
On the Stru
ture of Weil Restri
tions ofAbelian VarietiesClaus Diem Niko NaumannJune 10, 2003Abstra
tWe give a des
ription of endomorphism rings of Weil restri
tionsof abelian varieties with respe
t to �nite Galois extensions of �elds.The results are applied to study the isogeny de
ompositions of Weilrestri
tions.2000 Mathemati
s Subje
t Classi�
ation Primary: 14K15, Se
ondary: 11G10.Introdu
tionFor the use of Weil restri
tions of abelian varieties in various �elds of math-emati
s but also be
ause of genuine interest in Weil restri
tions themselves,it is important to determine the endomorphism rings and the isogeny de-
ompositions. This is what this arti
le provides { at least in two importantspe
ial 
ases.After giving a brief expos�e of general fa
ts about Weil restri
tions ofabelian varieties in the �rst se
tion, we study Weil restri
tions with respe
tto extensions of �nite �elds in the se
ond se
tion. Here we determine theendomorphism algebra of a Weil restri
tion (see Theorem 1) and then showthat under rather general assumptions, the Weil restri
tion is simple overthe base-�eld (see Theorem 2).In the third se
tion, we deal with the following situation: Kjk is an ar-bitrary �nite Galois extension of �elds, A an abelian variety over k, W theWeil restri
tion of AK with respe
t to Kjk. We des
ribe the endomorphismring of W as a skew group ring over End(AK) (see Theorem 3) and applythis result to study the isogeny de
omposition of W over k. In the last sub-se
tion the results are applied to give an expli
it des
ription of the isogenyde
omposition of W in the 
ase of a 
y
li
 �eld extension; see Theorem 4.1



2 Claus Diem, Niko NaumannNotationGeneralBy a ring we mean a ring with unity, and by a ring-homomorphism a ho-momorphism of rings with unity. If R is a ring and � a �nite set, then byM�(R) we mean the matrix ring over R on the set �. For any abelian groupG, GÆ denotes G
Q. If D is a skew �eld, we denote its 
enter by Z(D). Ifk is a �eld, k denotes an algebrai
 
losure. If k is some �eld and X and Zare k-s
hemes, we denote the k-morphisms from Z to X by X(Z).Let k be a �eld. By a homomorphism between abelian k-varieties wemean a morphism of k-s
hemes whi
h preserves the group stru
ture (otherauthors might 
all this a k-homomorphism or a k-morphism of abelian va-rieties). Analogous de�nitions apply to isogenies and endomorphisms. Thegroup of homomorphisms between two abelian k-varieties A and B is de-noted by Hom(A;B) and the ring of endomorphisms of an abelian k-varietyA by End(A). Following this terminology, we use the notion of a simpleabelian k-variety where other authors might speak of a k-simple abeliank-variety. If two abelian k-varieties A and B are isogenous, we write A � B.If we are given an extension of �elds Kjk, we denote k-s
hemes by X; Yet
. and K-s
hemes by X 0; Y 0 et
. (or by XK ; YK et
. if they are indu
ed bybase-
hange Kjk).We denote the dual abelian variety of an abelian k-variety A by bA. For aninvertible sheaf L on A, �L : A �! bA denotes the 
orresponding homomor-phism; 
.f. [7, x6℄. Following [6℄, a polarization ' of A is a homomorphismA �! bA su
h that ' 
k idk = �L : Ak �! bAk for some ample invertiblesheaf on Ak.Galois twistsLet Kjk be a Galois extension of �elds with Galois group G. Then theelements of G indu
e automorphisms of the Spe
(k)-s
heme Spe
(K) { weobtain in this way an anti-isomorphism G �! AutSpe
(k)(Spe
(K)).We identify the opposite group Gopp with AutSpe
(k)(Spe
(K)). We willalways work with Gopp instead of G.Let X 0 be a K-s
heme.For � 2 Gopp, let ��1(X 0) be the pull-ba
k of X 0 via � : Spe
(K) �!Spe
(K), i.e. if pK : X 0 �! Spe
(K) is the stru
ture morphism, ��1(X 0) isX 0 
onsidered as K-s
heme via ��1 Æ pK . We denote the 
anoni
al isomor-phism of k-s
hemes from ��1(X 0) toX 0 also by �. If Y 0 is another K-s
hemeand � : X 0 �! Y 0 is a morphism of K-s
hemes, we obtain by base-
hange amorphism of K-s
hemes ��1(�) = ��1�� : ��1(X 0) �! ��1(Y 0).If X 0 is an abelian K-variety, by pull-ba
k ��1(X 0) also has the stru
ture



On the Stru
ture of Weil Restri
tions of Abelian Varieties 3of an abelian K-variety.Frobenius morphismsLet q be a power of a prime number, k the �nite �eld with q elements, letA be an abelian k-variety. The Frobenius endomorphism �k of A is de�nedby the identity on the underlying topologi
al spa
e and by f 7! f q on thestru
ture-sheaf OA. As the name indi
ates, �k is an endomorphism of theabelian k-variety A.Now let Kjk be an algebrai
 extension of �elds. We identify the Galoisgroup Gal(Kjk) with its dual. The Frobenius automorphism of Kjk (or ofSpe
(K) �! Spe
(k)) is denoted by �Kjk. If K = k, we write �k instead of�kjk.Let A0 be an abelian K-variety. As stated above, we have a 
anoni
alisomorphism of k-s
hemes �Kjk : ��1Kjk(A0) �! A0. The relative Frobeniushomomorphism (with respe
t to k) �k : A0 �! ��1Kjk(A0) is a homomorphismof abelian K-varieties whi
h is de�ned as follows: Let Fk be the morphism ofthe k-s
heme A0 to itself whi
h is the identity on the underlying topologi
alspa
e and it is given by f 7! f q on the stru
ture-sheaf OA0 . Then �k :=��1Kjk Æ Fk : A0 �! ��1Kjk(A0).1 De�nitions and �rst results1.1 De�nition of the Weil restri
tionLet Kjk be a �nite Galois extension. Let A0 an abelian K-variety. It iswell-known that the fun
tor Z 7! A0(Z 
k K)from the 
ategory of k-s
hemes to the 
ategory of abelian groups is repre-sentable by an abelian k-variety; for a 
onstru
tion via Galois theory seeSubse
tion 1.2, for a 
onstru
tion via \restri
tion of s
alars" see [1, 7.6℄.(The representatility of the fun
tor by an abelian variety holds more gener-ally for a �nite separable extension of �elds, but we restri
t ourselves to theGalois-
ase is this arti
le.) A representing obje
t will be denoted ResKk (A0)and will be 
alled the Weil restri
tion of A0 with respe
t to Kjk. The uni-versal element u 2 A0(ResKk (A0)
k K) maps the zero of ResKk (A0) 
k K tothe zero of A0 and thus is a homomorphism of abelian K-varieties.Now, ResKk (A0) with u is also a representing obje
t for the fun
torB 7! Hom(BK; A0) from the 
ategory of abelian k-varieties to the 
ate-gory of abelian groups as well as for the fun
tor B 7! HomÆ(BK; A0) from



4 Claus Diem, Niko Naumannthe 
ategory of abelian k-varieties up to isogeny to the 
ategory of Q-ve
torspa
es.1.2 Constru
tion of the Weil restri
tionLet us re
all the 
onstru
tion of ResKk (A0) via Galois theory.Let W 0 be the following produ
t of Galois-
onjugates of A0:W 0 := Y�2Gopp ��1(A0) (1)Let p� : W 0 �! ��1(A0) be the proje
tions, let Autk(W 0) be the group ofautomorphisms of the k-s
heme W 0.We de�ne a Galois operation on W 0 by Gopp �! Autk(W 0); � 7! e�where e� = (� p��)�2Gopp . Sin
e W 0 is proje
tive, the quotient W := W 0=Gunder this operation exists and is proje
tive. We have W 0 ' WK .Fix some k-s
heme Z. We have a Galois operation on W 0(Z 
k K).If � 2 Gopp and P = (P�)�2Gopp 2 W 0(Z 
k K), then �((P�)�2Gopp) =(�(P��))�2Gopp . It follows that P 7! (��1(P ))�2Gopp is a bije
tion betweenthe Z 
k K-valued points of A0 and the Galois-invariant Z 
k K-valuedpoints of W 0. On the other hand, by Galois theory, the Galois-invariantZ 
kK-valued points of W 0 are in bije
tion with the Z-valued points of W .Both bije
tions are natural in Z.It follows that W = W 0=G with universal element u := pid representsthe fun
tor Z 7! A0(Z
kK) from the 
ategory of k-s
hemes to the 
ategoryof sets. Via the group laws on these sets, one de�nes a group law on W , andwith this group law, W is an abelian variety. By 
onstru
tion, the neutralelement and the addition law of W 
oin
ide after base-
hange with theneutral element and the addition law of the produ
t of Galois-
onjugates in(1). Moreover, the universal element u = pid is a homomorphism of abelianK-varieties.From the Galois-operation of W 0, we obtain��1(p�) = p�� ; espe
ially ��1(u) = p� : (2)1.3 The fun
tor \restri
tion of s
alars"The assignment A0 7! ResKk (A0) de�nes a 
ovariant additive fun
tor ResKkfrom the 
ategory of abelian K-varieties (up to isogeny) to the 
ategory ofabelian k-varieties (up to isogeny). This fun
tor is 
alled \restri
tion of the�eld of de�nition" or \restri
tion of s
alars" or \norm fun
tor"; 
f. [5℄.For any abelian K-variety A0, ResKk gives a ring-homomorphism fromEnd(A0) to End(ResKk (A0)) and from EndÆ(A0) to EndÆ(ResKk (A0)).



On the Stru
ture of Weil Restri
tions of Abelian Varieties 5Let A0; B0 be abelian K-varieties. ThenHom(ResKk (A0)K;ResKk (B0)K) ' M�;�2Gopp Hom(��1(A0); ��1(B0)); (3)see equations (1) and (5).Let � : A0 �! B0 be a homomorphism. Then under (3), ResKk (�)
k idKis given by the diagonal \matrix"(��1(�)Æ�;�)�;�2Gopp 2 M�;�2Gopp Hom(��1(A0); ��1(B0));where Æ�;� is the \Krone
ker delta". If � : A0 �! B0 is an isogeny, thenResKk (�) : ResKk (A0) �! ResKk (B0) is an isogeny of degree (deg(�))[K:k℄.1.4 The Weil restri
tion of the dual abelian varietyThe Weil restri
tion of the dual abelian variety is fun
torially isomorphi
 tothe dual abelian variety of the Weil restri
tion. This 
an be seen as follows.Let W := ResKk (A0).Let Z be some k-s
heme, L some invertible sheaf on A0 �K ZK , alge-brai
ally equivalent to zero. Now 
onsider the invertible sheafLWK :=O� p����(L) =O� e��u�(L)onWK . The isomorphism 
lass in Pi
(WK�KZK)=Pi
(ZK) of this invertiblesheaf 
orresponds to an element in 
WK(ZK) whi
h is invariant under theGalois-operation and thus de�nes an element in 
W (Z).We obtain in this way a homomorphism
A0(ZK) �! \ResKk (A0)(Z) whi
his fun
torial in Z. We thus have a homomorphism Res(
A0) �! \ResKk (A0).After base-
hange Kjk, this homomorphism be
omes the 
anoni
al iso-morphism Y�2Gopp ��1(
A0) �! \Y�2Gopp ��1(A0);thus it is an isomorphism. This isomorphism Res(
A0) �! \ResKk (A0) is fun
-torial in A0 as 
an for example easily be seen after base-
hange Kjk. Wethus have:Proposition 1 For abelian K-varieties A0, ResKk (
A0) is fun
torially iso-morphi
 to \ResKk (A0).



6 Claus Diem, Niko Naumann1.5 Weil restri
tions of polarized abelian varietiesLet Kjk be a �nite Galois �eld extension, A0 an abelian K-variety, 
A0 thedual abelian variety.Let ' : A0 �!
A0 be a polarization of A0, de�ned by an ample invertiblesheaf L on A0K , i.e. '
K idK = �L : A0K �!
A0K . As stated in Subse
tion1.3, this indu
es an isogenyResKk (') : ResKk (A0) �! ResKk (
A0) ' \ResKk (A0):We show now that this homomorphism is again a polarization.Let � 2 Gopp. We regard ��1(
A0) as the dual abelian variety of ��1(A0).Let �0 be a Spe
(K)-automorphism with � Æ �0 = � for the natural map� : Spe
(K)! Spe
(K). Then��1(')
K idK = �0�1(�L) = ��0�(L):Here, the �rst equation is obvious by the de�nition of �0 and the se
ondequation is a general fa
t for all polarizations on abelian varieties. It 
an be
he
ked rather easily on K-valued points.After base-
hange, we getResKk (')
k idK = (��1(') Æ p�)�2Gopp : Y�2Gopp ��1(A0) �! Y�2Gopp ��1(
A0):This is a produ
t polarization de�ned by the ample invertible sheafLWk :=O� (p� 
K idK)��0�(L) (4)on Wk.If one starts with an ample invertible sheaf L on A0, then analogouslyto (4), one de�nes an ample invertible sheaf LWK on WK . The 
lass of thissheaf in the Pi
ard group is invariant under the operation of Gal(Kjk) andthus de�nes an ample invertible sheaf on W (be
ause the Pi
ard fun
torof an abelian variety is representable) { alternatively, one 
an also de�neexpli
itely a des
ent-datum on LWK .Proposition 2 Let Kjk be a �nite Galois �eld extension, A0 an abelianK-variety. If ' is a polarization on A0 (de�ned by a sheaf on A0), thenResKk (') is a polarization on ResKk (A0) (de�ned by a sheaf on ResKk (A0)).Furthermore deg(ResKk (')) = (deg('))[K:k℄.Thus \restri
tion of s
alars" is a fun
tor from the 
ategory of polarizedabelian K-varieties (with polarizations de�ned by sheaves on A0) to the 
at-egory of polarized abelian k-varieties (with polarizations de�ned by sheaveson ResKk (A0)) whi
h preserves prin
ipal polarizations.



On the Stru
ture of Weil Restri
tions of Abelian Varieties 71.6 Appendix to Se
tion 1: Produ
ts and the Rosati involu-tionLet k be a �eld, let Bi for i = 1; : : : ; m and Aj for j = 1; : : : ; n be abeliank-varieties. Let A := Qj=1;:::;nAj ; B := Qi=1;:::;mBi. Let �Aj : Aj �! A bethe in
lusions and let pAj : A �! Aj be the proje
tions. (Similar de�nitionsfor B as well as the 
orresponding dual abelian varieties bA and bB.) ThenHom(A;B) �! Li;j Hom(Aj ; Bi) 7! (pBi  �Aj )i=1;:::;m; j=1;:::;n (5)is an isomorphism. (The same is true for the 
orresponding groupsHomÆ(: : : ; : : :) of both sides.)Thus every homomorphism from A to B is uniquely determined by its\matrix", and 
onversely, every \matrix" determines a homomorphism. Fur-thermore, the 
omposition of homomorphisms 
orresponds to the usual mul-tipli
ation of matri
es.In parti
ular, under (5), End(A) is isomorphi
 to the \matrix ring"Li;j Hom(Aj ; Ai).For later use we want to study how the Rosati involution with respe
tto a produ
t polarization operates on the \matri
es". It is 
onvenient togeneralize the 
on
ept of a \Rosati involution" �rst.Let X and Y be abelian k-varieties with �xed polarizations 'X : X �!bX; 'Y : Y �! bY . Then for every  2 HomÆ(X; Y ), we denote '�1X b 'Y 2HomÆ(Y;X) by  0 and 
all it the Rosati involution of  with respe
t to 'Xand 'Y .Now for i = 1; : : : ; m; j = 1; : : : ; n, let 'Bi : Bi �! 
Bi and 'Aj :Ai �! 
Aj be polarizations. Let 'A and 'B be the 
orresponding produ
tpolarizations.Lemma 3 Let  2 HomÆ(A;B) be given by the \matrix" ( i;j)i=1;:::;m; j=1;:::;n; i;j 2 HomÆ(Aj ; Bi). Then with respe
t to 'A and 'B, the Rosati involutionof  is given by the \matrix" ( 0j;i)i=1;:::;n; j=1;:::;m with  0j;i 2 HomÆ(Bj ; Ai).Proof Straightforward 
al
ulation. 22 Results for �nite �eldsLet Kjk be a �nite extension of �nite �elds of degree n. Let A0 be an abelianvariety over K, W the Weil restri
tion of A0 with respe
t to Kjk.



8 Claus Diem, Niko Naumann2.1 The endomorphism algebraWe now study the endomorphism algebra and the isogeny de
omposition ofW over k.Let �k : A0 �! ��1Kjk(A0) be the relative Frobenius homomorphismwith respe
t to k and let �k : W �! W be the Frobenius endomorphism;
f. \Notation".Let �K be the Frobenius endomorphism of A0. Then the image of �Kunder the ring-homomorphism ResKk equals the endomorphism �nk of W .(In fa
t, after base-
hange Kjk, ResKk (�K) as well as �nk be
ome equal tothe Frobenius endomorphism ofWK .) Thus the ring-homomorphism ResKk :End(A0) �! End(W ) restri
ts to an in
lusion Z[�K℄ �! End(W ), givenby �K 7! �nk . This ring-homomorphism extends to a ring-homomorphismZ[�K℄[X ℄=(Xn� �k) �! End(W ), given by X �! �k.The Frobenius endomorphism �k of W 
ommutes with all endomor-phisms ofW . Thus by the universal property of the tensor produ
t, the ring-homomorphisms End(A0) �! End(W ); � 7! ResKk (�) and Z[�K℄[X ℄=(Xn��K) �! End(W ); X 7! �k indu
e a ring-homomorphismEnd(A0)
Z[�K℄Z[�K℄[X ℄=(Xn� �K) �! End(W ); � 7! ResKk (�); X 7! �k:Theorem 1 Let Kjk be an extension of degree n of �nite �elds. Let A0be an abelian K-variety, W the Weil restri
tion of A0 with respe
t to Kjk.ThenEndÆ(A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) �! EndÆ(W ); � 7! ResKk (�); X 7! �kis an isomorphism.Proof By the de�ning property of the Weil restri
tion, as abelian groups,HomÆ(W;W ) ' HomÆ(n�1Yi=0 ��iKjk(A0); A0) via a 7! pid Æ (a
k idK): (6)We show that the homomorphism of abelian groupsHomÆ(A0; A0)
Q[�K℄ Q[�K℄[X ℄=(Xn� �K) �! HomÆ(W;W ) 'HomÆ(Qn�1i=0 ��iKjk(A0); A0) 'Ln�1i=0 HomÆ(��iKjk(A0); A0) (7)is an isomorphism. Sin
e we already know the homomorphism in the theo-rem to be a ring-homomorphism, this will 
on
lude the proof.Let �k 2 Gal(kjk) be the Frobenius automorphism. By base-
hange, thisindu
es an automorphism �k of the k-s
heme Wk.The endomorphism �k : W �! W is uniquely determined by the fa
tthat it operates on k-valued points P ofWk as the inverse of the \arithmeti
Frobenius operation": (�k 
k idk) Æ P = ��1k (P ).



On the Stru
ture of Weil Restri
tions of Abelian Varieties 9Let P = (Pi)n�1i=0 be a k-valued point of Wk ' Qn�1i=0 ��iKjk(A0)K . Then��1k (P ) = (��1k (Pi�1))n�1i=0 (where P�1 := Pn�1); see Subse
tion 1.2. Thus(�k 
k idk) Æ P = ��1k (P ) = (��1k (Pi�1))n�1i=0 = ((�k 
k idk) Æ Pi�1)n�1i=0 .It follows that under the isomorphism WK ' Qn�1i=0 ��iKjk(A0), the endo-morphism �k 
k idK of WK is given by the \matrix"0BBBB� 0 � � � � � � �k�k 0 � � � 00 . . . . . . ...0 . . . �k 0 1CCCCA :For � 2 EndÆ(A0), ResKk (�)
k idK is given by the diagonal \matrix"0BBBB� � ��1Kjk(�) .. . ��(n�1)Kjk (�) 1CCCCA ;see Subse
tion 1.3. Let x denote the image of X in Q[�K℄[X ℄=(Xn � �K).Let �1x+�2x2+� � �+�nxn 2 HomÆ(A0; A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) where�i 2 EndÆ(A0). Su
h an element is mapped under the homomorphism of thetheorem to an endomorphism of W whi
h is represented by the \matrix"0BBBBBB� �n �nk �n�1 �n�1k � � � �2 �2k �1 �k��1Kjk(�1)�k ��1Kjk(�n)�nk ��1Kjk(�3)�3k ��1Kjk(�2)�2k... . . . ...�2�nKjk (�n�2)�n�2k �2�nKjk (�n�3)�n�3k �2�nKjk (�n)�nk �2�nKjk (�n�1)�n�1k�1�nKjk (�n�1)�n�1k �1�nKjk (�n�2)�n�2k � � � �1�nKjk (�1)�k �1�nKjk (�n)�nk 1CCCCCCA :The elements of HomÆ(A0; A0)
Q[�K℄Q[�K℄[X ℄=(Xn��K) have a uniquerepresentation as �1x + �2x2 + � � �+ �nxn with �i 2 EndÆ(A0). Under (7),this element 
orresponds to the �rst row in the above matrix, i.e. to the rowve
tor ( �n�nk �n�1�n�1 � � � �1�k ):Now, every element ofLn�1i=0 HomÆ(��iKjk(A0); A0) has this form with unique�i. Thus (7) is an isomorphism. 2Remark 4 Sin
e the Frobenius endomorphism has degree a power of p =
har(k), we obtain in fa
t an isomorphism(End(A0)
Z[�K℄Z[�K℄[X ℄=(Xn� �K))
Z[1=p℄�! End(W )
Z[1=p℄:



10 Claus Diem, Niko NaumannCorollary 5 EndÆ(W ) is 
ommutative if and only if EndÆ(A0) is 
ommuta-tive.The isomorphism of Theorem 1 implies that the 
orresponding 
enters areisomorphi
. Re
alling from [10℄ that Z(EndÆ(A0)) = Q[�K℄, we thus get:Corollary 6 We have an isomorphism Q[�K℄[X ℄=(Xn��K) ' Z(EndÆ(W )).2.2 Simpli
ity of the Weil restri
tionWe are interested in the question whether the Weil restri
tion W is simple.In order that W be simple, it is obviously ne
essary that A0 is simple.Furthermore, it is ne
essary thatA0 is not isogenous to any abelian K-varietywhi
h 
an be de�ned over any proper intermediate �eld � of Kjk (i.e. any�eld � with k � � ( K). (This holds for arbitrary �nite separable �eldextensions Kjk.)For assume that this is the 
ase. Sin
e the s
alar restri
tion of an isogenyis an isogeny, we 
an assume that A0 itself 
an be de�ned over su
h a �;A0 = A� for some � as above and an abelian �-variety A. By the de�ningfun
torial property of W = ResKk (A0), we have a 
anoni
al homomorphismRes�k(A) �! W whi
h is easily seen to be an immersion. Sin
e the dimen-sion of the immersed abelian variety is stri
tly smaller, W is not simple.We thus make the following assumption:A0 is a simple abelian K-variety whi
h is not isogenous to any abelianK-variety whi
h 
an be de�ned over some proper intermediate �eld � of Kjk.Lemma 7 Under our assumption on A0, there does not exist a divisor q ofn (q 6= 1) su
h that �K 2 Q[�K℄q.Proof Assume that su
h a q exists and let � 2 Q[�K℄ be su
h that �q = �K .(In parti
ular Q[�K℄ = Q[�℄.)Let � be the sub�eld of Kjk of index q, let V be the Weil restri
tionof A0 with respe
t to Kj�. Denoting by � 
hara
teristi
 polynomials ofFrobenius-a
tions on Tate-modules we have �V (T ) = �A0(T q), and � is aroot of �V . This follows from the well-known fa
t that the operation ofthe absolute Galois group of � on V (K) is indu
ed by the operation of theabsolute Galois group of K on A0(K); see [5, x1,a)℄.It is easy to see that V 
ontains a simple abelian �-variety A su
h thatthe 
hara
teristi
 polynomial of the Frobenius of A has � as a root.The stru
ture of the endomorphism algebra EndÆ(A) 
an be 
al
ulatedfrom Q[�℄ as abstra
t �eld with generator �; see Subse
tion 2.3. Inserting� and �K into formula (8), one sees that the 
entral-simple Q[�K℄-algebras



On the Stru
ture of Weil Restri
tions of Abelian Varieties 11EndÆ(A) and EndÆ(A0) have the same lo
al invariants, thus they are isomor-phi
. Sin
e by formula (9), the dimension of abelian varieties 
an be 
al
u-lated from their endomorphism algebras, it follows that dim(A) = dim(A0).The immersion A �! V = ResK� (A0) indu
es by the de�ning fun
torialproperty of the Weil restri
tion a non-trivial homomorphism AK �! A0.Sin
e the dimensions agree and A0 is simple, this is an isogeny. A 
ontra-di
tion. 2We now make use of the following well-known fa
t from �eld theory; see[4, VI, x9, espe
ially Theorem 9.1℄:Lemma 8 Let F be a �eld, � 2 F; � 6= 0 and n 2 N. Assume that � =2 F qfor all prime divisors q of n. Then either Xn � � is irredu
ible over F or4jn and � 2 �4F 4.Together with Corollary 6, this implies:Proposition 9 Under our assumption on A0,� either ResKk (A0) has exa
tly one isotypi
 
omponent, i.e. all simpleabelian subvarieties are isogenous� or 4jn and �K 2 �4Q[�K℄4.Proof By the previous two lemmata, under our assumption on A0, eitherXn � �K is irredu
ible over Q[�K℄ or 4jn and �K 2 �4Q[�K℄4. Corollary 6implies: Xn��K is irredu
ible over Q[�K℄ if and only if Z(EndÆ(ResKk (A0)))is a �eld. This in turn is equivalent to the fa
t that ResKk (A0) has exa
tlyone isotypi
 
omponent. 2Remark 10 By Honda's Theorem (see Proposition 12), it is obviously pos-sible that additionally to our general assumption on A0 the se
ond 
onditionis satis�ed. It is interesting to note that there even exist ordinary ellip-ti
 
urves E 0 over �elds of the form Fp4 (p prime) whi
h are non-isogenousto any ellipti
 Fp4 -
urve whi
h 
an be de�ned over Fp2 and whi
h satisfy�K 2 �4Q[�K℄4. Then ResFp4Fp (E 0) has more than one isotypi
 
omponent.Sin
e on the other hand it 
annot 
ontain an ellipti
 
urve by our �rst as-sumption on E 0, ResFp4Fp (E 0) has exa
tly two isotypi
 
omponents both ofwhi
h are simple.For example, let p be a prime su
h that ��2p � = 1, let K := Fp4 ; k := Fp .By assumption, p splits in the �eld Q[p�2℄; see [8, Satz 8.5.℄. Sin
e this�eld has 
lass number 1, there is a prime element � 2 OQ[p�2℄ su
h that(�)(�) = (p). (Where � denotes 
onjugation.) Sin
e the norm of an elementis always positive, this implies �� = p. If i 2 N, then �i 6= �i, thus �i =2 Q.



12 Claus Diem, Niko NaumannLet � := ��4. Then �i =2 Q for all i 2 N. In parti
ular, Q[�℄ = Q[p�2℄.Let E 0 be a simple abelian K-variety whi
h 
orresponds to (Q[�℄; �) byHonda's Theorem (see Proposition 12). By formula (8), all lo
al invariantsof EndÆ(E 0) are 
ongruent to 0, thus EndÆ(E 0) ' Q[�℄, and E0 is an ellipti
K-
urve. Sin
e �i =2 Q for all i 2 N, E 0 is ordinary.The algebrai
 integer � = ��4 = �4( �p�2)4 lies in �4Q[�℄4. It remainsto 
he
k thatE0 is not isogenous to any ellipti
 K-
urve whi
h 
an be de�nedover Fp2 .Assume this was the 
ase. Then there is a � 2 EndÆ(E 0) = Q[�℄ =Q[p�2℄ with �2 = � = ��4. This implies i = p�1 = ��2 2 Q[p�2℄, a
ontradi
tion.Our aim is now to give 
onditions under whi
h the Weil restri
tion of A0 iseven simple.Theorem 2 Let Kjk be an extension of �nite �elds of degree n and A0 asimple abelian K-variety. Assume that A0 is not isogenous to any abelian K-variety whi
h 
an be de�ned over a proper intermediate �eld of Kjk. Assumein addition that one of the following holds:� End(A0) is 
ommutative and further, if 4jn, then �K =2 �4Q[�K℄4.� The extension degree n is prime.Then ResKk (A0) is simple.Proof Assume as in the theorem that A0 is not isogenous to any abelianvariety whi
h 
an be de�ned over a proper intermediate �eld of Kjk.We �rst treat the 
ase that End(A0) is 
ommutative and further, if 4jn,then �K =2 �4Q[�K℄4. Under these 
onditions, EndÆ(ResKk (A0)) is also 
om-mutative (see Corollary 5), and by the above Proposition, ResKk (A0) hasexa
tly one isotypi
 
omponent. This implies that ResKk (A0) is simple.We now 
ome to the 
ase that the extension degree n is a prime. LetB � ResKk (A0) be a simple abelian subvariety. Applying base-
hange, weget BK � Qn�1i=0 ��iKjk(A0). This implies dim(A0) j dim(B). Additionally,the dimensions 
annot be equal sin
e otherwise by the de�ning fun
torialproperty of the Weil restri
tion, we would have an isogeny BK �! A0 whi
his impossible by assumption. On the other hand, sin
e by Proposition 9ResKk (A0) has exa
tly one isotypi
 
omponent, dim(B) j dim(ResKk (A0)) =n dim(A0). Sin
e n is a prime, this implies dim(B) = dim(ResKk (A0)) thusB = ResKk (A0). 2Remark 11 Let K := Fp4 ; k := Fp where p is a prime with p � 1 (mod 4).We will now give an ellipti
 K-
urve E 0 with non-
ommutative endomor-phism ring su
h that ResKk (E 0) is non-simple even thoughE 0 is not isogenous



On the Stru
ture of Weil Restri
tions of Abelian Varieties 13to any abelian Fp4 -variety whi
h 
an be de�ned over Fp2 and the 
ondition�K =2 �4Q[�K℄4 is satis�ed.Let E0 be a simple abelian K-variety whi
h 
orresponds to the integer�p2 by Honda's Theorem; see Proposition 12. By formula (8), the lo
alinvariants of EndÆ(E 0) at p and 1 are 
ongruent to 12 , thus E 0 is a super-singular ellipti
 
urve su
h that all endomorphisms of E 0Fp 
an be de�nedover Fp4 .Assume there is an ellipti
 � := Fp2 -
urve E su
h that EK � E 0. Let�� be its Frobenius endomorphism. Then we have Q[��℄ ' Q[i℄ (i := p�1),and under this isomorphism, �� 
orresponds to ip. Now by assumption,p splits in Q[i℄, and from formula (8), it follows that the lo
al invariantsof EndÆ(E) over p are 
ongruent to 12 , thus by (9), E is 2-dimensional, a
ontradi
tion.Let W be the Weil restri
tion of E 0 with respe
t to Kjk. Then by Corol-lary 6, the 
enter of EndÆ(W ) is isomorphi
 to Q[X ℄=(X4+ p2) = Q[ 4p�p2℄,and under this isomorphism �k 
orresponds to 4p�p2. In this �eld, p isrami�ed of degree 2 and splits into 2 prime ideals (be
ause it already splitsin the sub�eld Q[i℄). Again by formula (8), the endomorphism algebras ofthe simple 
omponents of W are �elds, thus isomorphi
 to Q[ 4p�p2℄. Itfollows with (9) that the simple 
omponents of W are 2-dimensional, thusW is not simple.2.3 Appendix to Se
tion 2: Some results by Honda and TateFor the 
onvenien
e of the reader, we re
all Honda's Theorem on the 
lassi-�
ation of simple abelian varieties over �nite �elds and Tate's results how to
ompute the stru
ture of the endomorphism ring of an abelian variety overa �nite �eld; 
.f. [3, 10, 11℄.Fix a �nite �eld k = Fq , where q = pa with p a prime and a 2 N. Then,if A is a simple abelian k-variety and �k is its Frobenius endomorphism, forevery in
lusion ' of Q[�k℄ into Q, we have j'(�k)j = q 12 .Now Honda's Theorem states:Proposition 12 (Honda) The assignment A 7! (Q[�k℄; �k) indu
es a bi-je
tion between the set of isogeny 
lasses of simple abelian k-varieties andthe set of isomorphism 
lasses of �elds Q[�℄ with �xed generator � su
h that� is an algebrai
 integer and under all in
lusions into Q, � has absolutevalue q 12 .By Honda's Theorem, for every simple abelian k-variety A, the stru
tureof the endomorphism algebra EndÆ(A) only depends onQ[�k℄ as abstra
t �eldwith generator �k. Sin
e End0(A) is 
entral-simple over Q[�k℄, to determine



14 Claus Diem, Niko Naumannits stru
ture, we only have to give its lo
al invariants at all �nite and realvaluations.The formula for this is as follows: Let v be a normalized valuation ofQ[�k℄. Then, if v is �nite, the lo
al invariant of EndÆ(A) at v is given byinvv � v(�k)a fv (mod 1); (8)where fv denotes the absolute residue degree of Q[�k℄ at v. In parti
ular, ifv is a �nite valuation whi
h does not lie over the valuation of p, the lo
alinvariant is 
ongruent to 0.If v is real, then the lo
al invariant is 
ongruent to 12 .Letm be the least 
ommon denominator of the lo
al invariants. Then theorder of EndÆ(A) in the Brauer group of Q[�k℄ is m, m2 = [EndÆ(A) : Q[�k℄℄,and the dimension of A in given bydim(A) = 12 m [Q[�k℄ : Q℄: (9)3 Results for abelian varieties whi
h 
an be de-�ned over the base-�eldThroughout this se
tion, let Kjk be a �nite Galois extension of degree nwith Galois group G, and let A be an abelian k-variety of dimension d. LetW be the Weil restri
tion of AK with respe
t to Kjk.We want to determine the stru
ture of the endomorphism ring of W ,and the isogeny de
omposition of W over k.3.1 Arithmeti
 be
omes geometri
 operationFor any k-s
heme Z, G operates on AK(ZK) by �(P ) = �P��1. Theseoperations de�ne an automorphism of the fun
tor Z 7! AK(ZK) from the
ategory of k-s
hemes to the 
ategory of abelian groups. We obtain au-tomorphisms of the representing obje
t W = ResKk (AK) whi
h we denoteby a� for � 2 Gopp. We thus have a group-homomorphism a : Gopp �!Aut(W ); � �! a� , where Aut(W ) denotes the group of automorphisms ofthe abelian k-variety W .We want to 
al
ulate how a� 
k idK operates on WK ' AGoppK .We have �(u) = �(pid) = p��1 : WK �! AK by (2). The homomor-phism a� of the abelian k-variety W is the W -valued point of W whi
h 
or-responds to �(u). So by Subse
tion 1.2, a� 
k idK = (��1(�(u)))�2Gopp =(��1(p��1))�2Gopp = (p��1�)�2Gopp . (The last equation follows from (2).)We have established:



On the Stru
ture of Weil Restri
tions of Abelian Varieties 15Lemma 13 a� 
k idK : AGoppK �! AGoppK operates on Z-valued points (anyZ) by (P�)�2Gopp 7! (P��1�)�2Gopp.3.2 The endomorphism ring as skew group ringLemma 14 Let � 2 Gopp; � 2 End(AK). Then a�ÆResKk (�) = ResKk (�(�))Æa� 2 End(W ).Proof Easy 
al
ulation on Z-valued points. 2To formulate the result about the stru
ture of the endomorphism ring ofW , we need a generalization of the 
on
ept of a group ring �rst.De�nition Let � be a ring, G a group, t : G �! Aut(�) a group-homo-morphism. The appli
ation of t(�) to some � 2 � will by denoted by�(�). Following [9℄, we de�ne the skew group ring �t[G℄ to be the followingring:1 The underlying abelian group is �G with the usual \
omponentwise"addition. As usual, for � 2 G, let � also denote (Æ�;� )�2G 2 �G.The multi-pli
ation is de�ned by P�2G �� � �P�2G �� � =P�;�2G �� �(��) ��.The ring � is naturally immersed in �t[G℄. For �xed �; G and t : G �!Aut(�), the ring �t[G℄ has the following universal property:Lemma 15 Let B be a ring, f : � �! B be a ring-homomorphism, andlet g : G �! B� be a group-homomorphism. Assume that for � 2 �; � 2G, g(�) f(�) = f(�(�)) g(�). Then there is a unique ring-homomorphism�t[G℄ �! B with � 7! f(�) and � 7! g(�).Now let G be the Galois group as above, t : Gopp �! Aut(End(AK))the natural operation given by � 7! (� 7! �(�) = ����1). From Lemmata14 and 15 it follows that P�2Gopp �� � 7! P�2Gopp ResKk (��) a� de�nes aring-homomorphism End(AK)t[Gopp℄ �! End(W ): (10)Theorem 3 Let Kjk be a �nite Galois extension with Galois group G, Aan abelian k-variety, W the Weil restri
tion of AK with respe
t to Kjk,t : Gopp �! Aut(End(AK)) the natural operation. ThenEnd(AK)t[Gopp℄ �! End(W ); X�2Gopp �� � 7! X�2Gopp ResKk (��) a�is an isomorphism.1This ring is a spe
ial 
ase of a 
rossed produ
t (with respe
t to some operation); 
f.[9℄. In [2℄, the same ring is 
alled twisted group ring. However, in [9℄, this word is reservedfor the spe
ial 
ase of a 
rossed produ
t with respe
t to a trivial group operation.



16 Claus Diem, Niko NaumannProof Analogously to the proof of Theorem 1, we make use of the isomor-phism Hom(W;W ) ' Hom(A GoppK ; AK) ' L�2Gopp Hom(AK; AK) of theright-hand side.By (2), the image of some � 2 Gopp in Hom(A GoppK ; AK) is p��1 , 
orre-sponding to the row ve
tor whi
h is zero ex
ept at the \�-th" entry whereit is 1.Thus the image ofP�2Gopp ��� (where �� 2 End(AK)) isP�2Gopp ���1 p�,
orresponding to the row ve
tor (���1)�2Gopp .It is thus immediate that we have an isomorphism. 2Corollary 16 The isomorphism in the theorem indu
es an isomorphismEndÆ(AK)t[Gopp℄ �! EndÆ(W ).By the Complete Redu
ibility Theorem (see [6, Proposition 12.1℄) weknow that the ring EndÆ(W ) is semi-simple. Thus the skew group ringEndÆ(AK)t[Gopp℄ is semi-simple.It 
an be proven more generally that every 
rossed produ
t over a semi-simple ring with a �nite group in whi
h the group order is invertible issemi-simple; see [9, Theorem 4.1.℄.We now want to study the ring-homomorphismEnd(AK)t[Gopp℄ ��! End(W ) ,!End(WK) ' End(A GoppK ) ' MGopp(End(AK)): (11)We denote the matrix 
orresponding to a� by A� and the matrix 
orrespond-ing to ResKk (�) by J(�) (for a� as above and � 2 End(AK)).We have already shown in Subse
tion 1.3 that J(�) is the diagonal matrix(��1(�)Æ�;�)�;�2Gopp .Let us determine to whi
h matrix A� 2 MGopp(End(AK)) the endomor-phism a� 
orresponds. First of all, p� : WK ' A GoppK �! AK 
orrespondsto the row ve
tor (Æ�;�)�2Gopp . As a� = (p��1�)�2Gopp (see Lemma 13), weget A� = (Æ��1�;�)�;�2Gopp = (Æ�;��)�;�2Gopp : (12)Before 
ontinuing let us re
all the de�nition of the left regular (matrix)representation.The left regular (matrix) representationLet � be a ring. If � �! � is a homomorphism of rings, we 
an regard� as �-right module, and if we do so, we write Endr�(�) for the ring ofendomorphisms.



On the Stru
ture of Weil Restri
tions of Abelian Varieties 17Now let � �! � be a homomorphism of rings and assume additionallythat � is free as �-right module on a �nite set of generators �, i.e. � ' ��as �-right modules. Multipli
ation by elements of � from the left indu
es aring-homomorphism l : � �! Endr�(�) ' Endr�(��); (13)the left regular representation.For a �xed basis �, the right-hand side of (13) is 
anoni
ally isomorphi
to the matrix ring M�(�). The isomorphism is given as follows:Endr�(��) �!M�(�); a 7! (��;�)�;�2� with ��;� 2 �and a(�) =P�2� � ��;� : (14)By 
omposition of (13) with (14), we get the left regular matrix representa-tion (with respe
t to the basis �).L : � �!M�(�):We now apply these 
on
epts in the 
ontext of the skew group ring.Let G be a �nite group, t : G �! Aut(�) be a homomorphism, �t[G℄ the
orresponding skew group ring.We 
al
ulate expli
itly the left regular representation l : �t[G℄ �!Endr�(�t[G℄) and the left regular matrix representation L : �t[G℄ �! MG(�)with respe
t to the basis G.Let � 2 G. Then l(�) : � 7! �� =P�2G �Æ�;�� and thusL(�) = (Æ�;��)�;�2G:Let � 2 �. Then l(�) : � 7! � � = � ��1(�) and thusL(�) = (��1(�) Æ�;�)�;�2G:We are now going to relate these de�nitions and 
al
ulations with our sit-uation. So let � := End(AK), G the Galois group and t : Gopp �! End(AK)the natural operation. Let L be the left regular matrix representation of �with respe
t to the basis Gopp. Then L(�) = A� and L(�) = J(�). Thus:Proposition 17 Homomorphism (11) is the left regular matrix representa-tion of the skew group ring End(AK)t[Gopp℄ with respe
t to the basis Gopp.



18 Claus Diem, Niko Naumann3.3 The Rosati involutionLet ' : AK �! bAK be a polarization. Then ResKk (') : W �! 
W is also apolarization; see Subse
tion 1.5.We want to 
al
ulate how the Rosati involution of W with respe
t toResKk (') is given under the isomorphism of Corollary 16.Let us denote the Rosati involution by (: : :)0.First of all, the (de�ning) equation �0 = '�1b�' where � 2 EndÆ(AK)implies ResKk (�0) = ResKk (')�1 ÆResKk (b�) ÆResKk (') = ResKk (�)0:(This holds more generally for any abelian K-variety A0 instead of AK .)We use the in
lusion of EndÆ(W ) into the matrix ring MGopp(EndÆ(A))and the fa
t that ResKk (')
k idK is a produ
t polarization to 
al
ulate theRosati involution of a� with the help of Lemma 3.Sin
e a� 
orresponds to the matrix A� = (Æ�;��)�;�2Gopp (see (12)), a0�
orresponds to the matrix (Æ�;��)�;�2Gopp = (Æ��1�;�)�;�2Gopp =(Æ�;��1�)�;�2Gopp = A��1 . Thus a0� = a��1 :Sin
e the Rosati involution is an anti-ring-endomorphism, this implies:Proposition 18 Let Kjk be a �nite Galois �eld extension with Galois groupG, A an abelian k-variety, W the Weil restri
tion of AK with respe
t toKjk. Let ' : A �! bA be a polarization. Let � 7! �0 be the Rosati involutionasso
iated to '. Then under the isomorphism of Corollary 16, the Rosatiinvolution asso
iated to the polarization ResKk (') : W �! 
W is given byP�2Gopp �� � 7!P�2Gopp ��1�0� =P�2Gopp ��1(�0�) ��1.3.4 Dimensions of 
omponentsAs in the above proposition, let A be an abelian k-variety, Kjk a galois �eldextension of degree n with galois group G,W the Weil restri
tion of AK withrespe
t to Kjk, and let t : Gopp �! End(AK) be the natural operation.Assume D � EndÆ(AK) is a skew �eld, invariant under the operation t.Let Lsi=1 �i = Dt[Gopp℄ be a de
omposition of the Dt[Gopp℄-right mod-ule Dt[Gopp℄. This de�nes a de
omposition 1 = Pi ei where the ei areorthogonal idempotents, ei 2 �i, su
h that �i = eiDt[Gopp℄. Conversely,if we are given a de
omposition 1 = Pi ei with orthogonal idempotentsei, then the �i := eiDt[Gopp℄ de�ne a dire
t sum de
omposition of theDt[Gopp℄-right module Dt[Gopp℄.



On the Stru
ture of Weil Restri
tions of Abelian Varieties 19Via the in
lusion Dt[Gopp℄ ,! EndÆ(AK)t[Gopp℄ ' EndÆ(W ), we 
an re-gard the ei to be elements of EndÆ(W ). For ea
h i, let 
i 2 N su
h that
iei 2 End(W ).Now put Wi := (
iei)(W ). The Wi are abelian subvarieties of W andLsi=1Wi � W . (Conversely, su
h an isogeny de
omposition where the Wiare abelian subvarieties of W determines a de
omposition of EndÆ(W ) asright-EndÆ(W ) module.)Proposition 19 Let D � EndÆ(AK) be a skew �eld, invariant under theoperation t on EndÆ(AK). Let Lsi=1 �i = Dt[Gopp℄ be a de
omposition ofthe Dt[Gopp℄-right module Dt[Gopp℄. This 
orresponds to a de
ompositionidAK = Pi ei. Let Wi := (
iei)(W ) be as above. Then WiK � AniK (non-
anoni
al isomorphism) whereni = dimD(�i):Proof Choose a bije
tion between Gopp and the set f1; : : : ; ng. ThenA GoppK 'AnK .Let l and L be the left regular (matrix) representations of EndÆ(AK)t[Gopp℄,lD and LD the left regular (matrix) representations ofDt[Gopp℄ (both regularmatrix representations with respe
t to the basis Gopp). Let �M : MGopp(D) �!MGopp(End(AK)) be the 
anoni
al in
lusion. Then L = �M LD.By 
onstru
tion lD(ei) is the identity on �i and zero on all �j for j 6= i.Let ni be the dimension of the D-module �i. For ea
h i, 
hoose a basis(b(j)i )j=1;:::;ni of the D-module �i. Then all n elements b(j)i de�ne a basis ofthe D-module Dt[Gopp℄. With respe
t to this basis, the matrix asso
iatedto lD(ei) is zero outside a blo
k of size ni where it is the identity matrix.We now have two matrix representations of lD(ei) with respe
t to dif-ferent bases, and via a base 
hange matrix, we 
an transform one into theother: There exists an invertible matrix B 2 Gln(D) su
h that BLD(ei)B�1is zero outside a blo
k of size ni where it is the identity matrix.Let b 2 EndÆ(AGoppK ) ' EndÆ(AnK) 
orrespond to �M(B). By Proposition17 and our notational 
onventions, the endomorphism asso
iated to thematrix L(ei) = �MLD(ei) is ei 
k idK . By the above 
onsiderations, b(ei 
kidK)b�1 is an endomorphism whose image is isomorphi
 to AniK . It followsthat the image of 
i ei 
k idK is also isomorphi
 to AniK . 2Remark 20 Let AK be simple, D = EndÆ(AK). Assume that all ei inthe above proposition are 
entral. Then all �i as above are rings andwe have an isomorphism Qsi=1�i ' Dt[Gopp℄ ' EndÆ(W ) of rings. Fur-thermore, the (
iei)(W ) are generated by isotypi
 
omponents of W and�i ' EndÆ((
iei)(W )). So in parti
ular, the number ni in the above propo-sition satis�es ni = dimD(EndÆ(Wi)).



20 Claus Diem, Niko Naumann3.5 The 
y
li
 
aseWe now apply the above results to the 
ase that G is 
y
li
 of order n.We identify G with Gopp and �x some generator � 2 G. Let a = a� 2End(W ) be the automorphism 
orresponding to �.Denote the residue 
lass of X in Q[X ℄=(Xn� 1) by x. Then we have anin
lusion Q[X ℄=(Xn� 1) �! EndÆ(AK)t[G℄; x 7! �:The polynomial Xn � 1 2Z[X ℄ splits over ZasXn � 1 =Ydjn �d;where �d is the d-th 
y
lotomi
 polynomial.Let �0d := (Xn � 1)=�d. By the Eu
lidian algorithm, there exist 	d 2Q[X ℄ withPdjn	d�0d = 1. Let Ed := 	d �0d. Then the Ed(x) 2 Q[X ℄=(Xn�1) are pair-wise orthogonal idempotents. The 
orresponding de
ompositionis Q[X ℄=(Xn� 1) 'Ydjn Q[X ℄=�d =Ydjn Q(�d):(This is nothing but the Chinese Remainder Theorem in this parti
ular
ase.)Let Wd := 
dEd(a)(W ) for suitable 
d 2 N. We then have an isogenyde
omposition W �Ydjn Wd;and by Proposition 19, the Wd are abelian varieties with WdK � A'(d)K .We also haveWd = �0d(a)(W ). { We only have to show that 
d�0d(a)(W ) �Wd. This follows from �0d(x) = (Pf jn	f (x)�0f(x))�0d(x) = 	d(x)�0d2(x) =Ed(x)�0d(x).It is 
lear that Wd is also the redu
ed identity 
omponent of the kernelof 
d(id� Ed(a)) = 
dPf jn;f 6=d	f (a)�0f(a) =(
dPf jn; f 6=d	f (a)Qgjn; g 6=d;f �g(a)) �d(a):It is also the redu
ed identity 
omponent of the kernel of �d(a). { We onlyhave to show thatWd is 
ontained in this kernel. But sin
e Wd = �0d(a)(W )and �0d(x)�d(x) = 0, this is obvious.We now want to study whether the Wd are simple or split further. Wemake the following assumptions.



On the Stru
ture of Weil Restri
tions of Abelian Varieties 21AK is a simple abelian K-variety whose endomorphisms 
an be de�nedover k and whose endomorphism ring is 
ommutative.Note that if k is �nite, all endomorphisms of AK 
an automati
ally bede�ned over k if we assume End(AK) to be 
ommutative.Also if A is an ordinary ellipti
 
urve over an arbitrary �eld k and n isodd, then all endomorphisms of AK 
an be de�ned over k. This is be
auseunder this 
ondition, End(AK) is either Zor a quadrati
 order, thus theonly possible non-trivial automorphism of End(AK) has order 2, and 
on-sequently the image of the representation Gal(Kjk) �! Aut(End(AK)) istrivial.Under the assumptions, we have the isomorphismsEndÆ(A)[X ℄=(Xn� 1) ' EndÆ(AK)[G℄ ' EndÆ(W )x 7! � 7! a :Let �d split into the produ
t of the non-trivial moni
 irredu
ible polynomials�(1)d ;�(2)d ; : : : ;�(rd)d over EndÆ(A). Let �0d(i) := (Xn � 1)=�(i)d . Sin
e Xn � 1is separable in 
hara
teristi
 zero, the �(i)d are pair-wise 
oprime for varyingd and i, and there exist 	(i)d with PdjnPrd1=i	(i)d �0d(i) = 1. Let E(i)d :=	(i)d �0d(i).Let W (i)d := 
(i)d E(i)d (a)(W ) for suitable 
(i)d 2 N. Then again by Proposi-tion 19, W (i)d is an abelian k-variety with (W (i)d )K � Adeg(�(i)d )K . The abeliank-variety W (i)d is simple and its endomorphism algebra is isomorphi
 to the�eld EndÆ(A)[X ℄=�(i)d . The W (i)d are pair-wise non-isogenous (sin
e EndÆ(W )is 
ommutative), thus they are the isotypi
 
omponents of W .As above, one sees thatW (i)d = �0(i)d (a)(W ) and thatW (i)d is the redu
edidentity 
omponent of the kernel of �(i)d (a).The 
omponentWd is simple if and only if �d is irredu
ible over EndÆ(A),i.e. if and only if EndÆ(A)
QQ(�d) is a �eld. If we �x an in
lusion of EndÆ(A)into Q, this is the 
ase if and only if EndÆ(A) \Q(�d) = Q.In parti
ular, none of the Wd splits further if EndÆ(A) = Q as is the 
aseif A is an ellipti
 
urve without 
omplex multipli
ation (over k).We proved:Theorem 4 Let Kjk be a 
y
li
 �eld extension of degree n. Let A be anabelian k-variety.Let W be the Weil restri
tion of AK with respe
t to Kjk. For all djn,W 
ontains 
anoni
ally an abelian subvariety Wd with WdK � A'(d)K (non-
anoni
ally), and W is isogenous to the produ
t of the Wd. Here, W1 = Aitself.



22 Claus Diem, Niko NaumannAssume in addition that AK is simple, EndÆ(AK) is 
ommutative and allendomorphisms of AK 
an be de�ned over k. Then the isotypi
 
omponentsof W are all simple, and its endomorphism rings are all 
ommutative. Fixan in
lusion of EndÆ(AK) into Q. Then for ea
h d, Wd is simple if and onlyif EndÆ(A) \Q(�d) = Q.Let E be an ordinary ellipti
 k-
urve with 
omplex multipli
ation (overk). Fix an in
lusion of EndÆ(E) into Q. As EndÆ(E) is a quadrati
 extensionof Q, EndÆ(E)\Q(�d) ) Q if and only if EndÆ(E) � Q(�d). If this is the 
asethen �d splits into two polynomials of degree 12'(d) over EndÆ(E).Corollary 21 Under the assumptions of the theorem, let E be an ordinaryellipti
 k-
urve with End(E) = End(EK) (this 
ondition is automati
allysatis�ed over �nite �elds or if n is odd).Then for ea
h d, Wd is not simple if and only if E has 
omplex mul-tipli
ation over k and EndÆ(E) � Q(�d). If this is the 
ase, Wd 
ontainstwo simple non-isogenous abelian subvarieties of dimension '(d)2 , and Wd isisogenous to the produ
t of these abelian subvarieties.In partular, if n is prime and n � 1 mod 4 or n � 3 mod 4 and p�n =2EndÆ(E), we have an isogeny de
omposition W � E�N where N is simple.A
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