The foundations of the Foundations of cryptography

Summer semester 2019

Claus Diem
Some words about complexity theory
Srings and numbers

We use \(\{0, 1\}^* \) or \(\mathbb{N} \):

\[
100110 \leftrightarrow 011001 \leftrightarrow 1011001 \leftrightarrow (1011001)_2
\]
We use \{0, 1\}^* or \(\mathbb{N}\):

\[
100110 \longleftrightarrow 011001 \longleftrightarrow 1011001 \longleftrightarrow (1011001)_2
\]

In the following \{0, 1\}^*. For a string \(x\) we denote by \(|x|\) its length.
The “polynomial is fast”-paradigma

- Only asymptotic statements are made.
- An algorithm is considered to be fast if its running time is polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively fast
One says “polynomial running time” instead of polynomially “bounded running time”.

$L \subseteq \{0, 1\}^\ast$ corresponds to a function $f : \{0, 1\}^\ast \rightarrow \{0, 1\}^\ast$. Decision problem for $L \subseteq \{0, 1\}^\ast / f : \{0, 1\}^\ast \rightarrow \{0, 1\}^\ast$: Decide if an input $x \in \{0, 1\}^\ast$ lies in $L /$ if $f(x) = 1$ holds.
The “polynomial is fast”-paradigma

- Only asymptotic statements are made.
- An algorithm is considered to be fast if its running time is polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively fast
One says “polynomial running time” instead of polynomially “bounded running time”.

Language: $L \subseteq \{0, 1\}^*$, corresponds to a function $f : \{0, 1\}^* \rightarrow \{0, 1\}$.

The “polynomial is fast”-paradigma

- Only asymptotic statements are made.
- An algorithm is considered to be fast if its running time is polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively fast
One says “polynomial running time” instead of polynomially “bounded running time”.

Language: $L \subseteq \{0, 1\}^*$, corresponds to a function $f : \{0, 1\}^* \rightarrow \{0, 1\}$.

Decision problem for $L \subseteq \{0, 1\}^*$ / $f : \{0, 1\}^* \rightarrow \{0, 1\}$:
The “polynomial is fast”-paradigma

- Only asymptotic statements are made.
- An algorithm is considered to be **fast** if its running time is polynomially bounded in the input length.

One might say: polynomially bounded running time = qualitatively fast
One says “polynomial running time” instead of polynomially “bounded running time”.

Language: \(L \subseteq \{0, 1\}^\ast \), corresponds to a function \(f : \{0, 1\}^\ast \rightarrow \{0, 1\} \).

Decision problem for \(L \subseteq \{0, 1\}^\ast \) / \(f : \{0, 1\}^\ast \rightarrow \{0, 1\} \):

Decide if an input \(x \in \{0, 1\} \) lies in \(L \) / if \(f(x) = 1 \) holds.
Complexity classes

P. Set of languages / 0 — 1-functions / problems decidable in polynomial time by a deterministic Turing machine (TM).
Complexity classes

P. Set of languages / 0 – 1-functions / problems decidable in polynomial time by a deterministic Turing machine (TM).

NP. Set of languages / 0 – 1-functions / problems decidable in polynomial time by a non-deterministic Turing machine.
Complexity classes

P. Set of languages / 0 – 1-functions / problems decidable in polynomial time by a deterministic Turing machine (TM).

NP. Set of languages / 0 – 1-functions / problems decidable in polynomial time by a non-deterministic Turing machine.

BPP. Set of languages / 0 – 1-functions / problems probabilistically decidable with bounded error by a (probabilistic) Turing machine.
The class NP

For $L \subseteq \{0, 1\}^*$:

Possible definitions for $L \in \text{NP}$:

- There is a non-deterministic TM T with:
 - T terminates in polynomial time.
 - For an input x are equivalent:
 - $x \in L$.
 - At least one possible output of T applied to x is 1.
The class NP

For \(L \subseteq \{0,1\}^* \):
Possible definitions for \(L \in \text{NP} \):

- There is a non-deterministic TM \(T \) with:
 - \(T \) terminates in polynomial time.
 - For an input \(x \) are equivalent:
 - \(x \in L \).
 - At least one possible output of \(T \) applied to \(x \) is 1.

- There is a relation \(R \subseteq \{0,1\}^* \times \{0,1\}^* \), a DTM \(T \) and a positive polynomial \(p(n) \) with:
 - \(T \) computes \(R \): \(T(x,y) = 1 \iff x \sim_R y \) (i.e., \((x,y) \in R\))
 - \(x \in L \) if and only if there is a \(y \) with \(|y| \leq p(|x|) \) and \(x \sim_R y \) (i.e., \((x,y) \in R\)).
 - \(T \) terminates in polynomial time.
The class NP

For $L \subseteq \{0, 1\}^*$:
Possible definitions for $L \in \text{NP}$:

- There is a non-deterministic TM T with:
 - T terminates in polynomial time.
 - For an input x are equivalent:
 - $x \in L$.
 - At least one possible output of T applied to x is 1.
- There is a relation $R \subseteq \{0, 1\}^* \times \{0, 1\}^*$, a DTM T and a positive polynomial $p(n)$ with:
 - T computes R: $T(x, y) = 1 \iff x \sim_R y$ (i.e., $(x, y) \in R$)
 - $x \in L$ if and only if there is a y with $|y| \leq p(|x|)$ and $x \sim_R y$ (i.e., $(x, y) \in R$).
 - T terminates in polynomial time.

Given x, a y with $x \sim_R y$ is called a witness or a proof.
The class BPP

For $L \subseteq \{0, 1\}^*$:
The class BPP

For $L \subseteq \{0, 1\}^*$:

Definition of $L \in \text{BPP}$:

- There is a probabilistic TM T with:
 - T terminates in polynomial time.
 - For $x \in L$, T outputs 1 with a probability of $\geq \frac{2}{3}$.
 - For $x \not\in L$, T outputs 0 with a probability of $\leq \frac{1}{3}$.

Note: This must hold for all x! So: The error probability is always $\leq \frac{1}{3}$. This can be substituted by any bound $c > 0$.
The class BPP

For $L \subseteq \{0, 1\}^*$:

Definition of $L \in \text{BPP}$:

There is a probabilistic TM T with:

- T terminates in polynomial time.
- For $x \in L$, T outputs 1 with a probability of $\geq \frac{2}{3}$.
- For $x \notin L$, T outputs 0 with a probability of $\leq \frac{1}{3}$.

Note: This must hold for all x. So: The error probability is always $\leq \frac{1}{3}$. This can be substituted by any bound $c > 0$.
The class BPP

For $L \subseteq \{0, 1\}^*$:

Definition of $L \in \text{BPP}$:

There is a probabilistic TM T with:

- T terminates in polynomial time.
- For $x \in L$, T outputs 1 with a probability of $\geq \frac{2}{3}$.
- For $x \notin L$, T outputs 0 with a probability of $\leq \frac{1}{3}$.

Note: This must hold for all x!
The class BPP

For $L \subseteq \{0, 1\}^*$:

Definition of $L \in \text{BPP}$:

There is a probabilistic TM T with:

- T terminates in polynomial time.
- For $x \in L$, T outputs 1 with a probability of $\geq \frac{2}{3}$.
- For $x \notin L$, T outputs 0 with a probability of $\leq \frac{1}{3}$.

Note: This must hold for all x!

So: The error probability is always $\leq \frac{1}{3}$. This can be substituted by any bound $c > 0$.
Complexity classes

It is obviously $P \subseteq NP$, $P \subseteq BPP$.
Complexity classes

It is obviously $P \subseteq NP$, $P \subseteq BPP$.

All unter relationships are unknown.
Complexity classes

It is obviously $P \subseteq NP$, $P \subseteq BPP$.

All unter relationships are unknown.

Is $P = NP$, $P = BPP$, $NP \subseteq BPP$, $BPP \subseteq NP$?
The notion of algorithm

In the following:
Algorithm $= (\text{randomized})$ Turing machine or
$= \text{informal description of a computation.}$
The notion of algorithm

In the following:
Algorithm = (randomized) Turing machine or
= informal description of a computation.

Attacker are modeled with (randomized) algorithms.
Fast attackers are polynomial time algorithms (also called PPT-algorithms)
For cryptographic protocols, we define rigorous notions of “secure”.

Motivated by polynomial time paradigm:

Definition. A function $\epsilon: \mathbb{N} \to \mathbb{R}$ is called negligible, if for every $\epsilon > 0$ it holds: $|\epsilon(n)| \leq \frac{1}{n^\epsilon}$ for all $n \gg 0$.

Negligible
For cryptographic protocols, we define rigorous notions of “secure”. This is always defined like this: For a fast attackers (= polynomial time Turing machines) some computational goal (details!) is only achieved with a negligible probability.
For cryptographic protocols, we define rigorous notions of “secure”. This is always defined like this:
For a fast attackers (= polynomial time Turing machines) some computational goal (details!) is only achieved with a negligible probability.

Motivated by polynomial time paradigm:

Definition. A function \(\epsilon : \mathbb{N} \rightarrow \mathbb{R} \) is called **negligible**, if for every \(\epsilon > 0 \) it holds:

\[
|\epsilon(n)| \leq \frac{1}{n^\epsilon}
\]

for all \(n \) with \(n \gg 0 \).
One-way functions
Let \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) be efficiently computable, that is, in polynomial time on a DTM.
One-way functions

Let $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.
One-way functions

Let \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.

Let \(n \) be the input length.
One-way functions

Let $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of $x \in \{0, 1\}^n$ for which given $f(x)$ one can compute efficiently some x' with $f(x) = f(x')$ is negligible.
Let \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.

Let \(n \) be the input length.

Idea. The portion of \(x \in \{0, 1\}^n \) for which given \(f(x) \) one can compute efficiently some \(x' \) with \(f(x) = f(x') \) is negligible.

One cannot define this “portion”.
One-way functions

Let $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of $x \in \{0, 1\}^n$ for which given $f(x)$ one can compute efficiently some x' with $f(x) = f(x')$ is negligible.

One cannot define this “portion”.

For “efficiently” and “negligible” one has to fix an algorithm.
One-way functions

Let $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ be efficiently computable, that is, in polynomial time on a DTM.

We want that preimages are hard to compute.

Let n be the input length.

Idea. The portion of $x \in \{0, 1\}^n$ for which given $f(x)$ one can compute efficiently some x' with $f(x) = f(x')$ is negligible.

One cannot define this “portion”.

For “efficiently” and “negligible” one has to fix an algorithm.

We want to consider all (randomized) algorithms.
One-way functions

Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

[Further details on the properties of one-way functions could be added here.]
One-way functions

Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$\Pr[f(A(f(x))) = f(x) \mid x \in \{0, 1\}^n \text{ is uniform}]$$

is negligible in $n = |x|$.
Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$P[f(A(f(x))) = f(x)],$$

where $x \in \{0, 1\}^n$ is uniform, is negligible in $n = |x|$.

Problem. Like this the function $f : x \mapsto |x|$ is a one-way function.
One-way functions

Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \longrightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$\mathbb{P}[f(A(f(x))) = f(x)],$$

where $x \in \{0, 1\}^n$ is uniform, is negligible in $n = |x|$.

Problem. Like this the function $f : x \mapsto |x|$ is a one-way function.

One cannot efficiently compute x from the length of x, because the output size is exponential in the input size.
One-way functions

Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$P[f(A(f(x))) = f(x)],$$

where $x \in \{0, 1\}^n$ is uniform, is negligible in $n = |x|$.

Problem. Like this the function $f : x \mapsto |x|$ is a one-way function. One cannot efficiently compute x from the length of x, because the output size is exponential in the input size.

This suggests that the definition should be modified.
One-way functions

Better idea for a definition. A one-way function is an efficiently computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) with:

For all PPT-algorithms \(A \),

\[
P[f(A(f(x)))) = f(x)],
\]

where \(x \in \{0, 1\}^n \) is uniform, is negligible in \(n = |x| \).

Problem. Like this the function \(f : x \mapsto |x| \) is a one-way function.

One cannot efficiently compute \(x \) from the length of \(x \), because the output size is exponential in the input size.

This suggests that the definition should be modified.

Possible solution. We say “negligible in \(n \)”. This is alright, but does not correspond to the standard “framework” of complexity theory.
Better idea for a definition. A one-way function is an efficiently computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$P[f(A(f(x))) = f(x)],$$

where $x \in \{0, 1\}^n$ is uniform, is negligible in $n = |x|$.

Problem. Like this the function $f : x \mapsto |x|$ is a one-way function.

One cannot efficiently compute x from the length of x, because the output size is exponential in the input size.

This suggests that the definition should be modified.

Possible solution. We say “negligible in n”. This is alright, but does not correspond to the standard “framework” of complexity theory.

Solution. We also give $1^n = 1 \cdots 1$ as input.
One-way functions

Definition. A *(strong)* one-way function is a polynomial time computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

- For all PPT-algorithms A, $P[A(f(x))] = f(x)$, with $x \in \{0, 1\}^n$ uniform is negligible.

The "inversion problem" can clearly be solved efficiently on a non-deterministic Turing machine. Therefore: The "inversion problem" can be reduced to a decision problem which is in NP. If there is a one-way function, this decision problem is not in BPP. So then NP \subset BPP.
Definition. A (strong) one-way function is a polynomial time computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ with:

For all PPT-algorithms A,

$$P[f(A(1^n, f(x))) = f(x)] ,$$

with $x \in \{0, 1\}^n$ uniform is negligible
Definition. A (strong) one-way function is a polynomial time computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) with:

For all PPT-algorithms \(A \),

\[
P[f(A(1^n, f(x))) = f(x)],
\]

with \(x \in \{0, 1\}^n \) uniform is negligible

The “inversion problem” can clearly be solved efficiently on a non-deterministic Turing machine.
One-way functions

Definition. A (strong) one-way function is a polynomial time computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) with:
For all PPT-algorithms \(A \),

\[
P[f(A(1^n, f(x))) = f(x)],
\]

with \(x \in \{0, 1\}^n \) uniform is negligible

The “inversion problem” can clearly be solved efficiently on a non-deterministic Turing machine.

Therefore: The “inversion problem” can be reduced to a decision problem which is in NP.
If there is a one-way function, this decision problem is not in BPP.
So then \(\text{NP} \not\subseteq \text{BPP} \).
Conjecture. The function

\[\{ (m, n) \in \mathbb{N} \times \mathbb{N} \mid \lceil \log_2(m) \rceil = \lceil \log_2(n) \rceil \} \rightarrow \mathbb{N}, \]

\[(m, n) \mapsto m \cdot n \]

is / leads to a one-way function.
Families of one-way functions

Idea. Given a security parameter, one chooses first a parameter. Then for a given parameter, one considers a function with finite input and output.
Idea. Given a security parameter, one chooses first a parameter. Then for a given parameter, one considers a function with finite input and output.

Important conjectured example: modulo exponentiation

- Parameter: A prime p and a generator g of $(\mathbb{Z}/p\mathbb{Z})^\times$.
- Parameter choice: Given n choose a prime p of size n (how?).
- Function: $\{0, \ldots, p-2\} \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times$, $x \mapsto g^x$
- Inversion: Computation of $x = \text{discrete logarithm}$
Families of one-way functions

More general, for example for $G = E(\mathbb{F}_q)$:

- Parameter: A finite group $G = (G, \cdot)$ with efficient arithmetic $a \in G$.
- Function: $G \rightarrow G$, $x \mapsto a^x$
Families of one-way functions

More general, for example for $G = E(\mathbb{F}_q)$:

- Parameter: A finite group $G = (G, \cdot)$ with efficient arithmetic $a \in G$.
- Function: $G \rightarrow G$, $x \mapsto a^x$

- Parameter: A finite abelian group $G = (G, +)$, $a \in G$.
- Function: $G \rightarrow G$, $x \mapsto x \cdot a$
Hardcore bits
Let f be a one-way function. Then only for a negligible amount of x one can compute efficiently from $f(x)$ a preimage.
Idea for Harcdore bits

Let f be a one-way function. Then only for a negligible amount of x one can compute efficiently from $f(x)$ a preimage.

But: It could be that nonetheless one can extract information on x from $f(x)$.
Let f be a one-way function. Then only for a negligible amount of x one can compute efficiently from $f(x)$ a preimage.

But: It could be that nonetheless one can extract information on x from $f(x)$.

For example: The first bit of x could be encoded in $f(x)$.
Let f be a one-way function. Then only for a negligible amount of x one can compute efficiently from $f(x)$ a preimage.

But: It could be that nonetheless one can extract information on x from $f(x)$.

For example: The first bit of x could be encoded in $f(x)$.

Then the first bit would not be a hardcore bit.
Hardcore bits

Definition. Let $f : \{0, 1\}^* \rightarrow \{0, 1\}$ be an efficiently computable function (⋆). Then a **hardcore bit** for f is a function $b : \{0, 1\}^* \rightarrow \{0, 1\}$ with:

- For all PPT-algorithms A the success $P[A(1^n, f(x))] = b(x)$ is negligible (in n).

Often “one-way” is required, but we don’t do this.
Hardcore bits

Definition. Let $f : \{0, 1\}^* \rightarrow \{0, 1\}$ be an efficiently computable function (\star). Then a **hardcore bit** for f is a function $b : \{0, 1\}^* \rightarrow \{0, 1\}$ with:

For all PPT-algorithms A the **success**

$$
P[A(1^n, f(x)) = b(x)] - \frac{1}{2},
$$

where $x \in \{0, 1\}^n$ is uniform, is negligible (in n).
Hardcore bits

Definition. Let $f : \{0, 1\}^* \rightarrow \{0, 1\}$ be an efficiently computable function (⋆). Then a **hardcore bit** for f is a function $b : \{0, 1\}^* \rightarrow \{0, 1\}$ with:

For all PPT-algorithms A the **success**

$$P[A(1^n, f(x)) = b(x)] - \frac{1}{2},$$

where $x \in \{0, 1\}^n$ is uniform, is negligible (in n).

(⋆) Often “one-way” is required, but we don’t do this.
Hardcore bits

Definition. Let $f : \{0, 1\}^* \rightarrow \{0, 1\}$ be an efficiently computable function (\star). Then a *hardcore bit* for f is a function $b : \{0, 1\}^* \rightarrow \{0, 1\}$ with:

For all PPT-algorithms A the success

$$P[A(1^n, f(x)) = b(x)] = 1 - \frac{1}{2},$$

where $x \in \{0, 1\}^n$ is uniform, is negligible (in n).

(\star) Often “one-way” is required, but we don’t do this.
Example. Let $f(x_1 \cdots x_n) := x_2 \cdots x_n$, $b(x_1 \cdots x_n) := x_1$. Then b is a hardcore bit for f.

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a one-way function. Expressed differently: If f is injective and not a one-way function, then it does not have a hardcore bit.
Example. Let \(f(x_1 \cdots x_n) := x_2 \cdots x_n, \quad b(x_1 \cdots x_n) := x_1 \). Then \(b \) is a hardcore bit for \(f \).
Example. Let $f(x_1 \cdots x_n) := x_2 \cdots x_n$, $b(x_1 \cdots x_n) := x_1$. Then b is a hardcore bit for f.

But: f is not injective.
Example. Let \(f(x_1 \cdots x_n) := x_2 \cdots x_n \), \(b(x_1 \cdots x_n) := x_1 \).

Then \(b \) is a hardcore bit for \(f \).

But: \(f \) is not injective.

Lemma. Let \(f \) be injective. If now \(f \) has a hardcore bit, then \(f \) is a one-way function.
Example. Let $f(x_1 \cdots x_n) := x_2 \cdots x_n$, $b(x_1 \cdots x_n) := x_1$. Then b is a hardcore bit for f.

But: f is not injective.

Lemma. Let f be injective. If now f has a hardcore bit, then f is a one-way function.

Expressed differently: If f is injective and not a one-way function, then it does not have a hardcore bit.
Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^\times$.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way function. Then a random linear combination of x is a hardcore bit of f. This means: $(x, u) \mapsto (f(x), u)$ with $|x| = |u|$ is a one-way function and $b: (x, u) \mapsto x_1u_1 + \cdots + x_nu_n$ is a hardcore bit thereof.
Theorem. (Blum & Micali, 1984) Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^\times$.

If $\{1,\ldots, p - 1\} \longrightarrow (\mathbb{Z}/p\mathbb{Z})^\times \cong \{1,\ldots, p - 1\}$, $x \mapsto g^x$ is a one-way function, then

$$b : x \mapsto \begin{cases} 0, & \text{falls } x \leq \frac{p-1}{2} \\ 1, & \text{falls } x > \frac{p-1}{2} \end{cases}$$

is a hardcore bit thereof.
Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^\times$.

If $\{1, \ldots, p - 1\} \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times \simeq \{1, \ldots, p - 1\}$, $x \mapsto g^x$ is a one-way function, then

$$b : x \mapsto \begin{cases}
0, & \text{falls } x \leq \frac{p-1}{2} \\
1, & \text{falls } x > \frac{p-1}{2}
\end{cases}$$

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let f be a one-way function. Then a random linear combination of x is a hardcore bit of f.
Results on hardcore bits

Theorem. (Blum & Micali, 1984) Let \(g \) be a generator of \((\mathbb{Z}/p\mathbb{Z})^\times\).

If \(\{1, \ldots, p-1\} \rightarrow (\mathbb{Z}/p\mathbb{Z})^\times \simeq \{1, \ldots, p-1\}, \ x \mapsto g^x \) is a one-way function, then

\[
 b : x \mapsto \begin{cases}
 0, & \text{falls } x \leq \frac{p-1}{2} \\
 1, & \text{falls } x > \frac{p-1}{2}
\end{cases}
\]

is a hardcore bit thereof.

Theorem. (Goldreich & Levin, 1989) Let \(f \) be a one-way function. Then a random linear combination of \(x \) is a hardcore bit of \(f \).

This means: \((x, u) \mapsto (f(x), u)\) mit \(|x| = |u|\) is a one-way function and \(b : (x, u) \mapsto x_1u_1 + \cdots + x_nu_n \) is a hardcore bit thereof.