
An Attack on a Trace-Zero Cryptosystem

Claus Diem and Jasper Scholten

Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Germany
and

ESAT / COSIC, K.U. Leuven, Belgium

Abstract. It was recently proposed in the literature that the discrete
logarithm problem (DLP) in trace-zero groups of genus 2 curves with
respect to constant field extensions of degree 3 is a fast and secure al-
ternative to the well established cryptographic primitive of the DLP in
elliptic curves over prime fields.
We present a novel attack on this primitive. We show that the DLP in
the trace-zero group can always be transferred into the DLP in the class
group of a curve of genus at most 6 over the prime field. Asymptotically,
the DLP can be solved faster by transferring it into the DLP in the class
group of this curve and using index calculus methods than by attacking
it directly via generic methods. The speed-up one obtains corresponds
to a reduction of 1/6th of the bit length.
We discuss practical aspects of our attack and argue that for crypto-
graphically relevant group sizes (even for “low security” applications of
128 bit length), our attack always leads to a considerable speed-up in
the calculation of the DLP in relation to generic attacks.

1 Introduction

The discrete logarithm problem (DLP) in elliptic curves is a well established
cryptographic primitive for public key cryptosystems. After the publication of
influential articles by Cantor ([2]) and Koblitz ([15], [14]), the DLP in degree 0
class groups (Jacobian groups) of hyperelliptic curves (of genus ≥ 2) received
attention as an alternative cryptographic primitive. This primitive seemed to be
particularly interesting from the point of view of implementation as for compa-
rable group size the ground field is smaller (the degree 0 class group of a curve
of genus g over Fq has roughly qg elements), and if one chooses the parameters
appropriately, elements of the ground field can completely fit into registers of
the processor.

It was however subsequently shown that under some constraints on the genera
of the curves one can mount index calculus attacks against the DLP in degree 0
class groups of hyperelliptic curves. In particular, it was shown by Gaudry ([7])
that for hyperelliptic curves over Fq of a fixed genus g the DLP in these groups

can be attacked in a time of Õ(q2) bit operations (where the Õ-notation means
that we disregard logarithmic factors). If one fixes a genus g ≥ 5 and restricts
ones attention to the cryptographically important case of hyperelliptic curves

over Fq which have a degree 0 class group of prime order, this is a speed-up
against generic attacks like e.g. the ρ-method which have a heuristic running
time of Θ(qg/2) group operations. Because of this result and previous results by
Adleman, DeMarrais and Huang ([1]), hyperelliptic curves of genus ≥ 5 were
soon considered to be cryptographically weak.

The main feature of Gaudry’s index calculus algorithm is that the factor
base consists of all points over the ground field. The asymptotical complexity
is dominated by the linear algebra part. At the end of [7] an idea of Harley
is mentioned which can be used to attack curves of genus 4: One reduces the
factor base. With this idea one can solve the DLP in class groups of hyperelliptic
genus 4 curves in Õ(q(2− 1

5
)) = Õ(q

9

5) bit operations. This idea was subsequently
analyzed by Thériault who combined it with another method: A large prime
variation. With this approach one can asymptotically even solve the DLP in
class groups of hyperelliptic genus 3 curves faster than with generic attacks: One
obtains a speed-up corresponding to the reduction of the bit length by 1/21th in
comparison with generic attacks. (In the meantime, with a double large prime
variation, Gaudry, Thériault, Thomé ([9]) and Nagao ([19])1 have shown that
this DLP can even be solved in Õ(q4/3) bit operations, which is equivalent to a
reduction of the bit length by 1/9th.)

Because of these results, it has been a challenging task to find new alternatives
to elliptic curves for which – at least for cryptographically relevant group sizes –
no attack which improves the well-known generic attacks is known. One of these
alternatives seemed to be trace-zero groups of degree 0 class groups of genus 2
curves with respect to constant field extensions of degree 3 of prime fields Fp. In
[18], Lange argues that they are a fast alternative to elliptic curves over prime
fields or degree 0 class groups of genus 2 curves over prime fields, especially for
“low security” applications of just below 128 bit group size. (However, in [18]
there is an example with 192 bit group size as well.)

Let p be a prime number and let H/Fp be a genus 2 curve, explicitly given by
a hyperelliptic equation y2 = f(x) with deg(f) = 5. The cryptographic primitive
discussed in [18] is the DLP in the trace-zero group T inside the degree 0 divisor
class group Cl0(H/Fp3) (for definition of T see next section). We note that T
has roughly p4 elements.

In this work, we present an attack on this primitive. Our attack is based on
a method which allows to transfer the DLP in T into the DLP in the degree 0
class group Cl0(X/Fp) for a curve X/Fp of genus at most 6. Given an explicit
hyperelliptic equation of H/Fp, the algorithmic construction of X/Fp can be
performed in randomized polynomial time in log(p) and is very fast for crypto-
graphically relevant size. This shows that the DLP in T cannot be stronger than
the DLP in the resulting group Cl0(X/Fp).

The reduced factor base index calculus algorithms (possibly with large prime
variation) can easily be generalized from hyperelliptic to more general curves

1 We were informed by Thériault that the algorithm in [19] is not correct as it is
presented.

like the curves X/Fp constructed by our method. With the double-large prime
variation algorithm ([9], [19]), one obtains the following result (see Section 5).

Theoretical result Let a, b ∈ T such that b ∈ 〈a〉. Then the DLP with respect
to a and b can be solved in a randomized running time of

Õ(p2(1− 1

6
)) = Õ(p

5

3).

This result should be compared with the running times of generic attacks on
the DLP in T : If one restricts ones attention to trace-zero groups T of prime
group order, generic attacks (like e.g. the ρ-method) give a running time of
Θ(
√

#T) = Θ(p2) group operations in T . The asymptotic speed-up correspond-
ing to a reduction of 1/6th of the bit length in relatsion to generic attacks is
larger than the asymptotic speed-up of the recent index calculus with reduced
factor base and a double-large prime variation for genus 3 curves.

We are also interested in the question whether our approach leads to a speed-
up under parameter sizes proposed by Lange. To simplify the analysis, here we
restrict our attention to the reduced factor base algorithm without large prime
variation. In Section 6 we argue that our approach leads to the following practical
result.

Practical result Assume that T has prime group order and a size at least 128
bit. Then with our method, one obtains a speed-up for the calculation of the DLP
which is equivalent to a reduction of the bit length of at least 3%. This decrease
becomes larger for growing group size and reaches 14% (1/7th) in the limit. The
storage requirements are thereby bounded by κ · p field elements for some small
constant κ.

This result holds if one compares the running time of our attack with the
running time of generic attacks on T as well as with generic attacks on the DLP
in elliptic curves (with prime group order) over prime fields of comparable size.

2 A trace-zero cryptosystem

Let us describe the cryptographic primitive presented in [18] in more detail:
Let p be a prime, and let H/Fp be a genus 2 curve, given by an explicit

equation of the form
y2 = f(x),

where f(x) ∈ Fp[x] has degree 5. Now consider the curve H over the degree
3 constant field extension of Fp3 of Fp and its degree 0 (divisor) class group

Cl0(H/Fp3) ≃ JacH(Fp3) (which is denoted by Pic0
F

p3
(H) in [20]). This group

contains the degree 0 class group Cl0(H/Fp) ≃ JacH(Fp) of H over Fp.
Let σ ∈ Gal(Fp3/Fp) be the Frobenius automorphism. This automorphism in-

duces an automorphism σ∗ on Cl0(H/Fp3). This automorphism fixes the elements

of Cl0(H/Fp), and it induces a homomorphism Cl0(H/Fp3) −→ Cl0(H/Fp3),

P 7→ P + σ∗(P) + (σ2)∗(P). The trace-zero subgroup T of Cl0(H/Fp3) is by
definition the kernel of this homomorphism.

For later use we remark that Cl0(H/Fp) consists exactly of the elements of
Cl0(H/Fp3) which are fixed by σ∗. It follows that the image of the homomorphism

Cl0(H/Fp3) −→ Cl0(H/Fp3) lies in Cl0(H/Fp). The induced homomorphism

N : Cl0(H/Fp3) −→ Cl0(H/Fp)

is called the norm-homomorphism, the trace-zero group T is the kernel of this
homomorphism.2

The cryptographic primitive discussed in [18] is the DLP in the trace-zero
group T . It is argued that for “low-security” applications with just below 128
bit length on a 32-bit processor, this primitive is advantageous to the DLP in
elliptic curves over prime fields. The main reasons for this are that one can use
the Frobenius operation to speed up scalar multiplications and that under the
condition on the bit length, field elements completely fit into registers of the
processor.

3 The general idea

Before we come to the details of our attack, we give here some information on
the ideas behind our construction. The basic idea is to try to find (smooth,
projective) curves C/Fp with covers (i.e. non-constant morphisms)

c : C/Fp3 −→ H/Fp3 (1)

and then to consider the homomorphism

T →֒ Cl0(H/Fp3)
c∗−→ Cl0(C/Fp3)

N−→ Cl0(C/Fp) (2)

induced by this cover. (Here c∗ is the pull-back homomorphism defined (e.g.) in
[20, II, §3], and N is the norm-homomorphism which is defined analogously to
the norm-homomorphism above.) The idea is that if the genus of C is not “too
large” and the kernel of the “transfer homomorphism” (2) is small, it might be
possible to transfer the DLP in T into the DLP in Cl0(C/Fp) and to solve it
there with index-calculus methods.

The main question is how to construct suitable curves C/Fp and covers c. A
first idea would be to consider a cover

c : C/Fp −→ H/Fp (3)

2 As we write the composition of two divisors in an additive way and as T is called the
“trace-zero group”, it would be reasonable to speak of the “trace-homomorphism”
instead of the “norm-homomorphism”. The terminology “norm-homomorphism” has
historical reasons and comes from an ideal-theoretic setting.

and the corresponding transfer homomorphism

T →֒ Cl0(H/Fp3)
c∗−→ Cl0(C/Fp3)

N−→ Cl0(C/Fp). (4)

However, by the definition of c as a morphism defined over Fp, we have a com-
mutative diagram

T // Cl0(H/Fp3)
c∗

//

N

��

Cl0(C/Fp3)

N

��

Cl0(H/Fp)
c∗

// Cl0(C/Fp),

and by the definition of T as the kernel of N : Cl0(H/Fp3) −→ Cl0(H/Fp), it
follows that homomorphism (4) is trivial.

The basic idea of our approach is to construct covers c : C/Fp −→ H/Fp such
that additionally C/Fp has an automorphism τ of order 3 such that c ◦ τ 6= c.
Then we consider the twist Cτ/Fp of C/Fp with respect to the constant field
extension Fp3/Fp and τ described in [20, X §2]. By definition of Cτ , we have an
isomorphism φ : Cτ/Fp3−̃→C/Fp3 . Instead of the cover (3) we now consider the
cover

c ◦ φ : Cτ/Fp3 −→ H/Fp3

and the corresponding transfer homomorphism

T →֒ Cl0(H/Fp3)
c∗−→ Cl0(C/Fp3)

φ∗−→ Cl0(Cτ/Fp3)
N−→ Cl0(Cτ/Fp). (5)

In the next sections we show how one can use Galois theory and Riemann-
Roch spaces to construct suitable covers such that the kernel of the transfer
homomorphism (5) is always small.

Comparison with the GHS attack

The idea to try to attack the DLP in class groups of curves of low genus (in
particular in the group of rational points of an elliptic curve) by using a cover
as (1) is also used in the GHS attack (this aspect of the GHS attack was already
present in the original work [8], and it was stressed in [4], [11], [12] and [13]). In
this sense our attack is similar to the GHS attack. Our concrete construction is
however different from the GHS attack.

4 Methods and results

Curves and function fields

In the rest of this work, we assume that the reader is familiar with the theory of
curves as well as the theory of function fields (in one variable) and with Galois

theory. Concerning curves, our notation follows [20]. A good introduction to the
theory of function fields is [21], and in Appendix A of the same book all results
on Galois theory we need are stated.

Let us recall the equivalence of the theories of curves and function fields. Let
K be a perfect field (e.g. a finite field).

To every curve X/K one can associate its function field K(X) which consists
of morphisms (“functions”) X/K −→ P1/K. (We regard P1/K with a fixed
coordinate system which identifies P1(K) with A1(K)∪̇{∞} = K∪̇{∞}, where
K is an algebraic closure of K). The “field of constants” K is algebraically closed
in K(X) (one says that K is the exact/full constant field of K(X)/K or that
K(X)/K is regular (cf. [17, VIII, §4])). Conversely, to every function field F/K
with exact constant field K, one can associate in an essentially unique way a
curve X with K(X) ≃ F . Moreover, the points in X (K) correspond bijectively
to places (equivalence classes of valuations) of degree 1 of F/K. We denote a
point of a curve X/K and the corresponding place by the same letter.

If c : X/K −→ Y/K is a cover, then we have an induced inclusion K(Y) →֒
K(X) which is given by (a : Y/K −→ P1/K) 7→ (a ◦ c : X/K −→ P1/K).
Conversely, every inclusion of function fields induces a cover of the corresponding
curves.

Finally, we recall: If X/K is a curve, and D a divisor on X/K, then the
Riemann-Roch space associated to D is the space

L(D) := {φ ∈ K(X)| (φ) ≥ −D} ∪ {0}.
Similarly, one can define a Riemann-Roch space in K(X) which we denote by the
same symbol. To distinguish the two, we write L(D) ⊂ K(X) or L(D) ⊂ K(X).
By the Riemann-Roch theorem ([21, I.5.15]), these are finite dimensional vector
spaces.

Our construction

As in the introduction, let H/Fp be a genus 2 curve. We assume that H is given
by an explicit hyperelliptic explicit equation y2 = f(x), where – a bit more
general than in [18] – f(x) has degree 5 or 6. We further assume that p is not 2
or 3.

Let H := Fp(H) be the function field of H. We remark that for almost all
points P in H(Fp) the space L(2P) ⊂ FpH consists only of the constant func-
tions. However for the 6 fixed points P ∈ H(Fp) of the hyperelliptic involution,
one has dim(L(2P)) = 2. (Explicitly, these 6 points are the 5 or 6 points with
x-coordinate 0 and additionally the unique point “at infinity” if deg(f) = 5.)
These 6 points are called the Weierstraß Points of H. We also recall that by
the Riemann-Roch theorem, for any point P ∈ H(Fp), L(3P) ⊂ FpH is 2-
dimensional.

The prerequisite for our construction is as follows:

Let P be a point in H(Fp) which is not a Weierstraß point and which is not a
fixed point of an automorphism of order 3. Let L(3P) ⊂ H be the Riemann-Roch
space associated to 3P , and let w ∈ L(3P) be a non-constant function.

As there are at most 6 Weierstraß points inH(Fp) and only a bounded (in fact
≤ 16) number of fixed points of automorphisms of order 3 (usually H/Fp has no
automorphisms of order 3), in cryptographic applications, essentially every point
P ∈ H(Fp) fulfills the prerequisites. How to find the function w is discussed in
Section 5, as are all other algorithmic questions. In this section, we concentrate
on the theoretical background of the construction.

Lemma 1. The extensions H/Fp(w) and FpH/Fp(w) are of degree 3, separable
and not Galois.

Proof. Let (w)∞ be the pole-divisor of w. By definition of w as a non-constant
element of L(3P), (w)∞ can only be 3P, 2P or P . We can rule out the cases 2P
and P as by assumption L(2P) consists only of the constant functions. As (w)∞
has degree 3, so has the cover w : H −→ P

1. This implies that [H : Fp(w)] =
[FpH : Fp(w)] = 3.

The extensions are separable as by assumption p 6= 3.
We only have to show that FpH/Fp(w) is not Galois. To prove this, note

that by definition of w as an element of L(3P), the place P is totally ramified in
the extension FpH/Fp(w). Now, if FpH/Fp(w) was Galois, it would be cyclic (of
order 3), and the ramified places of FpH with respect to FpH/Fp(w) would be
exactly the the fixed points of a non-trivial automorphism of FpH/Fp(w). We
have however assumed that that P is not such a fixed point. ⊓⊔

Let C be the Galois closure of the extension H/Fp(w). As FpH/Fp(w) is not
Galois, we have that FpC/FpH is non-trivial. As the Galois group of a degree
3 extension is either Z/3Z or S3, it follows that the Galois group of FpC/Fp(w)
is S3. This implies: Fp is the exact constant field of C and the Galois group of
C/Fp(w) is also S3. In particular, there exists an automorphism τ of C/Fp(w)
of order 3.

By fixing H , the Frobenius automorphism σ ∈ Gal(Fp3/Fp) extends to an
automorphism of Fp3H which we also denote by σ. We now consider the fixed

field (Fp3C)〈στ〉 of Fp3C under στ . As τ operates trivially on Fp3 , one can easily

see that Fp is the exact constant field of C〈στ〉.
Just as the group Cl0(C) consists of the elements of Cl0(Fp3C) which are

fixed under σ∗, Cl0((Fp3C)〈στ〉) consists of the elements of Cl0(Fp3C) which are
fixed under (στ)∗.

It is the degree 0 class group of this field in which we want to transfer the
original DLP. We do so with the following “transfer homomorphism”.

T →֒ Cl0(Fp3H)
Con−→ Cl0(Fp3C)

N−→ Cl0((Fp3C)〈στ〉). (6)

Here, Con : Cl0(Fp3H) −→ Cl0(Fp3C) is the conorm-homomorphism (cf. [21,

Definition III. 1.8]) and N : Cl0(Fp3C) −→ Cl0((Fp3C)〈στ〉) is the norm-homo-
morphism. The latter homomorphism is given by

Cl0(Fp3C) −→ Cl0(Fp3C), P 7→ P + (στ)∗(P) + ((στ)2)∗(P)

and identification of the image (which is (στ)∗-invariant) with an element of
Cl0((Fp3C)〈στ〉).

For comparison with Section 3, note that (Fp3C)〈στ〉 is the function field
of the twist Cτ/Fp of C/Fp with respect to τ and the constant field extension
Fp3/Fp.

The main results concerning the resulting function field (Fp3C)〈στ〉 and the
transfer homomorphism (6) are formulated in the following proposition.

Proposition 1. Let H/Fp, w ∈ H and (Fp3C)〈στ〉 be defined as above. Then

a) every non-trivial element in the kernel of the transfer homomorphism (6) has
order 3.

b) the resulting function field (Fp3C)〈στ〉 has genus ≤ 6.

A proof of item a) is sketched in Appendix A, a proof of item b) is sketched
in Appendix B.

Remark 1. The condition that the ground field Fp is a prime field is not neces-
sary. All statements in this work can be generalized to hyperelliptic curves over
finite fields of characteristic 6= 2, 3.

Remark 2. As mentioned in Appendix B, under a certain arithmetic condition, w
can be chosen such that (Fp3C)〈στ〉 has genus ≤ 5. This leads to a slightly better
attack. For this reason, curves satisfying that condition were excluded from [18].
Furthermore, if one chooses the defining polynomial f ∈ Fp[x] of degree 5 or 6,
the point P ∈ H(Fp) and the function w ∈ L(3P) ⊂ H uniformly at random,
the probability that g((Fp3C)〈στ〉) ≤ 5 is in O(1

p) and thus negligible for large p.

5 Algorithmic aspects

As above, let f ∈ Fp[x] be an explicitly given square-free polynomial of degree 5
or 6. We keep all notations from the previous section. Furthermore, we assume
that p ≥ 53. The reason is that under this assumption, by the “Serre bound”
([21, Theorem V.3.1]), one has #H(Fp) ≥ 26 > 22 = 6 + 16, thus there are
points which are not Weierstraß points and not fixed points of an automorphism
of order 3.

It follows an outline of an algorithm to calculate (Fp3C)〈στ〉. After that we

also discuss how to map elements from T to Cl0((Fp3H)〈στ〉) via the transfer
homomorphism (6).

Algorithm: Calculation of (Fp3C)〈στ〉 (Outline)

Input. A prime p ≥ 53 and a square-free polynomial f ∈ Fp[x] of degree 5 or 6,
defining the hyperelliptic curve H/Fp (or the hyperelliptic function field H).

Output. An explicit description of the field (Fp3C)〈στ〉 as an extension of Fp(w) as

well as two elements x̃ and ỹ ∈ Fp3(Fp3C)〈στ〉 that satisfy the equation ỹ2 = f(x̃)

and define the inclusion H →֒ Fp3(Fp3C)〈στ〉 = Fp3C.

1. Choose a random point P ∈ H(Fp) which does not have x-coordinate 0 or ∞.
2. Calculate a basis of L(3P) ⊂ H .
3. Choose a non-constant function w ∈ L(3P).
4. Find the minimal polynomial m0 of x over Fp(w).
5. Let ∆ ∈ Fp(w) be the discriminant of m0. If ∆ is a square in Fp[ζ3](w), return

to Step 1.
(This (unlikely) case corresponds to FpH/Fp(w) being cyclic.)

6. (Now C is Fp(w)[x, v]/(m0, v
2 −∆).)

Let b← vx ∈ C = Fp(w)[x, v]/(m0, v
2 −∆).

(Then b is a primitive element of C/Fp(w).
7. Calculate how the automorphism τ operates on C.
8. Choose some element ζ ∈ Fp3 \ Fp, and let c← ζb + στ(ζb) + (στ)2(ζb) ∈ C.

(Then we have Fp3(Fp3C)〈στ〉 = Fp(w)[c].)
Calculate the minimal polynomial m1 of c over Fp(w).

9. Determine how to express the coordinate functions x and y ∈ H as elements of
x̃, ỹ ∈ Fp3(w)[c], i.e. as Fp3(w)-linear combinations of 1, c, c2, c3, c4, c5.

10. (Output) The minimal polynomial m1 together with the elements x̃ and ỹ.

In Step 2, one needs an algorithm to calculate Riemann-Roch spaces. Such
an algorithm is given in [10]. As this algorithm is also crucial for the later index
calculus algorithm in the resulting class group Cl0((Fp3C)〈στ〉), in Appendix C,
we give some background information on this algorithm.

We note that in Steps 5 and 6, we use the classical theory of cubic equations.
To perform Step 7, one can proceed as follows. The polynomial m0 splits

completely over C. One root is x, and for the other two roots, explicit expres-
sions in x and v can be calculated. Suppose these roots are x1 and x2. The
automorphism τ maps x to one of the xi, say τ(x) = x1. Then τ(x1) = x2,
τ(x2) = x, τ(vx) = vx1, τ(vx1) = vx2 and τ(vx2) = vx, and these 6 elements
form a basis of the vector space C over Fp(w). This enables one to compute a
matrix that describes τ with resect to this basis.

It can be shown that all the above steps can be performed in randomized
polynomial time in log(p). Moreover, the outlined algorithm can be specified in
such a way that the total degree of the resulting polynomial m1 is a polynomial
over Fp[w] and has a degree which is bounded by an absolute constant. This is
an important remark for a theoretical analysis of the following index calculus
step.

The arguments for a theoretical analysis of the algorithm are however quite
lengthy, and we omit them. From a practical point of view, the above calculations
are very fast. An implementation in the computer algebra system Magma does
all these calculations in some seconds on a Personal Computer.

The output of the algorithm allows one to efficiently compute the transfer ho-
momorphism (6). The following approach is particularly efficient from a practical
point of view:

Let O∞ := Fp[x], and let O∞(Fp3H) ⊂ Fp3H , O∞(Fp3C) ⊂ Fp3(C),

O∞((Fp3C)〈στ〉) = O∞(Fp3C) ∩ (Fp3C)〈στ〉 ⊂ (Fp3C)〈στ〉 be its integral clo-
sures.

Almost every element a ∈ T is determined by an ideal (x2 + α1x + α0, y −
β1x − β0) of O∞(Fp3H). The conorm is the O∞(Fp3C)-ideal I := (x̃2 + α1x̃ +

α0, ỹ − β1x̃ − β0). The norm of this ideal to O∞((Fp3C)〈στ〉) is I · (στ)(I) ·
(στ)2(I) ∩ (Fp3C)〈στ〉. Generators can be calculated efficiently.

We are thus left with the task to solve the resulting DLP in Cl0((Fp3C)〈στ〉).
Using Proposition 2 in Appendix C, we obtain the theoretical result stated in
the introduction.

6 Practical aspects of index calculus in the resulting

function fields

In this section, we are concerned with practical aspects of our attack. As stated
above, from a practical point of view, calculating w, the necessary field equa-
tions and transferring the DLP in Cl0(H) a DLP in Cl0((Fp3C)〈στ〉) does not
constitute a problem in terms of the running time. We now consider the problem
of calculating the resulting DLP with a generalization of the reduced factor base
index calculus algorithm by Gaudry-Harley-Thériault ([22]) from hyperelliptic
to general function fields / curves.

In Appendix C, we have compiled some background information on the gener-
alization of this algorithm to general function fields / curves, and in Appendix D
we analyze the algorithm from a practical point of view.

In order to apply this analysis to our case, we first remark that the automor-
phism τ of C induces an automorphism of order 3 on (Fp3C)〈στ〉. (The reason is
that τ commutes with στ .) Using Remark 4, we apply the results in the appendix
with q = p

3 . We have to estimate the constants kadd and kfac (see Appendix D

for definitions). To do so, we implemented the resulting function field (Fp3C)〈στ〉

in Magma and did computations using the divisor arithmetic. This arithmetic
was mostly implemented by Hess and follows the description in [10].

As described in Appendix D, we give all timings relative to one multiplication
in Z/ℓZ, where ℓ := #T ≈ p4 is the size of the subgroup of Cl0((Fp3C)στ)
in which we want to calculate the DLP. Using several off-the-shelf Personal
Computers with 32 bit processors, we have determined the following approximate
values for for reduction of an effective degree 7(= g(Fp3C)στ) + 1) divisor along
a place of degree 1:

p 32 bit 48 bit
1.9 · 105 2.2 · 105 (7)

To determine whether an effective divisor of degree 6(= g((Fp3C)〈στ〉)) splits
can be done in negligible amount of time: As implemented in Magma, the
O∞((Fp3C)〈στ〉)-ideal of a divisor in ideal representation is given by a Fp[w]-
basis which in particular contains a univariate polynomial in Fp[w]. The roots
of this polynomial gives the w-coordinates of the places in the divisor. If the
polynomial P splits completely, so does the divisor (the converse also holds in
practice). By testing whether P splits completely, one can determine just as fast
as for hyperelliptic curves whether a divisor splits completely. This means that

the values in the above table are the values of kadd. (This also has been varified
experimentally.)

As to kfac, using the Magma function Support, one obtains a running time
which is about 3 times larger than kadd. As kadd has to be multiplied with
6! = 720, this is also negligible.

As in [22] and Appendix D, we denote the number of elements in the factor
base by pr (r < 1). In the next table we compiled the optimal value of r for p a
32-bit and 48-bit prime based on our estimates and (22).

p 32 bit 48 bit
r 1− 1/7 · (1− 0.752) ≈ 1− 1/7 · (1− 0.497) ≈

1− 0.035 1− 0.072
(8)

Following the analyis in Appendix D, the final running time is equivalent to

36 ·
(p

3

)2r

≈ 4 · p2r (9)

multiplications in Z/ℓZ (see (23)).
For comparison with the running time obtained by generic attacks, let us

assume that #T is prime. Then all generic attacks have a running time of Θ(
√

ℓ).
We take the ρ-method for comparison. Its expected running time is

√

π

2
·
√

1

6
· p2 ≈ 0.5 · p2 (10)

group operations in T . Here, the factor
√

1
6 comes from the fact that we take

advantage of the hyperelliptic involution and the Frobenius operation.
We want to express the constant of the ρ-method in terms of multiplications

in Z/ℓZ. As we are interested in a lower bound on the running time of the ρ-
method, we make the assumption that the running time for multiplication is
quadratic in the bit length. If it is lower, the time for the ρ-method expressed
in multiplications in Z/ℓZ increases.

According to ([18, Table in Section 5]), one needs roughly 160 multiplications
in Fp to add elements of T . This corresponds to 10 multiplications in Z/ℓZ, so
that the constant of the ρ-method is 5. (One can also use the usual addition in
Cl0(H/Fp3), but this alternative seems to be slightly slower.)

The same holds if one compares the constant of our attack with the constant
of an attack via the ρ-method on elliptic curves over prime fields of size ℓ. The
best known methods to add and double points need a rough time equivalent
of 9-10 multiplications (cf. [18, table in Section 5]). In this case, one can also
conclude that the two constants are roughly equal.

We conclude:

Let T have prime group order. Then based on our estimates our attack
leads in combination with the reduced factor based index calculus algorithm
to a speed-up in the calculation of the DLP which for 128 bit (resp. 192 bit)
group size corresponds to a reduction of the bit length of at least 3% (resp. 7%).

For growing group size, this reduction becomes larger and converges against a
theoretical limit of 1/7 ≈ 14%. This result holds if one compares our attack with
a generic attack on the DLP in T itself as well as if one compares our attack
with an attack on the DLP in an elliptic curve over a prime field (with prime
group order) of a size which is comparable to the group order of T .

Discussion on our estimates

The above discussion relies heavily on the estimate of kadd. An important ques-
tion is now how kadd would change if one did more thorough experiments with
the resulting function fields, using a specific implementation in C (and comparing
the reduction times to multiplication times in C). Given that the implementation
in Magma is a general purpose implementation, it is very reasonable to assume
that the value for kadd is an upper bound for the value which can be obtained
with a specific implementation.

Additionally, one can use a large prime variation and a double large prime
variation which lead to a further decrease in the running time, albeit an increase
in the storage requirements.

7 Conclusion

We have shown that the DLP in trace-zero groups of genus 2 curves over finite
fields of characteristic 6= 2, 3 with respect to field extensions of degree 3 can
always be transferred into the DLP in a degree 0 class group of a curve / function
field of genus at most 6 over the base field. The DLP in the resulting degree 0
class group can then be attacked with index calculus methods. Asymptotically
this leads to a speed-up in the calculation of the DLP which corresponds to a
reduction of the bit length by 1/6th.

A practical study has provided strong evidence that for groups of prime order
and a size of at least 128 bit, our attack leads to a speed-up in the calculation
of the DLP which for trace-zero groups with prime order corresponds to at least
3% reduction of the bit length in comparison to the ρ-method. It is however
important to remark that as usual for index calculus algorithms, in contrast to
the ρ-method, storage requirements are huge (e.g. κ · 231 elements of size 32
bits for 128 bit group size for some small constant κ), and it is difficult (but
not completely impossible) to parallelize the second (linear algebra) part of the
index calculus algorithm.

Acknowledgment

We thank G. Frey, F. Hess and P. Gaudry for discussions.
Support by the IST Programme “Ecrypt” of the European Union is gratefully
acknowledged.

References

[1] L. Adelman, J. DeMarrais, and M.-D. Huang. A Subexponential Algorithm for
Discrete Logarithms over the Rational Subgroup of the Jacobian of Large Genus
Hyperelliptic Curves over Finite Fields. In Proceedings of the First International
Symposium on Algorithmic Number Theory, pages 28–40, 1984.

[2] D. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,
177(95-101), 1987.

[3] A. Chistov. The complexity of constructing the ring of integers of a global field.
Soviet Math. Docl., 39:597–600, 1989.

[4] C. Diem. The GHS Attack in odd Characteristic. J. Ramanujan Math. Soc.,
18:1–32, 2003.

[5] W. Eberly and E. Kaltofen. On randomized Lanczos algorithms. In W. Küchlin,
editor, Proceedings ISSAC 1997, pages 176–183. ACM Press, 1997.

[6] A. Enge and P. Gaudry. A general framework for subexponential discrete loga-
rithm algorithms. Acta. Arith., 102:83–103, 2002.

[7] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic
curves. In Advances in Cryptology — EUROCRYPT 2000, LNCS 1807, pages
19–34, New York and Berlin, 2000. Springer-Verlag.

[8] P. Gaudry, F. Heß, and N. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology, 15, 2002.

[9] P. Gaudry, N. Thériault, and E. Thomé. A double large prime variation for
small genus hyperelliptic index calculus. forthcomming, a primininary version is
available under http://eprint.iacr.org/2004/153.

[10] F. Heß. Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symbolic Computation, 11, 2001.

[11] F. Heß. The GHS Attack Revisited. In E. Biham, editor, Advances in Cryptology
— EUROCRYPT 2003, volume 2656 of LNCS, pages 374–387. Springer-Verlag,
2003.

[12] F. Heß. Generalising the GHS Attack on the Elliptic Curve Discrete Logarithm.
LMS J. Comput. Math., 7:167–192, 2004.

[13] F. Heß. Weil descent attacks. In G. Seroussi I. Blake and N. Smart, editors,
Advances in Elliptic Curve Cryptography. Cambridge University Press, 2004.

[14] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1:130–150, 1989.
[15] N. Koblitz. A family of Jacobians suitable for discrete log cryptosystems. In

Advances in Cryptlogy — CRYPTO 1988, LNCS, pages 94–99. Springer-Verlag,
1990.

[16] B. LaMacchia and A. Odlyzko. Solving large sparse linear systems over finite
fields. In A. Menezes and S. Vanstone, editors, Advances in Cryptology — Crypto
1990, volume 537 of LNCS, pages 109–133, Berlin, 1990. Springer-Verlag.

[17] S. Lang. Algebra (Third Edition). Addison-Wesley Publishing Company, 1993.
[18] T. Lange. Trace-Zero Subvariety for Cryptosystems. J. Ramanujan Math. Society,

2004.
[19] K. Nagao. Improvement of Thériault Algorithm of Index Calculus

of Jacobian of Hyperelliptic Curves of Small Genus. available under
http://eprint.iacr.org/2004/161/.

[20] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York,
1986.

[21] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag, Berlin,
1993.

[22] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In
Advances in Cryptology — ASIACRYPT 2003, volume 2894 of LNCS, pages 75–
92, Berlin, 2003. Springer-Verlag.

A On the kernel of the transfer homomorphism

The goal of this section is to prove a slightly weaker result than item a) of
Proposition 1: We will show that the kernel is annihilated by 12 (see however
Remark 3 below).

Let the notations be as in Proposition 1. We want to prove that the kernel
of the homomorphism

T →֒ Cl0(Fp3H)
Con−→ Cl0(Fp3C)

N−→ Cl0((Fp3C)〈στ〉)→֒

Cl0(Fp3C)
N−→ Cl0(Fp3H)

Con−→ Cl0(Fp3C)
N−→ Cl0(Fp3H)

[2]−→ Cl0(Fp3H)
(11)

is annihilated by 12. (Here and in the following, for some integer z, [z] denotes
multiplication by z.) Clearly, this implies the claim.

Let ιT : T →֒ Cl0(Fp3H) be the inclusion, and let us abbreviate ConF
p3C/F

p3H

by Con and NF
p3C/F

p3H by N.

As C/H is a field extension of degree 2, there exists an automorphism α of
C of order 2 such that C〈α〉 = H . Note that

N ◦Con = [2] and Con ◦N = id +α∗.

Because of these identities, the homomorphism in (11) can be rewritten as

[2] ◦N ◦(id +α∗) ◦ (
∑2

i=0((στ)i)∗) ◦ Con ◦ιT . (12)

As σ∗ commutes with α∗ and τ∗, (12) is equal to

∑2
i=0

(

N ◦(id +α∗) ◦ (τ i)∗ ◦Con ◦[2] ◦ ιT ◦ (σi)∗
)

=
∑2

i=0

(

N ◦(id +α∗) ◦ (τ i)∗ ◦ Con ◦N ◦Con ◦ιT ◦ (σi)∗
)

=
∑2

i=0

(

N ◦(id+α∗) ◦ (τ i)∗ ◦ (id +α∗) ◦ Con ◦ιT ◦ (σi)∗
)

.

(13)

As Gal(C/Fp(w)) is isomorphic to S3, we have the relation ατα = τ2. This
implies

(id +α∗) ◦ (τ i)∗ ◦ (id +α∗) = (τ∗ + (τ2)∗) ◦ (id +α∗). (14)

for i = 1, 2. As Cl0(Fp3(w)) = 0, we have

(id +τ∗ + (τ2)∗) ◦ (id +α∗) =
∑

β∈Gal(F
p3C/F

p3(w)) β∗ =

ConF
p3C/F

p3(w) ◦NF
p3C/F

p3(w) = 0.
.

This implies

(id +α∗) ◦ (τ i)∗ ◦ (id +α∗) = (τ∗ + (τ2)∗) ◦ (id +α∗) = − id−α∗ (15)

Furthermore, we have

(id +α∗) ◦ (id +α∗) = [2] ◦ (id +α∗) (16)

Inserting (15) and (16) into (13), we obtain

N ◦(id +α∗) ◦ Con ◦ιT ◦ ([2]− σ − σ2). (17)

As by definition of T we have (id +σ + σ2)|T = 0, this is equal to

N ◦(id+α∗) ◦ Con ◦ιT ◦ [3] =

N ◦Con◦N ◦Con ◦ιT ◦ [3] =

[12] ◦ ιT .

⊓⊔

Remark 3. By using the theory of Jacobian varieties, one can show that

N ◦τ i ◦ Con = [−1]

for i = 1, 2, and with this identity one can prove that the kernel of the transfer
homomorphism (6) is annihilated by 3.

B Genus calculations

This section serves three purposes: First, we want to sketch a proof of item b)
of Proposition 1. Second, we want to give some more background on our Galois
theoretic construction. Third, we want to indicate that with a modification of
our construction, one can under certain conditions achieve that the resulting
function field has genus ≤ 5.

As in the previous sections, let p 6= 2, 3 be a prime number. As we are mostly
interested in genus calculations and the genera of curves / function fields do not
change if one extends the base field, we start off with any hyperelliptic curve
H/Fp. Let H := Fp(H) be the function field of H. More generally than in the
main body of the work we fix any function w ∈ H of degree 3 (i.e. such that
[H : Fp(w)] = 3) satisfying the only condition is that H/Fp(w) is not Galois (i.e.
not cyclic).

Let C be the Galois closure of H/Fp(w). Then Gal(C/Fp(w)) ≈ S3, and we

have a non-trivial automorphism τ on C of order 3. Let D := C
〈τ〉

(such that
[D : Fp(w)] = 2). Note that is the context of the main body of the work, we have
C = FpC.

By the Hurwitz genus formula ([21, Theorem III.4.12]), there is a strong
relationship between the ramification pattern of H/Fp(w) and the genera of the
function fields C and D.

Let P be a place of Fp(w)/Fp. As [H : Fp(w)] = 3, there are the following
three possibilities for the splitting behavior of P in H .

1. P = Q1 + Q3 + Q3 for three different places Qi of H/Fp. (In this case, P is
called unramified in the extension H/Fp(w).)

2. P = 2Q1 + Q2 for two different places Qi of H/Fp.

3. P = 3Q for one place Q of H/Fp. (In this case, P is called completely ramified
in the extension H/Fp(w).)

Let r2 be the number of places of Fp(w) of the 2nd form, and let r3 be the
number of places of Fp(w) which are completely ramified in H . Then by the
Hurwitz genus formula and the fact that g(H) = 2, we have

r2 + 2r3 = 8. (18)

(We remark that we assumed that p 6= 2, 3 such that all ramification is tame.)
We can conclude that (r1, r2) has to be (8, 0), (6, 1), (4, 2), (2, 3), (0, 4). We

will see below that the case (0, 4) is not possible.
One can now use the ramification theory for Galois extensions of function

fields as presented in [21, Theorem III.8.2] to study the ramification behavior of
P in C/Fp(w) and in D/Fp(w). From the information one obtains in this way,
one can then again with the Hurwitz genus formula calculate the genera of D
and D.

We omit the details of the arguments and just state that one can obtain the
following formulae.

g(C) = 3 +
r2

2
= 7− r3 (19)

and
g(D) = −1 +

r2

2
= 3− r3. (20)

As remarked above, we can rule out that r2 = 0. Indeed, this would be equivalent
to g(D) = −1. (In fact, if one starts with an arbitrary function w ∈ H such that
[H : Fp(w)] = 3, then the case r2 = 0, r3 = 4 can occur, and it corresponds
exactly to the cyclic extensions H/Fp(w) which we have ruled out.)

After one has derived (19), a proof of Proposition 1 is not difficult: At the
beginning of Section 4, we have chosen w in such a way that r3 ≥ 1. By (19), it
follows that g((Fp3C)〈στ〉) = g(C) ≤ 6. ⊓⊔

We want to conclude with some additional remarks which we state without
proof.

– If one chooses a polynomial f ∈ Fp[x] of degree 6 and a function w ∈ H of
degree 3 uniformly at random, the probability that g(C ≤ 6 is in O(1

p).

– There always exists a function w ∈ H with r3 ≥ 2, i.e. g(C) ≤ 5.
– Let H/Fp be a hyperelliptic curve of genus 2 with function field H , and let
Hι denote the quadratic twist of H/Fp with respect to ι. Let us assume
that H/Fp3 does not have automorphisms of order 3, and that there is an

element in Cl0(H/F3) of order 3 which is defined by a divisor of the form

D − ∞1 − ∞2, where D splits as D = P1 + P2 with Pi ∈ H(Fp), or that
there is an element in Cl0(Hι/F3) which is defined by a divisor of the form
D −∞1 −∞2, where D is irreducible over Fp. Then there exists a function
w ∈ H with g(C) ≤ 5. If the conditions are satisfied such a function can be
found in randomized polynomial time in log(p), and one can mount a similar
(but slightly more efficient) attack as the one presented in this work on the
DLP in T .

– The curves H/Fp for which there exists an w ∈ Fp(H) with r3 = 3 (i.e.
g(C) = 4) form a 2-dimensional algebraic family (inside the 3-dimensional
algebraic family of all genus 2 curves).

– For growing p, the probability that a uniformly randomly chosen polynomial
f ∈ Fp[x] of degree 6 defines a curve H/Fp which has such a w ∈ H with
g(C) = 4 is in O(1

p).

C On the arithmetic in class groups of general curves

The goal of the attack presented in this work is to solve the original DLP in
T by transferring it into Cl0(X/Fp), where X/Fp is a curve of genus at most
6 and solving it there with index calculus methods. In order to apply an index
calculus algorithm to the DLP in Cl0(X/Fp), we need an efficient arithmetic in
this group as well as a method to factorize elements over the factor base. In this
section, recalling some results from [10], we comment on both of these problems
from a general perspective. As in the rest of the paper, we work in the function
field theoretic setting.

Let q be a prime power, and let F be a function field over the exact con-
stant field Fq. As in [10], we assume that F is given as an explicit separable
extension F/Fq(x)[y] where y satisfies an equation of the form f(x, y) = 0 with
f(x, y) = yn + a1y

n−1 + · · ·+ an ∈ Fq[x, y]. (Every function field (as always in
one variable) over Fq can be given in this way ([21, III.9.2])). Let fh(x, y, z) be
the homogenization of f(x, y).

LetO∞ be the local ring of the place “infinity” of Fq(x), and let O∞ := Fp[x].
Let O∞(F) ⊂ F be the integral closure of O∞ and O∞(F) the integral closure
of Fq[x]. We remark for later use that bases of O∞(F) over Fq[x] and of O∞(F)
over O∞ can be calculated in polynomial time in log(q) and the total degree of
f ([3]).

For computational applications, we first of all need a representation of the
places of F . They can for example be represented as points on the plane curve
given by fh(x, y, z) = 0 over extension fields of Fq plus some extra information
in the case that the divisor involves singular points. By the very definition of
Div(F), every element of this group is a formal sum of places of F . If one stores
an element of F as such a formal sum, one speaks of a free representation. (When
storing such a formal sum one should use a “sparse representation” which only
involves the places which actually occur in the sum.) In the ideal representation
of an element of Div(F) one first calculates bases of O∞(F) over Fq[x] and
O∞(F) over O∞ respectively. Then one represents each element of Div(F) by a

pair of ideals (I, J), where I is an O∞-ideal and J is an O∞-ideal. These ideals
I, J are represented as free O∞ (resp. O∞-modules) over O∞(F) (resp. O∞(F))
(see [10] for details).

For the derivation of a suitable representing system of Cl(F) by elements of
Div(F), the following lemma, which is implicitly used in [10, Proposition 8.2], is
crucial.

Lemma 2. Let D, A ∈ Div(F), where A has degree 1. Assume that L(D) 6= 0
but L(D−A) = 0. Then dim(L(D)) = 1. Furthermore, one has deg(D) ≤ g(F).

Proof. By the Riemann-Roch theorem and the assumption one has dim(L(D))−
dim(L(K−D)) = deg(D)+1−g(F) and − dim(L(K−D+A)) = deg(D)−g(F),
where K is a canonical divisor. This implies that dim(L(D)) = 1 + dim(L(K −
D))−dim(L(K−D +A)) ≤ 1. The last statement follows immediately from the
Riemann-Roch theorem. ⊓⊔

Apart from the representation of the elements of Div(F) themselves, the
representation of elements of Cl(F) is now identical in both cases: First, one
fixes a divisor A of degree 1 on F (for example a place of degree 1). Then the
elements of Cl(F) are uniquely represented as divisors of the form D−rA, where
deg(D) = r and deg(D) is minimal under all divisors with this property. (Such
a divisor D is called maximally reduced divisors along A.) We call such this
representation of an element in Cl(F) a reduced ideal / free representation with
respect to A.

In order to formulate addition-/doubling algorithms in Cl(F), one has to
have a divisor reduction algorithm of elements of Div(F). That is, one has to
have an algorithm which given an element Din ∈ Div(F) calculates a divisor
Dout such that Din is linearly equivalent to Dout − dA, where d = deg(Dout),
and Dout is maximally reduced along A.

One way to find such an algorithm is to find a general algorithm to cal-
culate Riemann-Roch spaces. Using the ideal-theoretic representation, such an
algorithm is [10, Algorithm 6.1].

Given Din in ideal representation, one can now proceed as follows: One calcu-
lates bases of the spaces L(Din + dA) for d = g(F), g(Fin)− 1 . . . until the space
is 1-dimensional. If then f ∈ L(Din + dA), the divisor Dout = (f) + Din + dA
is maximally reduced along A and Dout − dA is linearly equivalent to Din. (We
remark that the algorithm in [10, Section 8] which uses the free representation
is not appropriate for our purposes.)

Index Calculus in general curves of fixed genus

The algorithms of [7], [22] and [9] in principle also apply to more general than
hyperelliptic curves. Let us describe briefly how the fact that the curves are more
general enters the algorithms.

First, as above one fixes a place A of degree 1 of F . This place substitutes
the place ∞ of the algorithm for hyperelliptic curves / function fields.

Let us assume that we want to calculate the discrete logarithm of b ∈ Cl0(F)
with respect to base a ∈ Cl0(F). To find relations, as in the hyperelliptic case, one

chooses numbers α, β ∈ [1, . . . , #Cl0(F)−1] uniformly at random and calculates
the unique reduced representation D−d ·A (with d = deg(D)) of αa+βb. Then
one tries to factor D over the factor base which is a subset of the set of all places
of degree 1 of F .

In order to perform these calculations, one can for example use the ideal
arithmetic described above: One first calculates the divisor D in ideal represen-
tation, then one checks whether it splits completely, and if this is the case, one
calculates a free representation.

Using the results of [10] one can show that for bounded total degree of f , all
calculations necessary for index calculus as formulated in [7], [22] and [9] can be
performed in polynomial time in log(q). With the above notations one obtains:3

Proposition 2. Let g and δ be two natural numbers. Then there exists a ran-
domized algorithm with the following input, output and running time.

The input consists of a polynomial f ∈ Fq[x, y] of total degree ≤ δ defining a
function field F with the exact constant field Fq and two elements a, b ∈ Cl0(F)
given in free or ideal representation such that a ∈ 〈b〉. The output is an an x ∈ N

with x · a = b, and the running time is Õ(q2− 2

g).

D Practical aspects of the reduced factor base index

calculus algorithm

In this section, we are interested in practical aspects of solving DLPs in Cl0(F),
where F is a general function field of (small) genus g with exact constant field
Fq, by means of the reduced factor base index calculus algorithm as in Section 3
of [22]. Our goal is to determine the optimal size of the factor base under realistic
conditions.

We assume that the linear algebra part is done with Lanczos’ algorithm
as described in [5]. We thereby ignore the time needed to access the memory.
This means essentially that a prerequisite for our analysis is that the matrix is
stored in the RAM on an equally fast accessible device. Let ℓ be the order of the
subgroup of Cl0(F) in which we want to calculate the DLP.

A practical improvement

Before we go on, we describe a practical improvement of the index calculus
algorithm which applies to all groups and is well-known to implementers of
these algorithms: As stated above, in theoretical descriptions on index calculus
algorithms, it is stated that one should try to factor αa+βb over the factor base.
If α, β are random elements of Z/ℓZ, one needs roughly log2(ℓ) group operations
for this. However, from a practical point of view, one can just always add a or b

3 The arguments in [9] are sometimes not absolutely rigorous, and it seems that one
should employ certain techniques from [6] in order to obtain a rigorous result. We
would however like to stress that our generalization from hyperelliptic curves to more
general curves does not cause any additional difficulties in the proof.

to a previous calculation and try to factor the resulting element over the factor
base. Like this, one just needs one group operation in each iteration.

In fact, one can even do better: Assume one has found a relation of the
form αa + βb =

∑g
i=1 pi, where the pi are elements of the factor base (regarded

as elements in Cl0(F). If now p is any element of the factor base, one can try
to factor

∑g
i=1 pi + p over the factor base. Assume one has found a relation

∑g
i=1 pi + p =

∑g
i=1 p̃i. Then one has the relation αa + βb =

∑g
i=1 p̃i − p.

If one proceeds like this, most of the time, one only has to reduce a degree
g + 1 divisor and not a degree 2g divisor which makes the calculations slightly
faster. On the other hand, most rows of the matrix have g+1 instead of g entries
which makes the linear algebra part slightly slower. In the analysis below, we
assume that this approach is taken.

The unit of measurement

Let us fix a unit of measurement : The multiplication of two elements in the
residue class ring Z/ℓZ is said to have time 1. All other times will be given with
respect to this one.

Let us assume that the arithmetic in Cl0(F) is done with the ideal represen-
tation as in [10]. Let kadd be the time needed for the reduction of a divisor in
ideal representation of degree g + 1 along a degree one divisor A (i.e. the time
for addition of two elements in Cl0(F) given in “reduced ideal representation”)
plus the time needed to test whether a degree g divisor in ideal representation
splits into a sum of places of degree 1. Let kfac be the time to compute the free
representation of totally split divisor of degree g in ideal representation. (These
constants can be defined in analogous way if the arithmetic is done in another
form of representation.)

The optimal size of the factor base

Just as in [22], let us denote the number of elements in the factor base by pr

(r < 1). Then the probability that a reduced divisor splits over the factor base
is roughly

1

g!

(

qr

q

)g

.

The time to collect the relations is roughly

(kaddg! + kfac) · qg−(g−1)r .

As stated above, we assume that the linear algebra is done with Lanczos’ algo-
rithm ([5]). According to the fact that the matrix will have about g+1 non-trivial
entries in each row and the description in [5], one can expect a time of roughly

(2(g + 1) + 4)q2r = (2g + 6)q2r

for this part of the algorithm (see also [16, (3.13)]). This leads to a total running
time of

(g!kadd + kfac) · qg−(g−1)r + (2g + 6)q2r. (21)

(We remark that sometimes one also has to perform reductions of a degree 2g
divisor instead of a g+1 divisor, but the number of these operations is negligible,
and the times of these two different reductions are usually quite close.) As usual,
to determine the optimal value of r, we determine the value of r such that both
sides are equal. This amounts to

kaddg! + kfac

2g + 6
= q(g+1)r−g

or

r = 1− 1

g + 1



1−
log

(

kaddg!+kfac

2g+6

)

log(q)



 . (22)

The total running time is then

(4g + 12) · q2r. (23)

We have written the equation for r as a sum in the above form for the reason that
this way one can easily see the different contributions: Without the reduction of
the factor base, one would have r = 1 and a running time of roughly q2, with
the reduction one has asymptotically a decrease of 1/(g +1), but that reduction
is lowered if g!, kadd or kfac is large.

Remark 4. If F has an automorphism of order n, one can – as described in [7,
Section 4.2] – decrease the factor base by a factor of n. In this case, just the
same formulae as above hold if one substitutes q

n for q.

The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.

The information in this document reflects only the authors’ views, is provided as is,

and no guarantee or warranty is given that the information is fit for any particular

purpose. The user thereof uses the information at its sole risk and liability.

