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Abstract

We give a description of endomorphism rings of Weil restrictions
of abelian varieties with respect to finite Galois extensions of fields.
The results are applied to study the isogeny decompositions of Weil
restrictions.
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Introduction

For the use of Weil restrictions of abelian varieties in various fields of math-
ematics but also because of genuine interest in Weil restrictions themselves,
it is important to determine the endomorphism rings and the isogeny de-
compositions. This is what this article provides — at least in two important
special cases.

After giving a brief exposé of general facts about Weil restrictions of
abelian varieties in the first section, we study Weil restrictions with respect
to extensions of finite fields in the second section. Here we determine the
endomorphism algebra of a Weil restriction (see Theorem 1) and then show
that under rather general assumptions, the Weil restriction is simple over
the base-field (see Theorem 2).

In the third section, we deal with the following situation: K|k is an ar-
bitrary finite Galois extension of fields, A an abelian variety over k, W the
Weil restriction of Ax with respect to K|k. We describe the endomorphism
ring of W as a skew group ring over End(Ag) (see Theorem 3) and apply
this result to study the isogeny decomposition of W over k. In the last sub-
section the results are applied to give an explicit description of the isogeny
decomposition of W in the case of a cyclic field extension; see Theorem 4.
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Notation
General

By a ring we mean a ring with unity, and by a ring-homomorphism a ho-
momorphism of rings with unity. If R is a ring and > a finite set, then by
My (R) we mean the matrix ring over R on the set . For any abelian group
G, G° denotes G @ Q. If D is a skew field, we denote its center by Z (D). If
k is a field, k denotes an algebraic closure. If k is some field and X and Z
are k-schemes, we denote the k-morphisms from 7 to X by X (7).

Let k be a field. By a homomorphism between abelian k-varieties we
mean a morphism of k-schemes which preserves the group structure (other
authors might call this a k-homomorphism or a k-morphism of abelian va-
rieties). Analogous definitions apply to isogenies and endomorphisms. The
group of homomorphisms between two abelian k-varieties A and B is de-
noted by Hom(A, B) and the ring of endomorphisms of an abelian k-variety
A by End(A). Following this terminology, we use the notion of a simple
abelian k-variety where other authors might speak of a k-simple abelian
k-variety. If two abelian k-varieties A and B are isogenous, we write A ~ B.

If we are given an extension of fields K|k, we denote k-schemes by X, Y
etc. and K-schemes by X', Y’ etc. (or by Xk, Y etc. if they are induced by
base-change K|k).

We denote the dual abelian variety of an abelian k-variety A by A. Foran
invertible sheaf L on A, ¢p : A — A denotes the corresponding homomor-
phism; c.f. [7, §6]. Following [6], a polarization ¢ of A is a homomorphism
A — A such that © Q idy = ¢ 1 Ap — IZE for some ample invertible
sheaf on Az.

Galois twists

Let K|k be a Galois extension of fields with Galois group . Then the
elements of G induce automorphisms of the Spec(k)-scheme Spec(K) — we
obtain in this way an anti-isomorphism G' — Autgpec(r)(Spec(K)).

We identify the opposite group G°PP with Autgpecr)(Spec(K)). We will
always work with G°PP instead of G.

Let X’ be a K-scheme.

For o € G°PP_ let 0=1(X’) be the pull-back of X’ via o : Spec(K) —
Spec(K), i.e. if px : X’ — Spec(K) is the structure morphism, o~ (X’) is
X' considered as K-scheme via 0~! o px. We denote the canonical isomor-
phism of k-schemes from o¢=(X’) to X’ also by 0. If Y’ is another K-scheme
and « : X’ — Y’ is a morphism of K-schemes, we obtain by base-change a
morphism of K-schemes o71(a) = c7tao : o7 (X') — o7 1(V).

If X'is an abelian K-variety, by pull-back ¢~!(X’) also has the structure
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of an abelian K-variety.

Frobenius morphisms

Let ¢ be a power of a prime number, k the finite field with ¢ elements, let
A be an abelian k-variety. The Frobenius endomorphism wj of A is defined
by the identity on the underlying topological space and by f — f? on the
structure-sheaf O 4. As the name indicates, 7 is an endomorphism of the
abelian k-variety A.

Now let K|k be an algebraic extension of fields. We identify the Galois
group Gal(K|k) with its dual. The Frobenius automorphism of K|k (or of
Spec(K) — Spec(k)) is denoted by o . If K = I, we write o, instead of

O-E k*

| Let A’ be an abelian K-variety. As stated above, we have a canonical
isomorphism of k-schemes oy, : O'I}Tk(A/) — A’. The relative Frobenius
homomorphism (with respect to k) 7, : A" — Uﬁk(A’) is a homomorphism
of abelian K-varieties which is defined as follows: Let Fj be the morphism of
the k-scheme A’ to itself which is the identity on the underlying topological
space and it is given by f — f? on the structure-sheaf Q4. Then 7wy :=

-1 oAl -1 /
O © b s A —>0K|k(A).

1 Definitions and first results

1.1 Definition of the Welil restriction

Let K
well-known that the functor

k be a finite Galois extension. Let A’ an abelian K-variety. It is

Z s ANZ @ K)

from the category of k-schemes to the category of abelian groups is repre-
sentable by an abelian k-variety; for a construction via Galois theory see
Subsection 1.2, for a construction via “restriction of scalars” see [1, 7.6].
(The representatility of the functor by an abelian variety holds more gener-
ally for a finite separable extension of fields, but we restrict ourselves to the
Galois-case is this article.) A representing object will be denoted Resk (A’)
and will be called the Weil restriction of A’ with respect to K|k. The uni-
versal element u € A’(Resh (A’) @ K) maps the zero of Resl (4') @ K to
the zero of A’ and thus is a homomorphism of abelian K-varieties.

Now, Resf(A’) with u is also a representing object for the functor
B — Hom(Bg, A’) from the category of abelian k-varieties to the cate-
gory of abelian groups as well as for the functor B — Hom®(Bg, A’) from



4 Craus DiEM, NIKO NAUMANN

the category of abelian k-varieties up to isogeny to the category of Q-vector
spaces.

1.2 Construction of the Welil restriction

Let us recall the construction of Resl (A’) via Galois theory.
Let W' be the following product of Galois-conjugates of A’:

W= J[ o "(4) (1)

o EGOPP

Let p, : W' — 071(A’) be the projections, let Auty(W’') be the group of
automorphisms of the k-scheme W',

We define a Galois operation on W’ by G°PP — Aut,(W'), 7 — 7
where T = (T psr)oecorr. Since W' is projective, the quotient W := W'/G
under this operation exists and is projective. We have W' ~ Wy.

Fix some k-scheme Z. We have a Galois operation on W'(Z @ K).
If 7 € GPP and P = (Py)ocqorr € W/(Z @i K), then 7((Py)segorr) =
(T(Py7))oeqore. It follows that P — (071(P)),eqorr is a bijection between
the Z @ K-valued points of A’ and the Galois-invariant Z @; K-valued
points of W’. On the other hand, by Galois theory, the Galois-invariant
7 @y K-valued points of W' are in bijection with the Z-valued points of W.
Both bijections are natural in Z.

It follows that W = W'/G with universal element u := pjq represents
the functor Z — A'(Z®y, K) from the category of k-schemes to the category
of sets. Via the group laws on these sets, one defines a group law on W, and
with this group law, W is an abelian variety. By construction, the neutral
element and the addition law of W coincide after base-change with the
neutral element and the addition law of the product of Galois-conjugates in
(1). Moreover, the universal element u = pjq is a homomorphism of abelian
K-varieties.

From the Galois-operation of W', we obtain
T_I(Pa) = p,r, especially T_l(u) = p,. (2)

1.3 The functor “restriction of scalars”

The assignment A’ — Resl (A’) defines a covariant additive functor Res
from the category of abelian K-varieties (up to isogeny) to the category of
abelian k-varieties (up to isogeny). This functor is called “restriction of the
field of definition” or “restriction of scalars” or “norm functor”; cf. [5].

For any abelian K-variety A’, Resﬁy gives a ring-homomorphism from

End(A’) to End(Resl (4’)) and from End’(A’) to End’(Resk (A')).
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Let A’, B’ be abelian K-varieties. Then

Hom (Resk (A)x, ResE (B k) ~ @ Hom (v~ (A", e~ (B"); (3)

o,vEGOPP

see equations (1) and (5).

Let o : A —+ B’ be a homomorphism. Then under (3), Res} (o) @y idx
is given by the diagonal “matrix”

(0™ @)bo)oweqerr € @D Hom(v™'(A"), 07 (B')),

o,vEGOPP

where §,, is the “Kronecker delta”. If o : A” — B’ is an isogeny, then
Resl (@) : ResE (A7) — Res (B') is an isogeny of degree (deg(a))I].

1.4 The Welil restriction of the dual abelian variety

The Weil restriction of the dual abelian variety is functorially isomorphic to
the dual abelian variety of the Weil restriction. This can be seen as follows.
Let W := Resk (A').
Let Z be some k-scheme, L some invertible sheaf on A’ xx Zy, alge-
braically equivalent to zero. Now consider the invertible sheaf

L, = ®p;a*(a) = @ Fru* (L)

on Wi . The isomorphism class in Pic(Wg x i Zx) /Pic(Zk ) of this invertible
sheaf corresponds to an element in Wy (Zx) which is invariant under the
Galois-operation and thus defines an element in W (Z2).

We obtain in this way a homomorphism 1/4\’(ZK) — Res* (A4")(Z) which

A

is functorial in Z. We thus have a homomorphism Res(ﬁ\’) — Resl (47).

After base-change K|k, this homomorphism becomes the canonical iso-
morphism

[[ o' — I[ o),
o €GOPP o EGoPP

thus it is an isomorphism. This isomorphism Res(ﬁ\’) — Resl (A7) is func-
torial in A" as can for example easily be seen after base-change K|k. We
thus have:

Proposition 1 For abelian K-varieties A’, Resﬁy(ﬁ\’) is functorially iso-

e

morphic to Resk (A’).
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1.5 Welil restrictions of polarized abelian varieties

Let K|k be a finite Galois field extension, A’ an abelian K-variety, A’ the
dual abelian variety.

Let p: A" — A be a polarization of A’, defined by an ample invertible
sheaf L on A/IT’ ie. o Ok idg = ¢g - A/IT — A\IF As stated in Subsection
1.3, this induces an isogeny

e

Rest (¢) : Resl (A4') — Reshk (1/4\’) ~ Resl (A7).

We show now that this homomorphism is again a polarization.
Let o € G°PP. We regard o~ !(A’) as the dual abelian variety of c=1(A4’).

Let ¢’ be a Spec(K )-automorphism with 7 o o’ = o for the natural map
7 : Spec(K) — Spec(K). Then

oM g) Ok idg = 0" (62) = b

Here, the first equation is obvious by the definition of ¢’ and the second
equation is a general fact for all polarizations on abelian varieties. It can be
checked rather easily on K-valued points.

After base-change, we get

Resg(@) ®kid1«':(0_1(99)opa Joegorr H o A’ ) — H o~ A’
o €GOPP o EGoPP

This is a product polarization defined by the ample invertible sheaf
Ly = Q) (ps Ok idg) 0" (L) (4)

on Wr.

If one starts with an ample invertible sheaf £ on A’, then analogously
to (4), one defines an ample invertible sheaf Ly, on Wx. The class of this
sheaf in the Picard group is invariant under the operation of Gal(K|k) and
thus defines an ample invertible sheaf on W (because the Picard functor
of an abelian variety is representable) — alternatively, one can also define
explicitely a descent-datum on Ly, .

Proposition 2 Let K|k be a finite Galois field extension, A’ an abelian
K-variety. If ¢ is a polarization on A" (defined by a sheaf on A’), then
Resl (¢) is a polarization on Resl (A') (defined by a sheaf on Resk (A')).
Furthermore deg(Res (¢)) = (deg( ) HCeR]

Thus “restriction of scalars” is a functor from the category of polarized
abelian K -varieties (with polarizations defined by sheaves on A') to the cat-
egory of polarized abelian k-varieties (with polarizations defined by sheaves
on Resﬁ(A’)) which preserves principal polarizations.
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1.6 Appendix to Section 1: Products and the Rosati involu-
tion

Let k£ be a field, let B; for e =1,...,m and A; for j = 1,...,n be abelian
k-varieties. Let A:=T[._,  A;, B:=][,_; ,, B: Let L]A :A; — A be
the inclusions and let pJA : A — A; be the projections. (Similar definitions

for B as well as the corresponding dual abelian varieties A and E) Then

Hom(A,B) — @m Hom(A;, B;) (5)
¢ = (piBQbL]‘A)i:l,...,m,j:l,...,n

is an isomorphism. (The same is true for the corresponding groups
Hom®(...,...) of both sides.)

Thus every homomorphism from A to B is uniquely determined by its
“matrix”, and conversely, every “matrix” determines a homomorphism. Fur-
thermore, the composition of homomorphisms corresponds to the usual mul-
tiplication of matrices.

In particular, under (5), End(A) is isomorphic to the “matrix ring”
@D, ; Hom(4;, A;).

For later use we want to study how the Rosati involution with respect
to a product polarization operates on the “matrices”. It is convenient to
generalize the concept of a “Rosati involution” first.

Let X and Y be abelian k-varieties with fixed polarizations ¢px : X —
)A(, oy Y — Y. Then for every 1 € Hom’(X,Y), we denote 99)_(1 1299)/ €
Hom®(Y, X') by ¢’ and call it the Rosati involution of 1 with respect to px
and gy .

Now for+ = 1,...,m, 7 = 1,...,n, let ¢, : B; — E and @y, :
A —— ;l\] be polarizations. Let ¢4 and ¢p be the corresponding product
polarizations.

Lemma 3 Lett € Hom’(A, B) be given by the “matriz” (¢; ;)i=1,...m, j=1,...ns
¥; ; € Hom®(A;, B;). Then with respect to ¢4 and ¢p, the Rosati involution
of ¢ is given by the “matriz” ( ;72»)2':17,“% j=1,....m With 1%72 € Hom’(B;, A;).

Proof Straightforward calculation. a

2 Results for finite fields

Let K|k be a finite extension of finite fields of degree n. Let A’ be an abelian
variety over K, W the Weil restriction of A" with respect to K|k.
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2.1 The endomorphism algebra

We now study the endomorphism algebra and the isogeny decomposition of
W over k.

Let 7 : A" — Uﬁk(A’) be the relative Frobenius homomorphism
with respect to k and let 7 : W — W be the Frobenius endomorphism;
cf. “Notation”.

Let wx be the Frobenius endomorphism of A’. Then the image of 75
under the ring-homomorphism Resﬁy equals the endomorphism 7} of W.
(In fact, after base-change K|k, Resl (7x) as well as 7" become equal to
the Frobenius endomorphism of W) Thus the ring-homomorphism Res! :
End(A’) — End(W) restricts to an inclusion Z[rg] — End (W), given
by g + w;. This ring-homomorphism extends to a ring-homomorphism
Zrk][X]/ (X" = 7)) — End(W), given by X — 7.

The Frobenius endomorphism 7w of W commutes with all endomor-
phisms of W. Thus by the universal property of the tensor product, the ring-
homomorphisms End(A’) — End (W), A+ Resl (\) and Z[rx][X]/ (X" -
i) — End(W), X — 7} induce a ring-homomorphism

End(A)) @z, ZIrk][X]/ (X" = 7x) — End(W), A — Resg (A), X — 7.

Theorem 1 Let K|k be an extension of degree n of finite fields. Let A’
be an abelian K -variety, W the Weil restriction of A" with respect to K|k.
Then

End’(A") @gpr g Qrx][X]/ (X" = 75c) — End®(W), A Rest (), X —
is an isomorphism.

Proof By the defining property of the Weil restriction, as abelian groups,

n—1
Hom®(W, W) ~ Homo(H Ui’jk(A% A via a = pigo (a @ idg).  (6)
1=0

We show that the homomorphism of abelian groups

Hom®(A’, A) @g[r g Q][ X]/ (X" — 7x) — Hom (W, W) ~

Hom?(TTi5y o5}, (A7), A) ~ @iy Hom(o), (A7), A)

(7)

is an isomorphism. Since we already know the homomorphism in the theo-
rem to be a ring-homomorphism, this will conclude the proof.

Let o), € Gal(k|k) be the Frobenius automorphism. By base-change, this
induces an automorphism oy, of the k-scheme Wr.

The endomorphism 7 : W —— W is uniquely determined by the fact
that it operates on k-valued points P of Wr as the inverse of the “arithmetic
Frobenius operation”: (7 @y idz) o P = oy ' (P).
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Let P = (P)"Z) be a k-valued point of Wr ~ [} UIZ’jk(A/)F' Then
o' (P) = (07 (Pi21))i2y (where P_y := P,_1); see Subsection 1.2. Thus
(mr @ idg) 0 P = 07 (P) = (0 (Pic)) g = ((mr ® i) 0 Pica) [y

It follows that under the isomorphism Wx ~ [[i2) UI}Z'k(A’), the endo-
morphism 7 ®j idg of Wi is given by the “matrix”

0 - - 7
7 0 - 0
0 .
0 Tk 0

For A € End’(A’), Resk (\) @y id is given by the diagonal “matrix”

A
O'I}Tk (A)

—(n—1
UK(|k )()‘)

see Subsection 1.3. Let z denote the image of X in Q[rx][X]/(X" — 7k).
Let Ajz+Aga?+- -+ A,2" € Hom®(A’, AN O Qrk][X]/ (X" =7k ) where
Ai € End°(A’). Such an element is mapped under the homomorphism of the
theorem to an endomorphism of W which is represented by the “matrix”

Ap TR A1 71'2_1 Ao T3 A T
o e (M) e o (M) 7R o) M o (e) T
Uf(_lg(/\n_z) =2 Uf(_lg(/\n_g) =3 Uf(_lg(/\n) iy Uf(_lg(/\n_l) =t
o Q=) 1T o Qo) T ot (M) me ol () T

The elements of Hom*(A’, A") @q g Qlrx][X]/ (X" — 7k ) have a unique
representation as A\jz + Ayx? + - -+ A\,2" with A\; € End’(A4’). Under (7),
this element corresponds to the first row in the above matrix, i.e. to the row
vector

(Al Xpoam™™h e Nymg ).

Now, every element of @7 Homo(aﬁk(A’), A’) has this form with unique
Ai. Thus (7) is an isomorphism. ]

Remark 4 Since the Frobenius endomorphism has degree a power of p =
char(k), we obtain in fact an isomorphism

(End(A") @zr,q ZIr][X]/ (X" = 7)) @ Z[1/p] — End (W) @ Z[1/p].
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Corollary 5 End’(W) is commutative if and only if End’(A") is commuta-
tive.

The isomorphism of Theorem 1 implies that the corresponding centers are
isomorphic. Recalling from [10] that Z(End’(A’)) = Q[7 k], we thus get:

Corollary 6 We have an isomorphism Q[rg|[X]/(X"—rk) ~ Z(End’(W)).

2.2 Simplicity of the Weil restriction

We are interested in the question whether the Weil restriction W is simple.

In order that W be simple, it is obviously necessary that A’ is simple.
Furthermore, it is necessary that A’ is not isogenous to any abelian K-variety
which can be defined over any proper intermediate field A of K|k (i.e. any
field A with & C A C K). (This holds for arbitrary finite separable field
extensions K |k.)

For assume that this is the case. Since the scalar restriction of an isogeny
is an isogeny, we can assume that A’ itself can be defined over such a A;
A’ = A, for some A as above and an abelian A-variety A. By the defining
functorial property of W = Resg(A’)7 we have a canonical homomorphism
Res; (A) — W which is easily seen to be an immersion. Since the dimen-
sion of the immersed abelian variety is strictly smaller, W is not simple.

We thus make the following assumption:
A’ is a simple abelian K -variety which is not isogenous to any abelian
K -variety which can be defined over some proper intermediate field X of K |k.

Lemma 7 Under our assumption on A’, there does not exist a divisor q of
n (g # 1) such that 7 € Q[rk]?.

Proof Assume that such a ¢ exists and let 8 € Q[rx] be such that 7 = 7.
(In particular Q[rg] = Q[5].)

Let A be the subfield of K|k of index ¢, let V' be the Weil restriction
of A" with respect to K|A. Denoting by x characteristic polynomials of
Frobenius-actions on Tate-modules we have vy (1) = x4/(7?), and S is a
root of yy. This follows from the well-known fact that the operation of
the absolute Galois group of A on V(K) is induced by the operation of the
absolute Galois group of K on A'(K); see [5, §1,a)].

It is easy to see that V contains a simple abelian A-variety A such that
the characteristic polynomial of the Frobenius of A has 5 as a root.

The structure of the endomorphism algebra End’(A) can be calculated
from Q[B] as abstract field with generator §; see Subsection 2.3. Inserting
B and 7 into formula (8), one sees that the central-simple Q[rx]-algebras
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End’(A) and End®(A’) have the same local invariants, thus they are isomor-
phic. Since by formula (9), the dimension of abelian varieties can be calcu-
lated from their endomorphism algebras, it follows that dim(A4) = dim(A’).

The immersion A — V = Res{ (A’) induces by the defining functorial
property of the Weil restriction a non-trivial homomorphism Agx — A’
Since the dimensions agree and A’ is simple, this is an isogeny. A contra-
diction. a

We now make use of the following well-known fact from field theory; see
[4, VI, §9, especially Theorem 9.1]:

Lemma 8 Let F' be a field, o € Fya # 0 and n € N. Assume that o ¢ F1
for all prime divisors q of n. Then either X" — « is irreducible over F or
4n and o € —4F*.

Together with Corollary 6, this implies:

Proposition 9 Under our assumption on A’,

e cither Resﬁ'(A’) has exactly one isotypic component, i.e. all simple
abelian subvarieties are isogenous

o or 4n and tx € —4Q[rx]*.

Proof By the previous two lemmata, under our assumption on A’, either
X" — rk is irreducible over Q[rg] or 4|n and 7x € —4Q[rx]*. Corollary 6
implies: X" — 7 is irreducible over Q[ry] if and only if Z(End’(Res} (A")))
is a field. This in turn is equivalent to the fact that Resk (A’) has exactly
one isotypic component. a

Remark 10 By Honda’s Theorem (see Proposition 12), it is obviously pos-
sible that additionally to our general assumption on A’ the second condition
is satisfied. It is interesting to note that there even exist ordinary ellip-
tic curves E’ over fields of the form F,« (p prime) which are non-isogenous
to any elliptic Fj«-curve which can be defined over F> and which satisfy

T € —4Q[rk]*. Then Resﬁi4 (E') has more than one isotypic component.
Since on the other hand it cannot contain an elliptic curve by our first as-
sumption on F’, Resﬁi4 (E') has exactly two isotypic components both of
which are simple.
For example, let p be a prime such that (_72) =1,let K :=F,, k:=F,.
By assumption, p splits in the field Q[v/—2]; see [8, Satz 8.5.]. Since this
field has class number 1, there is a prime element v € OQ[\/_—Q] such that

(v)(7) = (p). (Where — denotes conjugation.) Since the norm of an element
is always positive, this implies 17 = p. If i € N, then v* # 7, thus v' ¢ Q.
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Let a:= —v*. Then o' ¢ Q for all i € N. In particular, Q[a] = Q[v/~2].
Let F’ be a simple abelian K-variety which corresponds to (Q[a], o) by
Honda’s Theorem (see Proposition 12). By formula (8), all local invariants
of End’(E’) are congruent to 0, thus End’(E’) ~ Q[a], and E’ is an elliptic
K-curve. Since o' ¢ Q for all i € N, F' is ordinary.

The algebraic integer o = —v* = —4(\/—)4 lies in —4Q[a]*. Tt remains
to check that F’ is not isogenous to any elliptic K-curve which can be defined
over F .

Assume this was the case. Then there is a § € End(F') = Qo] =
Q[v-2] with 82 = @ = —v*. This implies 1 = /-1 = y% QV-2], a
contradiction.

Our aim is now to give conditions under which the Weil restriction of A’ is
even simple.

Theorem 2 Let K|k be an extension of finite fields of degree n and A’ «
simple abelian K -variety. Assume that A’ is not isogenous to any abelian K -
variety which can be defined over a proper intermediate field of K|k. Assume
in addition that one of the following holds:

o End(A") is commutative and further, if 4|n, then tx ¢ —4Q[rx]*.
o The extension degree n is prime.
Then Resk (A') is simple.

Proof Assume as in the theorem that A’ is not isogenous to any abelian
variety which can be defined over a proper intermediate field of K|k.

We first treat the case that End(4’) is commutative and further, if 4|n,
then 7x ¢ —4Q[rx]*. Under these conditions, End°(Rest (A4’)) is also com-
mutative (see Corollary 5), and by the above Proposition, Resk (4’) has
exactly one isotypic component. This implies that Resi‘ (A’) is simple.

We now come to the case that the extension degree n is a prime. Let
B C Resg(A’) be a simple abelian subvariety. Applying base-change, we
get B C ][5, O'B|k(A/) This implies dim(A’) |dim(B). Additionally,
the dimensions cannot be equal since otherwise by the defining functorial
property of the Weil restriction, we would have an isogeny By — A’ which
is impossible by assumption. On the other hand, since by Proposition 9
Resl' (A') has exactly one isotypic component, dim(B)|dim(Resk (A)) =
ndim(A’). Since n is a prime, this implies dim(B) = dim(ResZ (A’)) thus
B = Resl (A'). o

Remark 11 Let K :=F,4,k :=F, where p is a prime with p = 1 (mod 4).
We will now give an elliptic K-curve E’ with non-commutative endomor-
phism ring such that Res} (E') is non-simple even though E’ is not isogenous
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to any abelian F,s-variety which can be defined over F,> and the condition
T ¢ —4Q[rk]* is satisfied.

Let E' be a simple abelian K-variety which corresponds to the integer
—p? by Honda’s Theorem; see Proposition 12. By formula (8), the local
invariants of End°(E’) at p and oo are congruent to %, thus E' is a super-

singular elliptic curve such that all endomorphisms of E% can be defined
r
over Fq.

Assume there is an elliptic A := F2-curve F such that Fx ~ E'. Let
7, be its Frobenius endomorphism. Then we have Q[r,] ~ Q[7] (i := v/~1),
and under this isomorphism, 7 corresponds to ¢p. Now by assumption,
p splits in Q[7], and from formula (8), it follows that the local invariants
of End’(F) over p are congruent to %, thus by (9), £ is 2-dimensional, a
contradiction.

Let W be the Weil restriction of F’ with respect to K|k. Then by Corol-
lary 6, the center of End’(W) is isomorphic to Q[X]/(X*+ p?) = Q[+v/—p?],
and under this isomorphism 7 corresponds to +/—p2. In this field, p is
ramified of degree 2 and splits into 2 prime ideals (because it already splits
in the subfield Q[:]). Again by formula (8), the endomorphism algebras of
the simple components of W are fields, thus isomorphic to Q[1/—p?]. Tt
follows with (9) that the simple components of W are 2-dimensional, thus
W is not simple.

2.3 Appendix to Section 2: Some results by Honda and Tate

For the convenience of the reader, we recall Honda’s Theorem on the classi-
fication of simple abelian varieties over finite fields and Tate’s results how to
compute the structure of the endomorphism ring of an abelian variety over
a finite field; c.f. [3, 10, 11].

Fix a finite field £ = F,, where ¢ = p® with p a prime and @ € N. Then,
if Ais a simple abelian k-variety and 7 is its Frobenius endomorphism, for
every inclusion ¢ of Q[ry] into Q, we have |¢(my)| = q%.

Now Honda’s Theorem states:

Proposition 12 (Honda) The assignment A — (Q[rg], 7x) induces a bi-
jection between the set of isogeny classes of simple abelian k-varieties and
the set of isomorphism classes of fields Q[a] with fized generator o such that
a is an algebraic integer and under all inclusions into Q, a has absolute
value q%.

By Honda’s Theorem, for every simple abelian k-variety A, the structure
of the endomorphism algebra End°(A) only depends on Q[r] as abstract field
with generator 7j. Since End®(A) is central-simple over Q[r4], to determine
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its structure, we only have to give its local invariants at all finite and real
valuations.

The formula for this is as follows: Let v be a normalized valuation of
Q[rk]. Then, if v is finite, the local invariant of End’(A4) at v is given by

()

inv, = fv (mod 1), (8)
where f, denotes the absolute residue degree of Q[rx] at v. In particular, if
v is a finite valuation which does not lie over the valuation of p, the local
invariant is congruent to 0.

If v is real, then the local invariant is congruent to %

Let m be the least common denominator of the local invariants. Then the
order of End°(A) in the Brauer group of Q[my] is m, m? = [End’(A) : Q[x4]],
and the dimension of A in given by

dim (A) = % m [Q[rd : Q). (9)

3 Results for abelian varieties which can be de-
fined over the base-field

Throughout this section, let K|k be a finite Galois extension of degree n
with Galois group G, and let A be an abelian k-variety of dimension d. Let
W be the Weil restriction of Ax with respect to K|k.

We want to determine the structure of the endomorphism ring of W,
and the isogeny decomposition of W over k.

3.1 Arithmetic becomes geometric operation

For any k-scheme Z, G operates on Ag(Zk) by 7(P) = rP771. These
operations define an automorphism of the functor 7 — Ax(Zk) from the
category of k-schemes to the category of abelian groups. We obtain au-
tomorphisms of the representing object W = Resl (Ax) which we denote
by a, for 7 € G°PP. We thus have a group-homomorphism a : G°PP —
Aut(W), 7 — a,, where Aut(W) denotes the group of automorphisms of
the abelian k-variety W.

We want to calculate how a, ®j idx operates on Wy ~ A?(OPP.

We have 7(u) = 7(pia) = p,—1 : Wg — Ag by (2). The homomor-
phism a, of the abelian k-variety W is the W-valued point of W which cor-
responds to 7(u). So by Subsection 1.2, a, @ idx = (671 (7(u)))regerr =
(e (pr-1))secere = (Pr-1,)secere. (The last equation follows from (2).)
We have established:
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Lemma 13 «a, ®; idg : A?(OPP — A?(OPP operates on Z-valued points (any
Z) by (PCT)CTEGOPP — (P’T_l(ZT)CTEGOPP'

3.2 The endomorphism ring as skew group ring

Lemma 14 LetT € GPP.\ € End(Af). Then a,oRest (A) = ResE (1(\))o
ar € End(W).

Proof Easy calculation on Z-valued points. a
To formulate the result about the structure of the endomorphism ring of
W, we need a generalization of the concept of a group ring first.

Definition Let A be a ring, G a group, ¢t : G — Aut(A) a group-homo-
morphism. The application of t(¢) to some A € A will by denoted by
o (). Following [9], we define the skew group ring A'[(] to be the following
ring:' The underlying abelian group is A with the usual “componentwise”
addition. As usual, for 7 € (7, let 7 also denote (85,7)recq € A% . The multi-

plication is defined by Y~ Ao 0> cotuv =2, cq Ao () ov.

The ring A is naturally immersed in A'[G]. For fixed A, G and ¢ : G —
Aut(A), the ring A’[7] has the following universal property:

Lemma 15 Let B be a ring, f : A — B be a ring-homomorphism, and
let g : G — B* be a group-homomorphism. Assume that for A € A, 7 €
G, og(t) f(A) = f(t(X) g(7). Then there is a unique ring-homomorphism
NG| — B with A~ f(X) and 7 — ¢(7).

Now let GG be the Galois group as above, t : G°PP — Aut(End(Ag))
the natural operation given by o — (A +— o(X) = cAc™!). From Lemmata
14 and 15 it follows that > copp Ao @ = > opp Rest ()\,) a, defines a
ring-homomorphism

End(Ag)'[GPP] — End(W). (10)

Theorem 3 Let K|k be a finite Galois extension with Galois group G, A
an abelian k-variety, W the Weil restriction of Ax with respect to K|k,
t: GPP — Aut(End(Afg)) the natural operation. Then

End(Ag) [GPP] — End(W), > Aso— Y Resf (A,)a,
o €GOPP o EGoPP

is an isomorphism.

'This ring is a special case of a crossed product (with respect to some operation); cf.
[9]. In [2], the same ring is called twisted group ring. However, in [9], this word is reserved
for the special case of a crossed product with respect to a trivial group operation.
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Proof Analogously to the proof of Theorem 1, we make use of the isomor-
phism Hom (W, W) ~ Hom(AZ™, Ax) ~ @, cqorr Hom(Af, Ag) of the
right-hand side.

By (2), the image of some o € G°PP in Hom(AZ™", Ax) is py-1, corre-
sponding to the row vector which is zero except at the “o-th” entry where
it is 1.

Thus the image of ) . qopp A0 (Where A, € End(Ag))is > cqorp Ao—1 Poy
corresponding to the row vector (A,—1),eqopp.

It is thus immediate that we have an isomorphism. a

Corollary 16 The isomorphism in the theorem induces an isomorphism

End®(Ax ){[GPP] — End(W).

By the Complete Reducibility Theorem (see [6, Proposition 12.1]) we
know that the ring End’(W) is semi-simple. Thus the skew group ring
End’(Ax)'[GOPP] is semi-simple.

It can be proven more generally that every crossed product over a semi-
simple ring with a finite group in which the group order is invertible is
semi-simple; see [9, Theorem 4.1.].

We now want to study the ring-homomorphism

End(Ag)![GoPP] =5 End (W) <

Goprp (11)
End(WK) ~ End(AK ) ~ MGOPP (End(AK)).

We denote the matrix corresponding to a, by A, and the matrix correspond-
ing to Reslt (A) by J()) (for a, as above and A € End(Ay)).

We have already shown in Subsection 1.3 that J(A) is the diagonal matrix
(071 (N) o0 o wecorr

Let us determine to which matrix A, € Mgerr (End(Ag)) the endomor-
phism @, corresponds. First of all, p, : Wg ~ AIE?OPP — Ag corresponds
to the row vector (0, )yeqorr. As a; = (p,-1,)seqorr (see Lemma 13), we
get

AT = (57'—1071/)07V€G°pp = (5077—1,)071,6@0}313. (12)

Before continuing let us recall the definition of the left regular (matrix)
representation.

The left regular (matrix) representation

Let A be a ring. If A — = is a homomorphism of rings, we can regard

= as A-right module, and if we do so, we write Endy(Z) for the ring of
endomorphisms.
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Now let A — = be a homomorphism of rings and assume additionally
that = is free as A-right module on a finite set of generators 3, i.e. = ~ A™
as A-right modules. Multiplication by elements of = from the left induces a
ring-homomorphism

[:Z — End}(Z) ~ End} (A%), (13)

the left reqgular representation.
For a fixed basis ¥, the right-hand side of (13) is canonically isomorphic
to the matrix ring Myx (A). The isomorphism is given as follows:

End’y (AE) — Mx(A), a— (a5,)ovex With oy, € A

and a(v) = ey 005, (14)

By composition of (13) with (14), we get the left reqular matriz representa-
tion (with respect to the basis X).

L:Z — Mg(A).

We now apply these concepts in the context of the skew group ring.
Let ¢ be a finite group, ¢ : G — Aut(A) be a homomorphism, A’[(] the
corresponding skew group ring.

We calculate explicitly the left regular representation [ : AY[G] —
End} (A'[G]) and the left regular matrix representation L : A'[G] — Mg (A)
with respect to the basis G.

Let 7 € G. Then I(7) :v = Tv =) 085, and thus

L(T) — (5U,TU)U,UEG-

Let A € A. Then [(A) : v — Av=rvrv~1(A) and thus

L) = (07 (V) dop)ovea-

We are now going to relate these definitions and calculations with our sit-
uation. Solet A := End(Ag), G the Galois group and ¢ : G°PP — End(Afk)
the natural operation. Let L be the left regular matrix representation of A
with respect to the basis G°PP. Then L(7) = A, and L(A) = J(A). Thus:

Proposition 17 Homomorphism (11) is the left reqular matriz representa-
tion of the skew group ring End(Ag ) [GPP] with respect to the basis GOPP.
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3.3 The Rosati involution

Let ¢ : Ag — EK be a polarization. Then Resﬁy(cp) CW —— W is also a
polarization; see Subsection 1.5.

We want to calculate how the Rosati involution of W with respect to
Resl* (¢) is given under the isomorphism of Corollary 16.

Let us denote the Rosati involution by (...)".

First of all, the (defining) equation X' = ¢~ 'A¢ where A € End’(Ag)
implies

Resﬁ()\') = Resﬁy(cp)_l o Resﬁy(X) o Resﬁ(cp) = Res?()\)’.

(This holds more generally for any abelian K-variety A’ instead of Ax.)

We use the inclusion of End’(W) into the matrix ring Megopr (End’(A))
and the fact that Resk (¢) @y id is a product polarization to calculate the
Rosati involution of a, with the help of Lemma 3.

Since a, corresponds to the matrix A; = (0,71)0peqorr (see (12)), al.
corresponds to the matrix (6, .5)ovegorr = (0:-1,4)opvegorr =
(857-11)oveqorr = A—1. Thus

!

a, = a,-1.

Since the Rosati involution is an anti-ring-endomorphism, this implies:

Proposition 18 Let K
G, A an abelian k-variety, W the Weil restriction of Ay with respect to
Klk. Let o : A —> A be a polarization. Let X — N be the Rosati involution
associated to p. Then under the isomorphism of Corollary 16, the Rosati

k be a finite Galois field extension with Galois group

mvolution associated to the polarization Resﬁy(cp) W — W is given by
Yooeore Ao T FF 3, ccopp oI\, = > oecorr o~ () ot

3.4 Dimensions of components

As in the above proposition, let A be an abelian k-variety, K|k a galois field
extension of degree n with galois group G, W the Weil restriction of Ax with
respect to K|k, and let ¢ : G°PP — End(Ag) be the natural operation.
Assume D C End’(Ak) is a skew field, invariant under the operation ¢.
Let :_, A; = D'[G°PP] be a decomposition of the D![G°PP]-right mod-
ule DY[G°PP]. This defines a decomposition 1 = > e; where the e; are
orthogonal idempotents, e; € A;, such that A; = e; D[G°PP]. Conversely,
if we are given a decomposition 1 = ) .e; with orthogonal idempotents
e;, then the A; := e; D'[G°PP] define a direct sum decomposition of the

D[G°PP]-right module D![GPP].
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Via the inclusion D![G°PP] < End’(Ak)![G°PP] ~ End’(WW), we can re-
gard the e; to be elements of End’(W). For each i, let ¢; € N such that
cie; € End(W).

Now put W; := (cse;)(W). The W; are abelian subvarieties of W and
P;_, Wi ~ W. (Conversely, such an isogeny decomposition where the W;
are abelian subvarieties of W determines a decomposition of End’(W) as

right-End’(W) module.)

Proposition 19 Let D C End°(Ax) be a skew field, invariant under the
operation t on End’(Ax). Let @i_, A; = D'GPP] be a decomposition of
the D'[GPP]-right module D'[G°PP]. This corresponds to a decomposition
ida, = >, €. Let W; = (cie;)(W) be as above. Then Wy ~ A}l (non-

canonical isomorphism) where
n; = dimp(A;).

Proof Choose a bijection between G°PP and theset {1,...,n}. Then AZ"™" ~
A%,

Let [ and L be the left regular (matrix) representations of End°( Ay )*[G°PP],
Ip and Lp the left regular (matrix) representations of DY[G°PP] (both regular
matrix representations with respect to the basis G°PP). Let iy : Mgopr (D) —
Mgepr (End(Af)) be the canonical inclusion. Then L =y Lp.

By construction [p(e;) is the identity on A; and zero on all A; for j # ¢.

Let n; be the dimension of the D-module A;. For each 7, choose a basis
(bgj))j:17...7m of the D-module A;. Then all n elements bgj) define a basis of
the D-module D![G°PP]. With respect to this basis, the matrix associated
to Ip(e;) is zero outside a block of size n; where it is the identity matrix.

We now have two matrix representations of {p(e;) with respect to dif-
ferent bases, and via a base change matrix, we can transform one into the
other: There exists an invertible matrix B € Gl, (D) such that BLp(e;) B™1
is zero outside a block of size n; where it is the identity matrix.

Let b € End(AZ™) ~ End’(A%) correspond to ty(B). By Proposition
17 and our notational conventions, the endomorphism associated to the
matrix L(e;) = tmLp(e;) is €; @ idg. By the above considerations, b(e; @
idg)b~! is an endomorphism whose image is isomorphic to A%'. It follows
that the image of ¢; e; @y id is also isomorphic to A?Xﬁ. a

Remark 20 Let Ax be simple, D = End’(Ak). Assume that all e; in
the above proposition are central. Then all A; as above are rings and
we have an isomorphism [[7_; A; ~ D'G°PP] ~ End’(W) of rings. Fur-
thermore, the (c;e;)(W) are generated by isotypic components of W and
A; ~ End’((¢;e;)(W)). So in particular, the number n; in the above propo-
sition satisfies n; = dimp (End°(W;)).
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3.5 The cyclic case

We now apply the above results to the case that G is cyclic of order n.

We identify ' with G°PP and fix some generator ¢ € GG. Let a = a, €
End(W) be the automorphism corresponding to o.

Denote the residue class of X in Q[X]/(X" —1) by . Then we have an
inclusion

Q[X]/(X™ — 1) — End’(Ag)'[G], z + 0.
The polynomial X™ — 1 € Z[X] splits over Z as

X" —1=]]%

d|n

where @, is the d-th cyclotomic polynomial.

Let @/ := (X" — 1)/®4. By the Euclidian algorithm, there exist ¥y €
Q[X]with 37, We®) = 1. Let £y := Wy @). Then the Fy(z) € Q[X]/(X"~
1) are pair-wise orthogonal idempotents. The corresponding decomposition
is

QIX)/(X" = 1) ~ [T QIX]/®a =[] Q(Ca)-

d|n d|n

(This is nothing but the Chinese Remainder Theorem in this particular
case.)
Let Wy = ¢q Eq(a)(W) for suitable ¢4 € N. We then have an isogeny
decomposition
W~ [ Wa,
dln

and by Proposition 19, the W, are abelian varieties with Wy ~ Aﬁy(d)

We also have Wy = @/,(a)(W). — We only have to show that cg®(a) (W) C
Wj. This follows from ®)(x) = (3_ 4, ¥y ()@} (2))P)(z) = Wy(2)9 (z) =
Ea(z)®(2).

It is clear that Wy is also the reduced identity component of the kernel

cq(id — Eg(a)) = ca g pa Vi (@) ®(a) =
(ca Zf|n, f£d Vy(a) Hg|n,g;éd,f ®y(a)) Py(a).
It is also the reduced identity component of the kernel of ®4(a). — We only

have to show that W, is contained in this kernel. But since Wy = ®/(a) (W)
and @/ (z)®4(x) = 0, this is obvious.

of

We now want to study whether the Wy are simple or split further. We
make the following assumptions.
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Ax is a simple abelian K -variety whose endomorphisms can be defined
over k and whose endomorphism ring is commutative.

Note that if % is finite, all endomorphisms of Ax can automatically be
defined over k if we assume End(Ag) to be commutative.

Also if A is an ordinary elliptic curve over an arbitrary field k and n is
odd, then all endomorphisms of Ax can be defined over k. This is because
under this condition, End(Ag) is either Z or a quadratic order, thus the
only possible non-trivial automorphism of End(Ag) has order 2, and con-
sequently the image of the representation Gal(K|k) — Aut(End(Ag)) is
trivial.

Under the assumptions, we have the isomorphisms

End’(A)[X]/(X"—1) =~ End(Ag)[G] =~ Endo(W)‘
x = o — a

Let @, split into the product of the non-trivial monic irreducible polynomials
(I>£ll)7 @512 b .,@glrd) over End’(A). Let (I)Zl'(z) = (X" — 1)/@5;). Since X™ — 1
is separable in characteristic zero, the (I>£;) are pair-wise coprime for varying

d and 17, and there exist \Ilg) with 37, 201L, \Ilg)@&(i) = 1. Let EC(;) =

VRE AR
Let Wy) = cg)Ec(;)(a)(W) for suitable cg) € N. Then again by Proposi-
. . ce(l)
tion 19, WCEZ) is an abelian k-variety with (chl))]( ~ Aiyg(q)d ). The abelian

k-variety Wy) is simple and its endomorphism algebra is isomorphic to the
field End’(A) [X]/q)g). The WCEZ) are pair-wise non-isogenous (since End’(W)
is commutative), thus they are the isotypic components of W.

As above, one sees that Wy) = @gl)(a)(W) and that Wy) is the reduced

identity component of the kernel of @Eli)(a).

The component Wy is simple if and only if ® is irreducible over End°(A4),
i.e. if and only if End’(A) @9 Q((y) is a field. If we fix an inclusion of End’(A)
into Q, this is the case if and only if End’(A) N Q(¢4) = Q.

In particular, none of the Wy splits further if End’(A) = Q as is the case
if A is an elliptic curve without complex multiplication (over k).

We proved:

Theorem 4 Let K|k be a cyclic field extension of degree n. Let A be an
abelian k-variety.

Let W be the Weil restriction of Ax with respect to K|k. For all d|n,
w(d
K

canonically), and W is isogenous to the product of the Wy. Here, W1 = A
itself.

W contains canonically an abelian subvariety Wy with Wy ~ A ) (non-
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Assume in addition that Ay is simple, End’(Ag) is commutative and all
endomorphisms of Ax can be defined over k. Then the isotypic components
of W are all simple, and its endomorphism rings are all commutative. Fix
an inclusion of End*(Ag) into Q. Then for each d, Wy is simple if and only
if End®(4) N Q(C) = Q.

Let F be an ordinary elliptic k-curve with complex multiplication (over
k). Fix an inclusion of End’(F) into Q. As End’(E) is a quadratic extension
of Q, End’(F)NQ(¢g) 2 Qif and only if End’(£) C Q((g). If this is the case
then @, splits into two polynomials of degree S¢(d) over End’(E).

Corollary 21 Under the assumptions of the theorem, let E/ be an ordinary
elliptic k-curve with End(FE) = End(Fk) (this condition is automatically
satisfied over finite fields or if n is odd).

Then for each d, Wy is not simple if and only if ¥ has complex mul-
tiplication over k and End’(E) C Q({q). If this is the case, Wy contains
two simple non-isogenous abelian subvarieties of dimension @, and Wy is
isogenous to the product of these abelian subvarieties.

In partular, if n is prime and n = 1 mod 4 or n = 3 mod 4 and \/—n ¢
End’(F), we have an isogeny decomposition W ~ E x N where N is simple.
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