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Abstract

We consider the discrete logarithm problem (DLP) in degree 0 class
groups of non-hyperelliptic curves of genus 3 over finite fields Fq. Using
a recent index calculus algorithm with double large prime variation by
the author, heuristically, one can solve this problem in a time of Õ(q).

In this work, we study this problem from a full cost perspective.
We argue that heuristically, using a 3-dimensional mesh, an instance
of the problem can be solved with a full cost of Õ(q17/12) (whereas the
ρ-method has a full cost of Õ(q3/2), and a full cost of Ω(q3/2) if the
group order is nearly prime). In fact, we argue that for n −→ ∞, one
can even solve n1/6 instances of this DLP with q ≤ n with a full cost
of Õ(n17/12). Moreover, we argue that one can solve n1/4 instances of
this DLP with q ≤ n with a full cost of Õ(n3/2).

1 Introduction and results

Additionally to the discrete logarithm problem (DLP) in elliptic curves and
degree 0 class groups (a.k.a. Picard groups, Jacobian groups) of hyperelliptic
curves, it has recently been proposed by various authors to use the DLP in
degree 0 class groups of non-hyperelliptic genus 3 curves over finite fields as
a primitive for public-key cryptographic protocols (see e.g. [2], [3], [4], [9],
[11], [12]).

In [7], an index calculus algorithm with double large prime variation
which is well-suited for the solution of the DLP in class groups of curves over
finite fields represented by plane models of small degree has been introduced.
Using that any non-hyperelliptic genus 3 curve is isomorphic to a plane
quartic, the heuristic analysis of the algorithm given in [7] gives rise to:

Asymptotically for q −→ ∞, the DLP in degree 0 class groups of non-
hyperelliptic genus 3 curves over Fq (given by a homogeneous equation of
degree 4) can be solved in a time of Õ(q).
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Here, the Õ-notation captures logarithmic factors. The result is based
on the computational model of a random access machine (RAM).

The full cost perspective

Given this result, one might conclude that non-hyperelliptic genus 3 curves
do not provide a larger security level than genus 2 curves over the same
finite field (but in the former case the key-length is 1.5 times larger). This
conclusion would however be to hasty. Indeed, as argued by by Amirazizi
and Hellman ([1]), Bernstein ([5]), Wiener ([13]) and other cryptographers, a
better cost estimate than the mere running time of a cryptanalytic algorithm
(on a RAM) might be its full cost.

As the algorithm presented in [7] has a storage requirement of Θ(q)
field elements, a direct (unparallelized) application of the algorithm in [7]
is comparable to an (unparallelized) application of Baby-Step-Giant-Step to
genus 2 curves over the same field but not to the preferable ρ-method.

In this work, we first present a variant of the algorithm in [7] which also
has a running time of Õ(q) but has reduced storage requirements of Θ(q3/4)
field elements. Then we adapt this algorithm to operate on a 3-dimensional
mesh and analyze the resulting algorithm from a full cost perspective.

We are thereby concerned with the asymptotic full cost and not the
actual cost required to build and run a device to solve a particular instance
of the DLP.

We note that to our knowledge, no formal (mathematical) definition of
“full cost” has yet been given. We choose a mesh-based architecture as
a basis for the device because this architecture has an extremely simple
structure, and it seems to be relatively easy to give a formal definition of
“full cost” using this architecture.

The reader should keep the following semi-formal, intuitive, definition in
mind:

Up to factors polynomial in the input length, the full cost of a randomized
algorithm running on a mesh, whose nodes each have a storage polynomial
in the input length, is the number of nodes of the mesh multiplied with the
expected running time.

In the following, we always work with meshes whose nodes each have a
storage polynomial in the input length.

The main results

The main results of this work are as follows:

Heuristic Result 1

• One can perform the relation generation part of the algorithm on a
3-dimensional mesh with O(q3/4) nodes and an expected running time



of Õ(q1/2), leading to a full cost of Õ(q5/4).

• One can perform the linear algebra part of the algorithm on a 3-
dimensional mesh with Õ(q1/2) nodes and an expected running time
of Õ(q2/3), leading to a full cost of Õ(q7/6).

By multiplying the (dominating) storage requirement for the first part with
the (dominating) running time of the second part, we obtain:

Heuristic Result 2 Using a 3-dimensional mesh, one can solve the DLP
in degree 0 class groups of non-hyperelliptic curves of genus 3 over Fq with
a full cost of Õ(q17/12).

In comparison, the ρ-method has a full cost of Õ(q3/2), and it has a full
cost of Ω(q3/2) if the group order is nearly prime. Note that this means that
we have obtained a reduction of the full cost comparable to an asymptotic
reduction of the key-length by 1/18th.

An economic interpretation

It follows an economic interpretation of Heuristic Result 1.

Let us assume that meshes of sufficient size have already been built
and are owned by a particular institution. Now the question arises what
the variable costs for the solution of one particular instance of the DLP
are. Under the assumption that the variable costs are proportional to the
number of nodes times the running time, we can conclude that the variable
costs are Õ(q5/4 + q7/6) = Õ(q5/4), whereas the ρ-method leads to variable
costs of Ω(q3/2) if the group order is nearly prime.

The assumption that the variable costs are proportional to the number
of nodes times the running time can be justified as follows: The main cost
block for the variable costs is arguably the energy consumption. It is realistic
to assume that (for fixed clock rate) the energy consumption is proportional
to the number of nodes times the running time. (The administration costs
are usually part of the fixed costs but the argument still holds if part of the
administration costs are variable and grow proportionally to the size of the
mesh times the operating time.)

Further results and another interpretation

If one performs the two parts of the algorithm on the same mesh, during
the linear algebra part, only a tiny fraction of the mesh is actually used.
Because of this it is possible to perform calculations of several instances of
the DLP in (possibly) different groups in essentially the same full cost as
one instance. This is the content of the first item of the following result.
The second item can serve as a comparison with the ρ-method.



Heuristic Result 3

• For n −→ ∞, one can perform ⌈n1/6⌉ instances of the DLP in degree
0 class groups of non-hyperelliptic genus 3 curves over Fq with q ≤ n
with a 3-dimensional mesh with Õ(n3/4) nodes and an expected running
time of Õ(q2/3), leading to a full cost of Õ(n17/12).

• For n −→ ∞, one can perform ⌈n1/4⌉ instances of the DLP with q ≤ n
with a 3-dimensional mesh with Õ(n3/4) nodes and an expected running
time of Õ(n3/4), leading to a full cost of Õ(n3/2).

Note that in contrast, the calculation of ⌈n1/4⌉ DLPs in different groups of
size Θ(n) and prime order has a full cost of Ω(n7/4) if one uses the ρ-method.

Conclusion

The results of this work confirm the implication of the results of [7] that
the DLP in degree 0 class groups of non-hyperelliptic genus 3 curves is not
as secure as the DLP in the groups of rational points of (carefully chosen)
elliptic curves of the same group order over prime fields or over F2n (n a
prime).

The results give further indication that – in the absence of any particular
advantage of non-hyperelliptic genus 3 curves – the usage of such curves in
cryptographic applications is questionable.

Related results

We mention some related results which can be obtained by adapting the
algorithm in [10] to a mesh-based architecture.

For any fixed g ≥ 4, the DLP in degree 0 class groups of any curve of
genus g (represented by a plane model of bounded degree) over a finite field
can on heuristic grounds be solved with an asymptotically lower full cost
than possible with the ρ-method. This result even holds if one operates on
a 2-dimensional mesh.

In contrast, for hyperelliptic genus 3 curves one obtains a full cost (for
3-dimensional meshes) which is asymptotically larger than that of the ρ-
method. In fact, the full cost of the linear algebra part alone is larger than
the full cost of the ρ-method.

This work

In this extended abstract we omit various details of the analysis. In parti-
cular, we omit the proof of Proposition 9 which is quite long and technical.

The work is organized as follows: In the next section we give a variant of
the algorithm in [7] (in the special case of non-hyperelliptic genus 3 curves)
which also has a heuristic expected running time of Õ(q) but smaller storage



requirements (Θ(q3/4) instead of Θ(q) field elements). In the third section,
we discuss the operation of the algorithm on a 3-dimensional mesh, and we
derive the heuristic results stated above.

We note that just as the analysis in [7], the analyses performed in this
work are heuristic. However, the analysis of the variant of the algorithm we
present here is “loaded with substantially more heuristic assumption” than
the one in [7]. This applies in particular to the results on full cost we derive.
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2 Reduction of the storage requirements

This work should be seen as an addendum to [7], and should be read in
conjunction with [7]. We use the same notation as in [7], and we assume
that the reader is familiar with the index calculus algorithm in [7, Section
3]. We use this algorithm as a basis and point out the necessary changes in
order to reduce the storage requirements.

We start off with a non-hyperelliptic genus 3 curves C over Fq, given by
a homogeneous (non-singular) equation of degree 4 of the form

F (X,Y,Z) = 0 ,

as well as two elements a, b ∈ Cl0(C) (the degree 0 class group over Fq) with
b ∈ 〈a〉. The goal is to compute an x ∈ N with x · a = b.

Let D∞ be the intersection of the line Z = 0 with C (with multiplicities),
let F = {F1, F2, . . .} ⊆ C(Fq) be the factor base, and let L := C(Fq) − F be
the set of large primes. Recall that the main new idea of the algorithm in
[7] is to generate relations of the form

[Fi] + [Fj ] + [Di,j ] − [D∞] = 0 (1)

(with Di,j ≥ 0) by intersecting the curve with lines passing through elements
Fi, Fj of the factor base. Let us recall Definition 1 of [7] in our context.

Definition 4 A relation of the form (1) is called a Full, a FP or a PP
relation if Di,j splits over Fq and contains no, one or two large primes re-
spectively.

Recall also that in the algorithm in [7], FP and PP relations are stored in a

so-called graph of large prime relations, which is a graph on the set L
·

∪ {∗}.
Then at a later stage this graph is used to obtain recombined relations over
the factor base.



We modify the algorithm in [7] in three ways to reduce the storage re-
quirements.

1. We start off by searching for a multiple αa which is represented by
a completely split divisor by trying different integers α. Likewise we
search for a multiple βb which is represented by a completely split
divisor. After having achieved this, fix the factor base F ⊆ C(Fq),
thereby inserting the points necessary to express αa and βb. Apart
from the initial two relation we only consider relations obtained by
intersecting the curve with lines running through two points of the
factor base.

2. We do not construct the full graph but only a tree, thereby discarding
relations which would lead to other connected components than that
of ∗. We stop the construction of the tree if we have ⌈q3/4⌉ vertices.

3. We do not enumerate the elements of C(Fq).

Note that Modification 1 concerns mainly Step 5 of the algorithm in [7]
but also affects the construction of the factor base (Step 1 in the algorithm in
[7]). Modifications 2 mainly affects Step 2 of the algorithm in [7] but affects
the construction of the factor base too: Indeed, in order to cope with the
fact that the construction of the tree is less efficient than the construction of
the full graph, we have to increase the factor base by a logarithmic factor.
Modification 3 affects only the construction of the factor base.

Modification 2 means that we follow the approach of the “simplified
algorithm” in [10]. It has already been pointed out in [10] that with this
approach one can decrease the storage requirements. Modification 1 is made
in order to further decrease the storage requirements.

We do not enumerate the elements in C(Fq) in order to save the storage.
Note that the enumeration was used to generate a factor base which is
uniformly randomly distributed among all factor bases of the appropriate
size. In order to generate the factor base in a “maximally random” way,
we choose the (X,Z)-coordinates uniformly at random and then choose (if
possible) one of the corresponding points on the curve uniformly at random.

The vertices of the tree are then stored / found via a balanced search
tree.

We note again that each of these modifications means that the analysis
will be loaded with “more heuristic assumptions” than the analysis in [7].

The algorithm is now as follows.

An algorithm with reduced storage requirements

Input: A non-hyperelliptic genus 3 curve C/Fq, given by a homogeneous
equation F (X,Y,Z) = 0 of degree 4, the group order ℓ := #Cl0(C) and two
elements a, b ∈ Cl0(C) with b ∈ 〈a〉.



Let P0 ∈ C(Fq) be a point used to represent the elements in Cl0(C), that is,
the elements in Cl0(C) are represented by along P0 maximally reduced divisors.

1. Compute multiples αa (with α ∈ (Z/ℓZ)∗) of a until such a multiple αa
is represented by an (along P0 maximally reduced) completely split
divisor. Analogously compute a multiple βb of b represented by a
completely split divisor.

2. Choose a factor base F = {F1, F2, . . .} ⊆ C(Fq) with ⌈log(q) · q1/2⌉
elements as described above.

Insert the points C(Fq) used to represent αa and βb (including P0) in
the factor base.
(If C(Fq) has fewer elements, terminate.)

3. Construct a tree T whose vertices are in L
·

∪ {∗} as follows:
Iterate over the pairs (i, j) with i < j ≤ #F :

Let Fi + Fj + Di,j be the intersection divisor
of the line through Fi and Fj with C.
If Di,j splits into points of C(Fq), then

if it defines an FP relation or it defines a PP relation and
exactly one large prime lies in the tree,

then insert the edge in the tree.
Until the tree has ⌈q3/4⌉ vertices.

4. Construct a sparse matrix R over Z/ℓZ as follows:
Store the relation for αa in the first row and the relation for βb in
second row.
Iterate over the remaining pairs (i, j) with i < j not used in Step 3:

Let Fi + Fj + Di,j be the intersection of the line through Fi and Fj

with C.
If Di,j splits into elements of F ∪ T ,

Use the tree T to substitute these elements
by sums of elements of F ∪ {D∞}
and store the relation obtained as a new for of the matrix R.

Until R has F + 1 rows.

5. Compute a vector γ = (γi)i over Z/ℓZ which is uniformly randomly
distributed over ker(Rt). If γ2 (the entry for the row for βb) is not
invertible, compute some more relations as in the previous step and try
again.

6. Let

x := −
γ1α

γ2β
.

Output x.



If one runs out of pairs (i, j) before the calculation is finished, one should
restart the algorithm (with another factor base chosen as described above
the presentation of the algorithm).

Heuristic analysis

Clearly the algorithm above has a storage requirement of Õ(q3/4). We will
now argue that heuristically one should expect that with this algorithm one
can also solve the DLP in an expected time of Õ(q).

Provided that the group is cyclic, Step 1 can be performed with asymp-
totically 6 choices for α and β respectively. Heuristically, this also holds
in general. (Note that this task is so easy because we include the points
necessary to express αa and βb into the factor base rather than first fixing
the factor base and then trying to express multiples of a and b over it.)

Step 2 has a running time of Õ(q1/2).
We come to Step 3.
Note that as pointed out in [7], Heuristic Assumption 1 in Section 4 of

[7] is satisfied in the special case of non-hyperelliptic genus 3 curves. Indeed
we have (for q −→ ∞):

Proposition 5

• The probability that a uniformly randomly chosen divisor in |D∞| (over
Fq) is completely split is ∼ 1/4!.

• If we choose P1, P2 ∈ C(Fq) (P1 6= P2) uniformly at random, the proba-
bility that the intersection of the line through P1 and P2 with C defines
a completely spit divisor is ∼ 1/2.

A proof of this proposition based on an effective Chebotarev theorem will be
given in [8]. (Briefly, one fixes any point P ∈ C(Fq) and studies the splitting
behavior of points in P

1(Fq) under the map C −→ P
1
Fq

given by the complete

linear system |D∞ − P |.)
To analyze the growth of the tree, we rely on a heuristic comparison

with the growth of a “random tree”. The following proposition follows with
the calculations in [10, Section 4]. (The first statement follows with the
calculation in [10, 4.4], and the second statement follows with the calculation
above Equation (2) in [10, 4.2]. Note that the notations in the calculations
in [10] are different from the ones used below.)

Proposition 6 Let N ∈ N and c ∈ (0, 1]. Let us consider the following
random process:

We consider a set of N elements (“vertices”) with a distinguished ele-
ment ∗. We construct a tree on this set as follows: We start with the tree
consisting only of ∗ (the root) and insert edges by repeating the following
procedure:



First we independently of the previous choices choose 1 with a probability
of c and 0 with a probability of 1− c. If we have chosen 0, we do nothing. If
we have chosen 1, we uniformly randomly (and independently of the previous
choices) choose an (unordered) pair of vertices. If this pair of vertices leads
to an edge which is connected to exactly one point in the tree, we insert the
edge in the tree.

Let M ∈ N, M ≤ N , and let us stop if we have obtained a tree with M
vertices. Then the expected average distance of an element of the tree to the
root of the tree is ≤ log(M) + 1.

Let c and α ∈ (0, 1) be fixed and let us stop if we have obtained a tree
with ⌈Nα⌉ vertices. Then for N −→ ∞, the expected stopping time is ∼
α
2c · log(N) · N .

Remark 7 One can modify this process to model the occurrence of FP
relations by increasing the probability that an edge connected to the root is
drawn. Then the first statement of the proposition still holds, the expected
stopping time for N −→ ∞ is . α

2c · log(N) · N .1

Our analysis relies on Proposition 5 and a heuristic comparison of the
growth of the tree constructed in Step 3 of the algorithm with a “random
tree” as described in Proposition 6.

Recall that we construct a tree whose vertices lie in L
·

∪ {∗} and stop the
construction if we have a tree with ⌈q3/4⌉ vertices. Moreover, heuristically
and on the basis of Proposition 5, the probability that a pair of elements of
the factor base leads to a split divisor Di,j is ∼ 1/2.

We thus apply Proposition 5 with

N := #L
·

∪ {∗} ∼ q , c ∼ 1/2 , α := 3/4 .

Note that for these values we have

α

2c
· log(N) · N ∼ 3/4 · log(q) · q .

Using this heuristic comparison, we obtain that heuristically one should
expect that an expected number of ∼ 3/4 · log(q) · q lines (unordered pairs
of distinct elements of the factor base) should suffice to construct the tree
in Step 3. (Note that the term “expected number” refers to the expected
number of lines which have to be considered if one varies the factor base as
described.)

We now come to Step 4.
As the tree has ⌈q3/4⌉ vertices, heuristically the probability that a divisor

Di,j splits over Fq and consists of vertices of the tree or elements of the factor

1The symbol . should be understood analogously to the symbol & defined in [7,
Definition 3]: For sequences (an)n∈N and (bn)n∈N of real numbers we write an . bn if
lim sup an

bn

≤ 1.



base is ∼ 1/2 ·q−1/2. We conclude that heuristically, the expected number of
distinct lines through elements of the factor base which have to be considered
in Step 4 is 2q.

All in all, we have argued that heuristically, the expected number of lines
through pairs of points of the factor base one has to consider in Steps 3 and
4 is . (3/4 · log(q) + 2) · q.

We have however ∼ 1/2 · log2(q) · q unordered pairs of elements of the
factor base at our disposal. We therefore conclude with Markov’s bound
that with a very high probability we do not run out of pairs of elements of
the factor base before reaching Step 5 of the algorithm. (Note that by our
analysis a factor base of size 2 log(q)1/2 · q1/2, say, should actually suffice in
order that the expected number of restarts of the algorithm is in O(1). We
have chosen a larger factor base in order to have some “safety margin”, and
because logarithmic factors do not matter for our analysis.)

An important heuristic assumption is now that that one needs only
slightly more rows than columns in R such that the second row of the matrix
is linearly dependent of the other rows. We note that this is a mayor dif-
ference to the algorithm in [7]. Indeed, in [7], if the degree 0 class group is
generated by a, we do not need to make any assumption after an appropriate
tree has been constructed.

Under the assumption that the second row of the matrix is indeed linearly
dependent on the other rows, for a uniformly randomly distributed vector
γ = (γi)i ∈ ker(Rt), the coefficient γ2 is invertible with a probability of
ϕ(ℓ)/ℓ.

On the basis of this heuristic analysis we conclude again that with a very
high probability we do not run out of pairs of elements of the factor base.

Finally, heuristically and by comparison with Proposition 6, the expected
average number of non-zero entries per row of the matrix R is in Õ(1). Under
this heuristic assumptions, one can derive a vector γ = (γi)i (over Z/ℓZ)
such that γ2 is invertible in an expected time of Õ(q).

This completes the heuristic analysis, and we have the following heuristic
result (based on a RAM).

Heuristic Result 8 One can solve the DLP in degree 0 class groups of non-
hyperelliptic genus 3 curves in a time of Õ(q), using a storage of Õ(q3/4).

3 Parallelization

Let us fix the following notation: If f, g : N −→ R are two functions, then
f = Θ̃(g) means that f(n) ≤ p(log(n)) · g(n) and g(n) ≤ q(log(n)) · f(n) for
all n ≫ 0 with two polynomial functions p, q.

We come to the analysis of the algorithm from a full cost perspective.
As announced in the introduction we analyze the operation of the algorithm



on 3-dimensional meshes. We first derive Heuristic Result 1 on the relation
generation and the linear algebra part (and thus establish our main result,
Heuristic Result 2). Then we show how to obtain Heuristic Result 3.

We start off with a 3-dimensional mesh with ⌈2q3/4⌉ nodes. On each
node we generate relations and store vertices of the tree (for more details
on the latter see the description of Step 3 below).

In order to avoid a “congestion” at the lower part of a search tree, the
addresses of the vertices of the tree constructed in Step 3 are now found via
a hash function rather than a search tree. More concretely, we fix a hash
function C(Fq) −→ ⌈2q3/4⌉. The vertices of the tree are stored on the nodes
given by their hash values. Every time in Step 3 a point (vertex) is to be
stored it is first checked if the corresponding node is not yet occupied and
only if this is the case the vertex is stored. Otherwise the new edge of the
tree is discarded. Note that as we stop with a tree of size ⌈q3/4⌉, heuristically
the probability that the node where an incoming vertex is to be stored is
still empty is always ≥ 1/2.

Step 1 has a negligible running time.
Heuristically, the factor base as in Step 2 can be generated on a single

node and stored in the mesh in a time of Õ(q1/2). After this is done, Θ̃(q1/4)
copies of each element are produced and stored in the mesh, such that on
each node an element of the factor base is stored.

Step 3 of the algorithm is now modified as follows: Two elements Fi

and Fj of the factor base are routed to each node (such that the unordered
pairs {Fi, Fj} are distinct for each node). This means that in total 2 · ⌈q3/4⌉
elements are routed. Heuristically this takes a time of Θ̃(q1/4). (We use
that we have already stored Θ̃(q1/4) copies of each element of the factor
base.) Then on each of the ⌈q3/4⌉ nodes a divisor Di,j is generated. The two
points occurring in a split Di,j are routed to their destinations (i.e. to the
nodes given by their hash values). At the destination it is checked whether
the node is occupied. If this is the case, it is checked if the point equals the
stored point, and then this information is routed back to the node where the
point was generated. Heuristically, this procedure takes Θ̃(q1/4) operations.

A straightforward implementation of the insertion of the new edges into
the tree would be as follows: For all Di,j which are split as P + Q such
that P is contained in the tree and no point having the hash value of Q
is contained in the tree, Q is inserted in the tree. That is, the coordinates
of P (on C) are routed to the node given by the hash value of Q and the
coordinates of Q are routed to the node given by the hash value of P .

This procedure would however lead to a potential problem during the
later Step 4: The construction of the recombined relations might lead to a
“congestion” at the root of the tree.

Because of this problem, we not only route the coordinates of P to the
node given by the hash value of Q but in fact route the list of all vertices
connecting P to the root to the node given by the hash value of Q. Note



that we assumed from the beginning one that the storage of each node is
polynomial in log(q) (see the “informal definition” of full cost in the intro-
duction). This means that we have to guarantee that the lengths of these
lists are polynomial in log(q), or with other words that the maximal distance
of an element in the tree to the root is polynomial in log(q). We discuss this
point below (see Conjecture 11) and make the heuristic assumption that this
is the case.

Then again heuristically, the routing takes Θ̃(q1/4) operations.

Recall that we have shown in the previous section that heuristically, one
can – with an unparallelized algorithm – construct a tree of size ⌈q3/4⌉ by
considering Õ(q) lines. Assuming that this construction can be parallelized
in a manner which is “optimal except polynomial factors”, we obtain that
we have to apply the above procedure Õ(q1/4) times to construct a tree of
appropriate size, leading to a running time of Õ(q1/2).

Under the assumption that the growth of the tree can be modeled by
comparison with a random tree, this is indeed the case. Indeed, we have the
following proposition. As mentioned in the introduction, the proof of this
proposition is long and technical and is omitted here.

Proposition 9 Let β < 1 be fixed.

Let V be a set with N elements and a distinguished element ∗. Let us
consider the following random process to construct a tree whose vertices are
contained in V .

At time 0, the tree consists merely of the root ∗.

Let us assume that after the i-th step we have already constructed a tree
Ti. Then we choose ⌈Nβ⌉ unordered pairs of elements from V ei+1,j (j =
1, . . . , ⌈Nβ⌉) uniformly and independently at random.

We define Ti+1 as follows: For every P ∈ V − Ti which is connected to
Ti via an ei+1,j, we choose the smallest j such that ei+1,j connects Ti and P
and insert ei+1,j into the tree.

Let M ≤ N and let us stop have obtained a tree of size ≥ M . Then the
expected average distance of an element of the tree to the root of the tree is
≤ min{log(M + Nα) + 1, log(N) + 1}.

Let us stop if we have obtained a tree which contains all elements from
V . Then for N −→ ∞, the expected stopping time is in Õ(N1−β).

Remark 10 Note also that the second statement also holds if we stop if
the tree has reached an arbitrary number of elements from V .

The interpretation of this proposition is as follows: Again let N := #L
·

∪
{∗} ∼ q, and let β := 3/4. Then for each i, j, the ei,j represents a new pair
of large primes which is obtained at time i by the jth node. For simplicity
we ignored the fact that heuristically only ∼ 1/2 of the lines lead to a pair of
large primes. We also ignored FP relations. The tree is constructed in such a



way that if two nodes at the same moment of time generate pairs of vertices
leading to a new edge of the tree which would end at the same vertex, then
the pair of vertices coming from the node with the smaller number is used
to generate a new edge of the tree.

As stated above, we need a result on the maximal distance of a vertex
in the tree to its root. Again we would like to make an argument which
relies on a comparison with a “random tree”. This time, we are however not
aware of an appropriate result. On the basis of Propositions 6 and 9 and
because of similar results on random graphs in the literature (cf. e.g. [6]),
we make the following conjecture.

Conjecture 11 In the context of Propositions 6 or 9, let us stop the con-
struction of the tree if all N elements are exhausted. Then with a proba-
bility converging to 1 for N −→ ∞, the maximal distance to the root is in
Θ(log(N)).

Remark 12 For our purposes it would suffice if for N −→ ∞, with proba-
bility converging to 1, the maximal distance to the root is in Õ(log(N)).

We conclude that indeed heuristically we can perform Step 3 of the
algorithm with a running time of Õ(q1/4 · q1/4) = Õ(q1/2).

We now come to Step 4. We proceed similarly to Step 3: On each node
we generate divisors Di,j. The two points of each split divisor are routed
to its destinations. If they occur in the tree, they are substituted with the
corresponding addition chain of elements of the factor base which is routed
back to the node where Di,j has been generated. Then they are routed
to a part of the mesh where the linear algebra is going to be performed.
Heuristically, this takes Õ(q1/4) operations. On the basis of the arguments
of the previous section, we have to consider ∼ 2q lines in total, leading to a
running time of Õ(q1/4 · q1/4) = Õ(q1/2).

So far we have not discussed the size of the factor base. By Proposition
9 it is reasonable to assume that a factor base of size Õ(q1/2) suffices. More
explicitly, let κ > 0 be such that for α = 3/4 in Proposition 9 the expected
stopping time is in O(log(q)κ ·q1−α). Note that this means that the expected
number of pairs of vertices ei+1,j considered is in O(log(q)κ · q). If we then
choose a factor base of size log(q)κ · q1/2, similarly to Section 2 we have a
“safety margin” of Ω(log(q)κ/2).

For the linear algebra, one can use for example a sorting algorithm as
described in [5]. We note that in [5], the description of the algorithm is only
done over F2. The generalization to other fields is however straightforward.
(In the notation of [5], one has to replace the j′s by (j, vj) and the (i, j)′s
by (i, j, Ai,j). Then after the first snakelike sorting one has to continue by
replacing the (j, vj)

′s by (i, Ai,j · vj) for Ai,j · vj 6= 0. After the second
snakelike sorting one has to perform the additions

∑
j Ai,j · vj .)



As the factor base has a size of Θ̃(q1/2) elements, the linear algebra then
has a running time of Θ̃(q2/3), leading to a full cost of Θ̃(q7/6).

We have now derived Heuristic Results 1 and 2. It remains to argue that
Heuristic Result 3 holds too.

Let us start with the first of the two results: We are given some natural
number n and ⌈n1/6⌉ instances of the DLP in degree 0 class groups of some
genus 3 curves C over Fq with q ≤ n.

We again fix a 3-dimensional mesh with ⌈2q3/4⌉ nodes. We perform the
relation generation for the ⌈n1/6⌉ instances we want to consider in sequence.
Each time, we store the matrix in a different cube inside the mesh. Note
heuristically, each cube has a size of Õ(q1/2), thus all cubes together have size
Õ(q2/3). This means that we can expect that we do not run out of storage
to store all linear algebra problems. On the basis of the analysis above, the
relation generation can be achieved in a time of Õ(n1/6 · n1/2) = Õ(q2/3).
After this, we solve all linear algebra problems in parallel. The expected
time for this is again in Õ(n2/3).

This gives the first result.

Now we assume we are given ⌈n1/6⌉ instances of the DLP.
We again use a mesh as above. We start off by performing the relation

generation in sequence, and again we store the linear algebra problems in
cubes. After we have exhausted the storage, we solve all linear algebra
problems. We repeat the procedure until we have solved all ⌈n1/4⌉ instances.

The heuristic expected running time for the relation generation is now
in Õ(q3/4). Heuristically, we can expect that we can solve Θ̃(q1/4) linear
algebra problems in parallel. This means that the solution of all ⌈q1/4⌉
linear algebra problems takes a time of Õ(q2/3). The running time is thus
dominated by the time of Õ(q3/4) for the relation generation.
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Arithmetic of C3,4-Curves. In Algebraic Number Theory – ANTS VI,
LNCS, pages 87–101, Berlin, 2004. Springer-Verlag.

[3] A. Basiri, A. Enge, J.-C. Faugère, and N. Gürel. The arithmetic of
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[8] C. Diem and E. Thomé. Index Calculus in Class Groups of Non-
Hyperelliptic Curves of Genus 3. Forthcomming.

[9] S. Flon and R. Oyono. Fast arithmetic on Jacobians of Picard curves.
In Advances in Cryptology — PKC 2004, volume 2947 of LNCS, pages
55–68, Berlin, 2004. Springer-Verlag.
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