversally crosses the equipotential

surface £,, and it tangentially touches Lz. It holds £(x) = 0 on the dashed line.

Conclusion 4 A compact component of an equipotential surface &£, is a global
boundary of the vector field Ng to Newton trajectories if the pcx index is not

zero on &,.

Proposition 5 Be M a 1-codimensional, compact manifold in IR", and be the

field of normals on M diffeomorph to S"~!, then the interior of M is convezx.



Conclusion 6 Let the pcx index not be zero on the boundary 0L, = &, of a
compact component of a lower level set L,, and let the boundary not contain

stationary points, then the component is convez.

Proposition 7 (Global boundary) [12] Let E : IR® — IR and possible stationary
points should not be degenerate. Additionally, let M be a global boundary to

the Newton trajectories and M does not contain extraneous singularities of E.

Then holds:
e The wnterior of M contains no periodic Newton trajectories.
o M is diffeomorph to S™!,
e The wnterior of M contains only one stationary point.

Figure 5 illustrates the proposition. Every component of the equipotential
surface £, forms a global boundary to the field of tangent vectors to the NTs.
Only on the line £ = 0 the NTs have a TP. It means that compact components
of equipotential surfaces which are not intersected by = = {x € £ |£(x) = 0} form
a global boundary to the tangent vector field belonging to Newton trajectories.
These components enclose only one minimum. However, the other equipotential

surfaces (i.e. £5) enclose both minima, and they do not form a global boundary

to Ng.

Theorem 1 If the compact component of an equipotential surface £, does not
contain stationary points, and if the pseudo-convexity index £ is not zero on
a corresponding lower level set L, \ Ess(K) without stationary points, then the
PES is strictly pseudo-convezx (s.pcx) over this lower level set.

The next step is to show that one can often continue the property of strictly pseudo-
convexity uphill to an SP of index one.



Proposition 8 Let C : (a,b) — R", x(t) = C(t) be a branch of a Newton trajectory
connecting a minimum, C(a), and a saddle, C(b), then, the following items are

equivalent:
e C 1is strictly pseudo-convez.
e The pcx index is larger than zero on C.

e C increases strongly monotonically.

Proposition 9 Let Uz be an open neighborhood of a regular point X, and let Ui
not contain stationary points. The pcx index for all x € Ui is not equal to zero.
Then for every o € IR the restriction of the trajectory map on the intersection

of £, and Uz is a diffeomorphism on an open subset of S™ '.

FIG. 6. Convex neighborhood of regular point X with equipotential lines (dashed) and the

field of Newton trajectories

In other words: if the pcx index is not zero over an open subset of the confi-
guration space, and if the subset does not contain stationary points, then every
NT crosses every equipotential surface once only in the subset. It means that
the gradient never has the same direction on the intersection, and there do not

exist NTs to every direction in the subset.

Now, the next aim is to transfer the content of Theorem 1 to the neighborhoods of propo-
sition 9. It will be possible if the sets £,(Ux) can be seen to be a part of a compact set
being diffeomorph to S ! and convex.



Consequently, it is true if the Ui is near a minimum, and the equipotential
surfaces are curved positively in all directions.

For ind(x) = 0 the condition is fulfilled trivially.

For ind(x) = 1 the number of negative eigenvalues of the adjoint matrix A is
n —1. From u! Hu; = Aulu; < 0 it follows ul Au; = pulu; > 0, and vice versa.
With Sylvester’s law of inertia the number of positive and negative subspaces
of a matrix is constant, respective of a linear operator, and it follows from
GTAG = £||G||> > 0, GTHG < 0, and so vIHv > 0 for all v out of the tangential

space to the equipotential surface staying orthogonally to GG. So it holds:

Theorem 2 Be Uiz an open and convex neighborhood of a regular point X, which
does not contain stationary points. Be the pcx index larger than zero for all

x € Uz, and ind(x) < 1. Then the PES is strictly pseudo-convex over Ux.

5. Pseudo-convexity and structure of a valley

Around a minimum the pseudo-convexity boundary marks the end of pseudo-
convexity, and in this sense the end of the valley character. The definitions of
the pseudo-convexity index and the pseudo-convexity boundary are useful.

A sharpening of proposition 8 for a stricter convexity is not possible. A smooth
curve connecting a minimum and an SP of index one always has at least one
inflection point where the gradient has a local extremum. Such a curve can-
not be convex. The pseudo-convexity makes that the curve increases strongly
monotonically from minimum up to the SP. The change of the index at the
inflection point is not important for answering the question of the character of

the valley around the curve.



S t)

FIG.7. Pseudo-convex curve between a and b. f is convex between a and ¢, but not

between ¢ and b

The pseudo-convexity of a curve is not a sufficient criterion for a valley. Every
steepest descent curve is pseudo-convex, however, it can go over a ridge. On the
other hand, also the condition that the pcx index is larger than zero over any
smooth curve is not a sufficient criterion for the pseudo-convexity of the curve.
A smooth curve C: (a,b) — IR", connecting a minimum, C(a), and an SP of
index one, C(b), is strictly pseudo-convex if it increases strongly monotonically.
On the basis of the Theorems 1 and 2 we find a general characterization for a

valley with the help of the pseudo-convexity index.

Definition 7 Between a minimum, C(a), and a saddle, C(b), there is throughout
a valley, if there is a smooth curve, a valley curve, connecting C(a) and C(b)
and fulfilling throughout ¢ > 0, and for which the energy increases strongly

monotonically.

From proposition 8 follows:

Theorem 3 The branch of a Newton trajectory may connect a minimum and a
saddle point of index one. It is a valley curve if the pcx index over the branch

1s larger than zero.



6. Discussion and Conclusion

e Up to now, there is no method which always finds a “valley path” between min-
imum and SP. The reason is that such a valley does not always exist. However,
a valley curve can exist but not an NT which is a valley curve.

e We discuss the relation between the three curves of interest here, the IRC,

the NT, and also the gradient extremal (GE), to describe a valley structure.
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FIG. 8. Poseidon PES [7], left: the NT belonging to 90° has two consecutive VRI points
and forms a double trident. Right: an NT being valley trajectory (bold), pcx boundary

(dashed) and GEs (small)

The right part of Fig.8 shows the “good” case for an NT being a valley tra-
jectory from minimum to SP. Going through a valley region throughout means
that along the increase of the reaction path we always have convex equipotential
surfaces. NTs from the Branin method have special properties: a monotonically
increasing NT automatically goes through a valley. Note that the GE does not

connect the minimum and the SP of interest. (The IRC goes over a ridge.)
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FIG. 9. PES of Smeyer et al. [19], modified |7,17], left: GEs (bold), pcx boundary (dashed)
and three NTs (small); right: scheme of singular NTs (dashed) with VRI points (empty).

Numbers are the index of the stationary points.

Fig.9 shows the “bad” case, for an example where no NT connects the minimum,
being below in the center, and the SP in the right upper corner. However, there
is a valley curve.

From the minimum at ~ (0.95, —1.05) leads a small valley region around (1.45, —0.75)
to the saddle of index one at ~ (1.6, —0.3). We may draw a valley curve “by hand”
through that region like in a children’s game.

The scheme on the right hand side shows that there is no branch of an NT from
the minimum to the SP of index one in the right upper corner. The situation for
the other higher SP of the example seems to be quantitatively similar, however,
it is qualitatively different.

There is a small “corridor” with valley character, here around (0.65, —0.85), being
a bottle-neck, but the drawn NT exactly leads through the region of the corridor

and connects minimum and the left upper SP with a valley trajectory.



In Fig.10 a NT wins the competition against the gradient extremal.
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FIG.10. Gradient extremals (bold), one Newton trajectory (thin) and pcxboundary

(dashed) on MB potential
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FIG.11. PES [20], modified [7]. Dashed line is the pcx boundary between valley and ridge.

Two minima at the sides are connected over SP at (0,0). The IRC (thin points) crosses the

ridge. Right: IRC from SP.

A family of Newton trajectories is concentrated upon small gorges near (+2, F2).
However, none of them goes upon the SP throughout in the valley. They cross
the other ridge near the SP, or diverge. None of the NTs are valley curves.

There, the GE plays a lone hand: only the gradient extremal (bold) is a valley

curve throughout.
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e The aim of our visualizations is to support analysis and interpretation of
reaction pathways. Chemists have a long tradition in inventing and applying

models for the analysis of molecular transformations taking place in a reaction.

e The development of new ideas, definitions, and methods for modeling a re-
action path critically depends on visualization as an effective way to gain an

understanding of a problem.

e For a long time the TRC was the model of choice of theoretical chemistry.
However, the IRC from SP downhill can enter a ridge. Then it loses the prop-

erty to be an MEP.

e One may exclude this situation by employing the pcx index. If £ > 0 on the
whole IRC, it is a valley curve. The ¢ > 0 condition gives one the possibility of
a panoramic view over the reaction path of interest. The IRC is automatically

decreasing throughout.

e If a Newton trajectory monotonically increases between minimum and saddle

then it is automatically a valley curve. The £ > 0 condition is fulfilled.

e Thus, the NTs are well adapted to the problem treated here: to enlighten the

valley structure of the region around the reaction path.
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