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tionIn addition to the dis
rete logarithm problem (DLP) in ellipti
 
urves and degree 0 
lass groups(also named Pi
ard groups or Ja
obian groups) of hyperellipti
 
urves, it has re
ently beenproposed by various authors to use the DLP in degree 0 
lass groups of non-hyperellipti
 
urvesof genus 3 over �nite �elds as a primitive for publi
-key 
ryptographi
 proto
ols. Parti
ularfamilies of su
h 
urves proposed for 
ryptography in
lude Pi
ard 
urves [5, 11, 18, 26℄ and moregenerally C3,4-
urves [3, 4℄. For these families of 
urves, e�ort has been put into providinge�
ient 
onstru
tion means and expli
it formulae for 
omputations in the degree 0 
lass group.In spite of these e�orts, for a �xed group size, the 
omputational requirements for the setupof 
ryptosystems based on su
h 
urves (either dire
tly via point 
ounting or through other
onstru
tion methods) remains higher than for 
urves of genus 1 or 2, and the arithmeti
 inthe degree 0 
lass group remains slower. Moreover, we are not aware of any 
ryptographi
proto
ol exploiting spe
ial properties of non-hyperellipti
 
urves of genus 3, giving for somepurposes a 
ompelling reason to use su
h 
urves rather than 
urves of genus 1 or 2.We argue in this work that, still in 
omparison with 
urves of genus 1 or 2 with a degree 0
lass group of 
omparable group size, both from an asymptoti
 as well as from a pra
ti
alstandpoint, the dis
rete logarithm problem is 
onsiderably easier or, equivalently, the groupsize has to be 
onsiderably in
reased in order to keep the same level of se
urity. This impliesthat given the 
urrent knowledge about the dis
rete logarithm problem in degree 0 
lass1



2 Diem, Thomégroups of 
urves, the DLP in degree 0 
lass groups of non-hyperellipti
 
urves of genus 3 isnot a re
ommended primitive for publi
-key 
ryptographi
 systems.In [9℄, an index 
al
ulus algorithm with double large prime variation whi
h is well-suitedfor the solution of the DLP in 
lass groups of 
urves over �nite �elds represented by planemodels of small degree has been introdu
ed. Using the fa
t that any non-hyperellipti
 genus 3
urve is isomorphi
 to a plane quarti
, a heuristi
 analysis of the algorithm in [9℄ gives rise to:Asymptoti
ally for q −→ ∞, the DLP in degree 0 
lass groups of non-hyperellipti
 genus 3
urves over Fq 
an be solved in an expe
ted time of Õ(q).Here, the Õ-notation 
aptures logarithmi
 fa
tors.The heuristi
 expe
ted running time of Õ(q) should be 
ompared with the expe
ted runningtime of �generi
 methods� like the Rho method: As asymptoti
ally for q −→ ∞, degree 0 
lassgroups of genus 3 
urves over Fq have ∼ q3 elements, generi
 methods to solve the DLP have a(heuristi
) expe
ted running time of Θ(q3/2) group operations, provided that the group orderis nearly prime.In this work, we study the appli
ation of variants of the algorithm in [9℄ to non-hyperellipti
genus 3 
urves in detail. We
• prove a 
ru
ial heuristi
 assumption from the analysis in [9℄ (Assumption 1 in [9℄),
• study the remaining heuristi
 assumption experimentally,
• present experimental data whi
h show that a pra
ti
al variant of the algorithm is indeedfaster than the Rho method even for relatively small group orders and address pra
ti
allimitations of this variant on 
urrent o�-the-shelf hardware.The algorithm is given in Se
tion 3. The heuristi
 expe
ted running time is derived inSe
tion 4, with a 
ru
ial ingredient of the heuristi
 analysis being proved in Se
tion 5. InSe
tion 6 the remaining heuristi
 assumption is studied experimentally. Finally, in Se
tion 7a variant of the algorithm whi
h is well suited for pra
ti
al 
omputations is given and studiedexperimentally.2 Setting and terminologyThis work 
an be read from the point of view of the exposition in Chapters I and II of [21℄as well as from the point of view of s
heme theory as in [14℄. For Se
tion 5, familiarity withlinear systems, fun
tion �eld theory and Galois theory is required.We use the following terminology and notations, following the usual terminology in s
hemetheory: The proje
tive n-spa
e over a �eld k is denoted by Pn

k . Given a 
urve C (whi
h is alwaysassumed to be proje
tive, smooth and geometri
ally irredu
ible) over a perfe
t �eld k, a 
losedpoint P of C (denoted P ∈ C) is a Galois orbit of points in C(k). If λ|k is a �eld extension,we denote the 
urve obtained by base-
hange to λ by Cλ (that is, Cλ is denoted C/λ in [21℄).Moreover, when speaking of a divisor D on C, we impli
itly assume that D is k-rational.Via the 
anoni
al embedding, any non-hyperellipti
 genus 3 
urve C over Fq is isomorphi
 toa non-singular quarti
 in P2
Fq
. Conversely any non-singular plane quarti
 is a non-hyperellipti
genus 3 
urve, and the linear system 
ut out by lines is the 
anoni
al linear system [14,Example IV.5.2.1.℄. We �x a homogeneous 
oordinate system X,Y,Z on P2

Fq
and assumethat the 
urve is given by an equation F (X,Y,Z) = 0, where F (X,Y,Z) is a homogeneous
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urves of genus 3 3polynomial of degree 4. We assume that the order of the degree 0 
lass group is known. In
ryptographi
 appli
ations this is always the 
ase, and by Pila's variant of S
hoof's algorithm[20℄, it 
an be 
omputed in polynomial time in log(q).We denote the degree 0 divisor 
lass group of C over Fq by Cl0(C). If D is a divisor, wedenote the 
orresponding divisor 
lass by [D].Let us �x some P0 ∈ C(Fq); by the Hasse-Weil bound su
h a point exists if q ≥ 36.Following [15℄, we 
all an e�e
tive divisor D on C maximally redu
ed along P0 if D − P0 isnot linearly equivalent to an e�e
tive divisor. By the Riemann-Ro
h Theorem, maximallyredu
ed e�e
tive divisors have degree ≤ 3 (see [15, Proposition 8.2.℄). We have a bije
tion
D 7→ [D]− [deg(D)] · [P0] between the divisors maximally redu
ed along P0 and the elementsof the degree 0 
lass group.There are various natural ways to represent divisors and divisor 
lasses on non-hyperellipti
genus 3 
urves. To make things pre
ise, we assume that the input elements for the algorithmare given by e�e
tive divisors maximally redu
ed along a �xed point P0, and the divisorsthemselves are given in free representation, that is, as formal sums of 
losed points.It is well known that with this representation the arithmeti
 in the degree 0 
lass group
an be 
arried out in randomized polynomial time in log q (this follows for example from thealgorithms in [15℄ for the 
omputation of Riemann-Ro
h spa
es in a fun
tion �eld / idealtheoreti
 setting). In [1, 3, 4, 11, 12℄ e�
ient spe
ial purpose algorithms for various 
lassesof non-hyperellipti
 genus 3 
urves have been developed. These algorithms are however ofno relevan
e for our work: On the one hand, for a theoreti
al analysis the algorithms in [15℄su�
e. On the other hand, for a pra
ti
al variant of our algorithm we only use the additionin the degree 0 
lass group to �nd one multiple of ea
h of the two input elements whi
h isrepresented by a 
ompletely split divisor. For this we only need about 12 additions in total.3 The algorithmIn this se
tion, we �rst give an overview about basi
 strategies for index 
al
ulus in the 
ontextof non-hyperellipti
 genus 3 
urves. Then we present one possible algorithm whi
h lends itselfwell to a heuristi
 analysis and gives rise to the heuristi
 
omplexity result stated in theintrodu
tion.Let C be a non-singular plane quarti
, given by F (X,Y,Z) = 0. Let a, b ∈ Cl0(C) with
b ∈ 〈a〉. The goal is to 
ompute an x ∈ N with x·a = b. The general approa
h of index 
al
ulusfor 
urves of small genus is as follows: One �xes a fa
tor base F = {F1, F2, . . .} ⊆ C(Fq).Then one generates relations between the elements of F and a, b (and possibly one other �xeddivisor). If one has obtained enough relations, one solves the dis
rete logarithm problem of awith respe
t to b with an algorithm from sparse linear algebra.Let us for simpli
ity assume that #Cl0(C) is square-free and Cl0(C) is generated by a.There are two natural ways to generate relations:1. Let P0 ∈ C(Fq) be a �xed point.One 
onsiders a random linear 
ombination αa + βb of the input elements, whi
h onerepresents by a divisor of the form D − deg(D) · P0 with D e�e
tive and maximallyredu
ed along P0. This gives rise to the relation

[Dα,β] − deg(Dα,β) · [P0] = αa + βb . (1)



4 Diem, Thomé2. Let D∞ be the interse
tion of C with the line Z = 0 (with multipli
ities); D∞ is a divisoron C of degree 4.One sele
ts a pair of distin
t points Fi, Fj ∈ F and 
onsiders the line L through Fi and
Fj . Let D be the interse
tion of L with C (with multipli
ities). Then D = Fi +Fj +Di,jwith some e�e
tive divisor Di,j of degree 2. By 
onstru
tion, D is linearly equivalent to
D∞, and one has the relation

[Fi] + [Fj ] + [Di,j ] − [D∞] = 0 . (2)In a basi
 index 
al
ulus one would now require that Dα,β or Di,j split 
ompletely into pointsof the fa
tor base.We expand the algorithm with a double large prime variation. This means that we alsouse relations whi
h involve up to two elements of L := C(Fq)−F , the set of the so-
alled largeprimes. Analogously to the usual terminology re
alled in [13℄ we de�ne:De�nition 1. A relation of the form (1) or (2) is 
alled a Full, FP or PP relation if Dα,βor Di,j splits 
ompletely into elements of C(Fq) and it 
ontains zero, one or two large primes,respe
tively.In a double large prime variation, one 
onsiders FP and PP relations as edges in a graphof large prime relations on the vertex set L ∪̇ {∗}, where ∗ is a spe
ial vertex. An FP relationinvolving one large prime P 
orresponds to an edge ∗�P , while a PP relation involving twolarge primes P and Q 
orresponds to an edge P�Q. As detailed in [13℄, this graph is usedto obtain re
ombined relations involving only elements of the fa
tor base and a, b (and againpossibly one other �xed divisor). Again one solves the DLP by sparse linear algebra.Generating the graph and the re
ombined relations 
an be done by using relations of theform (1) or relations of the form (2) (or both). As argued in [9℄, the use of relations of theform (2), rather than merely the use of relations of the form (1), leads to a 
onsiderably fasteralgorithm. The intuitive reason for this is that Di,j has degree 2 whereas with a probability
onverging to 1 for q −→ ∞, Dα,β has degree 3. (This follows from Cl0(C) ∼ q3 and the fa
tthat there are only∼ q2 e�e
tive divisors of degree 1 and 2.) The use of relations of the form (2)leads however to several stumbling blo
ks towards a rigorous analysis. Even though with thealgorithm presented in this se
tion we try to over
ome this di�
ulty, the forth
oming analysisin Se
tion 4 relies on a heuristi
 assumption, whi
h is studied experimentally in Se
tion 6.Re
all the following de�nition.De�nition 2. Let G be an undire
ted graph, and let ∗ be a vertex in G. Then a shortest pathtree with root ∗ is a tree T on a subset of the set of verti
es of G with the following properties:
• The verti
es in T are the verti
es in G 
onne
ted to ∗.
• Let V be a vertex 
onne
ted to ∗ in G. The distan
e from V to ∗ in G is equal to thedistan
e between V and ∗ in T .Notation 3. The set of verti
es of a tree T is also denoted by T .A shortest-path tree 
an be 
onstru
ted by a breadth-�rst sear
h, des
ribed for instan
ein [8℄. A trivial extension allows to build a tree of limited depth: only verti
es in G within a�xed distan
e of the root are 
onsidered. This is used in the algorithm below.
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urves of genus 3 5The following algorithm is the algorithm presented in [9℄ applied to plane quarti
s withthe di�eren
es that the size of the fa
tor base is redu
ed by a fa
tor of √2, only a tree ofdepth ≤ log2(q) is 
onstru
ted, and the 
ondition in Step 4 is relaxed. As in [9℄ we assumefor simpli
ity that the degree 0 
lass group has prime order. If it is not of prime order but
y
li
 or the group stru
ture is known, one should modify Steps 5 and 6 a

ording to thedes
riptions in [10℄ and [13℄.The algorithmInput: A non-hyperellipti
 
urve C of genus 3 over Fq, given by a homogeneous equation F (X,Y,Z)
= 0 of degree 4, the group order ℓ := #Cl0(C) (a prime number) and two elements a, b ∈
Cl0(C) (a 6= 0).1. Enumerate C(Fq) and 
hoose a fa
tor base F = {F1, F2, . . .} uniformly at random from theset of all subsets of C(Fq) with ⌈2√q

⌉ elements (if C(Fq) has fewer elements, terminate).Let L := C(Fq) −F .2. Constru
t a graph G on L ∪̇ {∗} as follows:For all i < j doCompute the line L through Fi and Fj .Let D = Fi + Fj + Di,j be the interse
tion divisor of C with L (with multipli
ities).If Di,j splits into points P,Q of C(Fq), if at least one of these points lies in L, and ifthe 
orresponding edge (P�Q, P�∗, or ∗�Q) does not yet o

ur in the graph, insert theedge in the graph.3. With a breadth-�rst sear
h, 
onstru
t a tree T in G with root ∗, limiting the depth to log2(q).4. If T has fewer than q5/6 verti
es, go ba
k to 1.5. Constru
t a sparse matrix R over Z/ℓZ as follows:For i = 1, . . . ,#F + 1 doRepeatChoose uniformly and independently randomly αi and βi and 
ompute the uniquee�e
tive divisor D maximally redu
ed along F1 with [D]−deg(D) · [F1] = αia+βib.Until D splits into elements of F ∪ T .Use the tree T to repla
e these elements by sums of elements of F ∪ {D∞}.This substitution leads to the relation ∑j ri,j[Fj ] + ri[D∞] = αia + βib. Store (ri,j)jas the i-th row of R.6. Compute a non-zero ve
tor γ over Z/ℓZ with γR = 0 with an algorithmfrom sparse linear algebra.7. If ∑i γiβi ∈ (Z/ℓZ)∗, let x := −
∑

i γiαi
∑

i γiβi
, otherwise go ba
k to 5.Output x.Proposition 4. If the algorithm outputs x, we have x · a = b.Proof. Easy; see also [9℄. �
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 analysisThe enumeration in Step 1 of the algorithm 
an be performed in an expe
ted time of Õ(q) byiterating over the (X,Z)-
oordinates and 
onsidering the possible Y -
oordinates. After this,a fa
tor base as in Step 1 
an also be found in an expe
ted time of Õ(q).Given i, j, the 
omputation of Di,j is an easy algorithmi
 task. One �rst 
omputes the line
L : aX + bY + cZ = 0 through Fi and Fj . Using the equation for L, it is su�
ient to 
omputeeither the (X,Z) or (Y,Z) 
oordinates of Di,j. Without loss of generality, assume for examplethat b = 1, su
h that the (X,Z) 
oordinates of D are the roots of F (X,−aX − cZ,Z), whi
hhas degree 4. Sin
e two known roots are the (X,Z) 
oordinates of Fi and Fj , the remaining
(X,Z) 
oordinates are obtained by solving a quadrati
 equation. This implies that given i, j,the divisor Di,j 
an be 
omputed in randomized polynomial time in log q, hen
e Step 2 
anbe performed in an expe
ted time of Õ(q).The limited breadth-�rst sear
h in Step 3 has a 
omplexity bounded by the 
omplexityof the 
omplete breadth-�rst sear
h, whi
h is Õ(q) (the graph has O(q) verti
es, and O(q)edges). Hen
e Step 3, as previous steps, 
an be performed in an expe
ted time of Õ(q).Let us postpone for later investigation the probability of passing the test in Step 4.For estimating the 
omplexity of Steps 5�7, we �rst prove two lemmata yielding the prob-ability that D splits over F ∪ T .Lemma 5. Let C be a non-hyperellipti
 
urve of genus 3 over Fq, let P0 ∈ C(Fq), and let
S ⊂ C(Fq) su
h that #S ∈ Ω(q5/6). Then there are Ω(q5/2) e�e
tive divisors D whi
h split
ompletely into sums of elements of S and are maximally redu
ed along P0.Proof. The assumption on S implies that there are (#S+2

3

)

∈ Ω(q5/2) e�e
tive divisors ofdegree 3 on C whi
h are 
ompletely split into sums of elements of S. We wish to estimate thenumber of su
h divisors whi
h are maximally redu
ed along P0.For any e�e
tive divisor D on C, let Dred be the unique divisor maximally redu
ed along
P0 su
h that Dred +(deg(D)−deg(Dred)) ·P0 is linearly equivalent to D. The map D 7→ Dredis inje
tive for non-spe
ial divisors D of degree 3. The following lemma shows that the numberof spe
ial divisors of degree 3 on C is in o(q5/2), whi
h proves the 
laim. �Lemma 6. The number of spe
ial linear systems of degree 3 on a 
urve of genus 3 over Fq is
∼ q, and the number of spe
ial divisors of degree 3 is ∼ q2.Proof. Let K be a 
anoni
al divisor on C (e.g. K = D∞ if the 
urve is non-hyperellipti
 andgiven by a plane quarti
).For P ∈ C(Fq), the linear system |K − P | is obviously a spe
ial linear system of degree 3.On the other hand, if |D| is a spe
ial linear system of degree 3, then |K − D| is non-empty.Clearly the point P ∈ C(Fq) with |P | = |K − D| is unique.We therefore have a bije
tion between C(Fq) and the spe
ial linear systems of degree 3 on
C. This proves the �rst assertion.By the Riemann-Ro
h Theorem, for every point P ∈ C(Fq), |K − P | has (proje
tive)dimension dim(|P |) + 1 = 1. Together with the �rst assertion, this implies the se
ond asser-tion. �Proposition 7. Let C be a non-hyperellipti
 genus 3 
urve over Fq, F a fa
tor base of size
O(q1/2), and T a tree with root ∗ on a subset of L ∪̇ {∗} (with L := C(Fq) − F) su
h that T
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es and a depth of O(log(q)O(1)). Let us assume that the order of Cl0(C) isprime. Let a, b ∈ Cl0(C) with a 6= 0. Then following Steps 5�7 of the algorithm, one 
an solvethe DLP with respe
t to a and b in an expe
ted time of Õ(q).Proof. In Step 5 α, β ∈ Z/ℓZ is drawn uniformly and independently at random, and thereforeso is αa + βb ∈ Cl0(C).By Lemma 5 and the fa
t that #Cl0(C) ∼ q3, su
h a 
ombination has then a probabilityof Ω(q−1/2) to split 
ompletely into elements of F ∪ T . Furthermore, sin
e the depth of T isin O(log(q)O(1)), we 
on
lude that Step 5 has a 
omplexity of Õ(q1/2 · #F) = Õ(q).The bound on the depth of T also implies that rows of the relation matrix have no morethan O(log(q)O(1)) elements. As the matrix has size Θ(
√

q)×Θ(
√

q), Step 6 
an thus also beperformed in an expe
ted time of Õ(q) (see [10, Theorem 3℄).Finally, as argued in [10℄, if γ is the ve
tor obtained in Step 6, ∑i γiβi is uniformlyrandomly distributed over the group Z/ℓZ. Step 7 therefore su

eeds with probability 1− 1
ℓ . �Remark. This proposition also holds if Cl0(C) is 
y
li
 or its stru
ture is known provided thatthe algorithm is modi�ed a

ording to the des
riptions in [10℄ and [13℄.Estimating the size of the tree TIt remains to prove that Step 4 of the algorithm is passed with su�
iently high probability. Inorder to derive the desired result that the expe
ted running time of the algorithm is in Õ(q),we would need to prove that with a probability of Ω( 1

log(q)O(1) ), the set of verti
es of the graphof large prime relations whi
h have distan
e ≤ (log(q))2 to ∗ 
ontains ≥ q5/6 elements.We do not know how to prove this result, and therefore our analysis relies on a heuristi

omparison with appropriate random graphs in standard models. Re
all that random graphsare mostly studied for two models in the literature. The �rst one is the Bernoulli (or binomial)random graph G(n, p). A set of n verti
es is �xed, and ea
h unordered pair of distin
t verti
esappears (independently of the other pairs) with a probability p as an edge of the graph. These
ond one is the uniform random graph G(n,m). Again, a set of n verti
es is �xed, and theset of edges is drawn uniformly from the set of subsets of unordered pairs of distin
t verti
eswith m elements. Here and in the following, we use the notations of [16℄.In the following paragraphs, we examine the properties whi
h the graph of large primerelations would enjoy if it were a random graph either in the Bernoulli or uniform model. Let
E be the expe
ted number of edges in the graph of large prime relations at the end of Step 2.As a �rst approa
h, we 
ompare our graph with a Bernoulli random graph G(#(L ∪̇ {∗}), p),where p := E

(#(L∪̇{∗})
2 )

. Note that just as our graph, this random graph has an expe
ted numberof E edges.As usual we 
all a set S with a �xed point ∗ ∈ S a pointed set. We 
all a graph on apointed vertex set (V, ∗) a pointed graph; if G is a graph on V , we denote the 
orrespondingpointed graph by (G, ∗). These de�nitions extend naturally to random graphs (where we stillview ∗ as being �xed). The following proposition follows from results in [16℄ and [7℄:Proposition 8. For two positive 
onstants c1 and c2, 
onsider the following properties ofgraphs G and pointed graphs (G, ∗) on a set of n verti
es:
• (Qc1,c2) There exists a 
onne
ted subgraph of G of size ≥ c1n and diameter ≤ c2 log(n).
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• (Q∗

c1,c2) There exists a 
onne
ted subgraph of G of size ≥ c1n, diameter ≤ c2 log(n)
ontaining ∗.Let c > 1 be a 
onstant. Then there exist positive 
onstants c1, c2 su
h that for p ≥ c
n theBernoulli random graph G(n, p) satis�es property Qc1,c2 with a probability 
onverging to 1 for

n −→ ∞ and the pointed Bernoulli random graph (G(n, p), ∗) satis�es property Q∗
c1,c2 with aprobability of Ω(1) for n −→ ∞.Proof. By [16, Theorem 5.4℄, there exists a positive 
onstant c1 su
h that with a probability
onverging to 1 for n −→ ∞, the graph has a �giant 
onne
ted 
omponent� of size ≥ c1n. Bythe results of [7℄, there exists a positive 
onstant c2 su
h that with a probability 
onvergingto 1 for n −→ ∞, the graph has diameter ≤ c2 log(n). This proves the statement on Bernoullirandom graphs.For the se
ond statement, let us �rst assume that ∗ is 
hosen uniformly and independentlyof the other 
hoi
es (rather than �xed beforehand). Then the statement follows be
ause theprobability that property Q∗

c1,c2 is satis�ed is ≥ c1 times the probability that property Qc1,c2is satis�ed. The statement on pointed Bernoulli random graphs follows be
ause the property
Qc1,c2 is invariant under graph isomorphism. �In Se
tion 5, we will prove the following proposition.Proposition 9. The expe
ted number E of edges in the graph of large prime relations is ∼ q.The expe
ted number of edges around vertex ∗ is ∼ 4

3q1/2.This proposition implies that the probability p is ∼ q
q2/2

= 2
q . As #(L ∪̇ {∗}) ∼ q, it isreasonable to assume that the 
on
lusion of Proposition 8 is also satis�ed for the graph oflarge prime relations at the end of Step 2.We note however that there are of 
ourse essential di�eren
es between our graph and aBernoulli random graph G(#(L ∪̇ {∗}), p). In parti
ular:

• The set of verti
es L ∪̇ {∗} = (C(Fq) ∪̇ {∗}) −F of the random graph is not �xed (butits 
ardinality is), and the set of edges is uniquely determined by the set of verti
es.
• Regarded as a graph on C(Fq) ∪̇ {∗}, many pairs of verti
es are never drawn, and theprobability that a parti
ular edge is drawn is not independent of other edges beingdrawn.
• The expe
ted value of the number of edges around the spe
ial vertex ∗ is mu
h largerthan for the 
orresponding Bernoulli random graph.Note that the third point suggests that with a very large probability ∗ is 
ontained in thelargest 
onne
ted 
omponent of the graph. Together with Proposition 8 one might 
onje
turethat there are c1 and c2 su
h that our graph has property Q∗

c1,c2 with a probability 
onvergingto 1 for q −→ ∞. We do however not need this 
ondition for our heuristi
 analysis.So far we have 
onsidered the expe
ted number of edges and 
ompared the graph of largeprime relations with a Bernoulli random graph. To give further heuristi
 eviden
e that Step 4is passed with su�
iently high probability, we now would like to 
ompare our graph with auniform random graph. Analogously to Bernoulli random graphs we have the following result.Proposition 10. Let c > 1 be a 
onstant. Then the 
on
lusions of Proposition 8 also holdfor the uniform random graph G(n,m) (and the 
orresponding pointed uniform random graph)with m ≥ cn
2 .
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urves of genus 3 9Proof. Both properties are monotone. (If G1 ⊂ G2 are graphs on the set of verti
es {1, . . . , n}and G1 satis�es Qc1,c2 (resp. Q∗
c1,c2) then G2 also satis�es Qc1,c2 (resp. Q∗

c1,c2).)Be
ause of this we only have to prove the statement for m(n) = ⌈ cn
2 ⌉.Let p := m(n)

(n
2)

. We wish to prove the statement for m(n) by applying the general �
om-parison result� [16, Proposition 1.15℄ to the Bernoulli random graph G(n, p) on the one handand to the uniform random graph G(n,m) on the other hand.Note �rst that as the property Qc1,c2 is monotone it is in parti
ular 
onvex (that is, if
G1 ⊆ G2 ⊆ G3 are three graphs on the set of verti
es {1, . . . , n} and both G1 and G3 satisfy
Qc1,c2 then G2 also satis�es Qc1,c2).Let c1 and c2 be su
h that the �rst property of Proposition 8 is satis�ed. Note that as p ≥

cn
n(n−1) = c

n−1 ≥ c
n this means in parti
ular that the Bernoulli random graph G(n, p) satis�esproperty Qc1,c2 with a probability 
onverging to 1 for n −→ ∞. With [16, Proposition 1.15℄we 
on
lude that Qc1,c2 also holds for the uniform random graph G(m,n) with a probability
onverging to 1 for n −→ ∞.Again the statement on Q∗

c1,c2 follows easily. �In 
ontrast to Proposition 10, for any c < 1, there exists a positive 
onstant c1 su
h thatwith a probability 
onverging to 1 for n −→ ∞, all 
omponents of the uniform random graph
G(n,m) with m ≤ cn

2 
ontain fewer than c1 log(n) verti
es. This follows again from [16,Theorem 5.4℄ together with [16, Proposition 1.15℄.This di
hotomy of uniform random graphs is 
alled �phase transformation�. The followingproposition guarantees that with a probability of Ω(1), the random graphs 
onstru
ted inthe algorithm have a number of edges whi
h is �above the phase transformation�, and thusthe 
on
lusions of Propositions 8 and 10 apply to the uniform random graph with the samenumber of verti
es and edges. This gives further heuristi
 eviden
e that the 
on
lusions ofthese propositions also apply to the graph of large prime relations at the end of Step 2.Proposition 11. If the fa
tor base F is 
hosen uniformly at random from the set of all subsetsof C(Fq) with ⌈2q1/2⌉ elements, with a probability of Ω(1) we have more than 2
3q edges in thegraph of large prime relations.Proof. Let c be the number of lines drawn through two fa
tor base elements whi
h give riseto FP or PP relations. Then c ≤ 2(

√
q + 1)2. By letting the fa
tor base vary, the quantity

c
2(
√

q+1)2 be
omes a random variable with values in [0, 1]. Let us 
all this random variable X.Then the probability in question is greater than or equal to P := P(X > 1
3). We have

E(X) ≤ P(X ≤ 1

3
) · 1

3
+ P(X >

1

3
) · 1 = (1 − P )

1

3
+ P,hen
e: P ≥ E(X) − 1/3

2/3
.By Proposition 9 we have E(X) ∼ 1

2 for q −→ ∞, thus lim inf P(X > 1
3) ≥ 1/6

2/3 = 1
4 , wherethe limes inferior is taken over all 
urves. �The above 
omparisons of the graph of large prime relations with Bernoulli and uniformrandom graphs motivate that the 
on
lusions of Propositions 8 and 10 are valid for the graphof large prime relations at the end of Step 2. The derivation of the 
omplexity result relies onthe following weaker assumption.
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 Assumption 12. With a probability of Ω( 1
log(q)O(1) ), the set of verti
es of the graphof large prime relations whi
h have distan
e ≤ (log(q))2 to ∗ 
ontains ≥ q5/6 elements.This assumption implies that the expe
ted number of iterations of Steps 1 � 4 until Step 4 ispassed is in O(log(q)O(1)). Putting this together with Proposition 7 and the initial argumentsof this se
tion, we �nally have:Heuristi
 Result 13. One 
an solve the DLP in degree 0 
lass groups of non-hyperellipti
genus 3 
urves in an expe
ted time of Õ(q), provided that the 
lass group is 
y
li
 or the groupstru
ture is known.The result holds rigorously for any 
lass of non-hyperellipti
 
urves of genus 3 for whi
hHeuristi
 Assumption 12 is satis�ed and the 
lass group is 
y
li
 or the group stru
ture isknown.Again on a heuristi
 basis one should expe
t this result to hold even if one 
al
ulatesdis
rete logarithms in proper subgroups of the degree 0 
lass groups. One then obtains theheuristi
 result stated in the introdu
tion: One 
an 
al
ulate the DLP in degree 0 
lass groupsof non-hyperellipti
 genus 3 
urves in an expe
ted time of Õ(q).5 On the number of edges in the graph of large prime relationsAs above, let C be a non-hyperellipti
 genus 3 
urve over Fq, given as a plane quarti
.The purpose of this se
tion is to prove Proposition 9 in the previous se
tion. For this, we�rst derive the following result.Proposition 14. The number of lines in P2

Fq
interse
ting the 
urve in 4 distin
t Fq-rationalpoints is in

1

24
q2 + O(q3/2) .Remark. A reformulation of this proposition is:If we 
hoose a tuple of distin
t points of C(Fq) uniformly at random, the probability thatthe line running through P and Q interse
ts C in 4 distin
t Fq-rational points is in

1

2
+ O(q−1/2) .Indeed, by the Hasse-Weil bound, there are ∼ q2 ordered tuples of points of C(Fq), andevery line whi
h interse
ts C in 4 distin
t Fq-rational points is de�ned by 4 · 3 = 12 di�erentsu
h tuples.The proof is based on an e�e
tive Chebotarev density theorem in the �geometri
� or�fun
tion �eld theoreti
� setting.As above, let D∞ be the interse
tion of C with Z = 0. Let us now �x a point P ∈ C(Fq). Wewish to estimate the number of lines over Fq interse
ting the 
urve C in 4 distin
t Fq-rationalpoints one of whi
h is P .By asso
iating to ea
h line in P2

Fq
over Fq its interse
tion divisor with C one obtains abije
tion between the set of lines in P2

Fq
over Fq and the linear system |D∞|, the 
anoni
allinear system. Now, under this bije
tion, the lines passing through P are in bije
tion with the



Index 
al
ulus for non-hyperellipti
 
urves of genus 3 11divisors in |D∞| 
ontaining P . By subtra
ting P , these divisors are in turn in bije
tion withthe divisors in the 
omplete linear system |D∞ − P | (over Fq). We thus wish to estimate thenumber of 
ompletely split divisors in this linear system.The 
omplete linear system |D∞ − P | is base-point free, has degree 3 and (proje
tive)dimension 1. It thus gives rise to a 
overing C −→ P1
Fq

of degree 3 (unique up to an auto-morphism of P1
Fq
). We re
all that the divisors in |D∞ − P | are (by de�nition of the 
overing

C −→ P1
Fq
) exa
tly the preimages of the points in P1(Fq). We have the following proposition.Proposition 15.

• If the 
overing C −→ P1
Fq

asso
iated to |D∞ − P | has an automorphism of order 3, thenumber of 
ompletely split divisors in |D∞ − P | is in
1

3
q + O(q1/2) .

• If the 
overing C −→ P1
Fq

does not have an automorphism of order 3 but the 
overing
C

Fq
−→ P1

Fq
over Fq has su
h an automorphism, there are no 
ompletely split divisors in

|D∞ − P |.
• If the 
overing C

Fq
−→ P1

Fq
over Fq does not have an automorphism of order 3, then thenumber of 
ompletely split divisors in |D∞ − P | is in

1

6
q + O(q1/2) .Proof. Note �rst that the extension Fq(C)|Fq(P

1) is separable. Indeed, as the extension degreeis prime, if it was not separable it would be purely inseparable. This would however implythat g(C) = g(P1
Fq

) = 0 (see [23, III.9.2 (
) (2) and (3)℄ or [14, IV, Proposition 2.5℄).The 
ompletely split divisors in |D∞ − P | are in bije
tion with the elements in P1(Fq)whi
h are 
ompletely split in C.We 
onsider the three 
ases in the statement separately.Let us �rst assume that the 
overing C −→ P1
Fq

has an automorphism of order 3. Then it isa Galois 
overing in the sense that the asso
iated extension of fun
tion �elds is Galois. By thee�e
tive Chebotarev theorem in [19℄ the number of elements in P1(Fq) whi
h are 
ompletelysplit is in 1
3q + O(q1/2).Now let us assume that we are in either the se
ond or the third 
ase. Let M be the Galois
losure of the extension of fun
tion �elds Fq(C)|Fq(P

1). Then M |Fq(P
1) is a Galois extensionwith Galois group isomorphi
 to S3. Moreover, let L be the unique quadrati
 extension of

Fq(P
1) in M . In the se
ond 
ase, we have L = Fq2(P1) and M = Fq2(C), and in the third 
ase,

Fq is the exa
t 
onstant �eld of M .In the following, we use the same notation for 
losed points of the 
urves and the 
orre-sponding pla
es of the fun
tion �elds.For a pla
e Q of Fq(P
1) of degree 1 whi
h is unrami�ed in Fq(C) (and thus in M), we havethe following possibilities:

• Q splits 
ompletely in M and thus also in Fq(C) and L.
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• Q splits as Q1+Q2 in M , where the Qi are distin
t pla
es of degree 3. Then the splitting�elds of both Q1 and Q2 are L (the unique sub�eld of M of index 3). In parti
ular, Qis inert in Fq(C).
• Q splits as Q1 + Q2 + Q3 in M , where the Qi are distin
t pla
es of degree 2. Then thede
omposition groups of Q1, Q2, Q3 are of order 2, and (as always in a Galois extension)they form a 
omplete 
onjuga
y 
lass. This means that these groups are equal to thethree subgroups of order 2. Thus exa
tly one of the de
omposition �elds is equal to

Fq(C). In parti
ular, Q splits as P1 + P2 in Fq(C) where P1 and P2 are pla
es of degree1 and 2 respe
tively.Note here that Q 
annot be inert in M be
ause M |Fq(P
1) is not 
y
li
. We see in parti
ularthat Q splits 
ompletely in Fq(C) if and only if it splits 
ompletely in M .Now, if L = Fq2(P1) (se
ond 
ase), every pla
e of Fq(P

1) of degree 1 is inert in L, thusit 
annot split 
ompletely in M . If Fq is the exa
t 
onstant �eld of M (third 
ase), again bythe e�e
tive Chebotarev theorem in [19℄, the number of pla
es of Fq(P
1) of degree 1 whi
h are
ompletely split in M is in 1

6q + O(q1/2) (the other two numbers 
orresponding to the itemsabove are in 1
3q + O(q1/2) and 1

2q + O(q1/2) respe
tively). �By [22℄, the 
ardinality of the automorphism group of C
Fq

is bounded by 16 ·g(C)4 = 1296.There are thus at most 647 subgroups of the automorphism group of order 3. This impliesthat there are, up to automorphisms of P1
Fq
, at most 647 distin
t 
overings C

Fq
−→ P1

Fq
oforder 3 with an automorphism of order 3. In terms of linear systems this means that there areat most 647 base point free linear systems of degree 3 and dimension 1 on C

Fq
whi
h de�nea 
overing to P1

Fq
whi
h has a non-trivial automorphism. This means that there are at most

647 ∈ O(1) points P ∈ C(Fq) for whi
h in Proposition 15 we are in the �rst or se
ond 
ase.We are interested in the number of divisors in |D∞| whi
h split 
ompletely into 4 distin
t
Fq-rational points.Every divisor in |D∞| whi
h 
ontains a double point is de�ned by a line whi
h is tangentialto the 
urve. This implies that there are at most #C(Fq) ∼ q su
h divisors. Keeping in mindthat every divisor in the 
anoni
al system |D∞| whi
h splits into 4 distin
t Fq-rational pointso

urs in exa
tly 4 systems of the form |D∞ − P |, we obtain:Proposition 16. The number of divisors in |D∞| whi
h split into 4 distin
t Fq-rational pointsis in

1

24
q2 + O(q3/2) .Proposition 14 is a reformulation of this proposition. We now show how one 
an useProposition 14 to derive Proposition 9.De�nition 17. For some line L in P2

Fq
for whi
h the interse
tion with the 
urve C 
onsists of

Fq-rational points, let
aL, bL, cLbe the probabilities (over the possible fa
tor base 
hoi
es) that L gives rise to a Full, FP orPP relation respe
tively.The following proposition 
ontains slightly more information than we need for the proofof Proposition 9.
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h the interse
tion with C 
onsists of 4 distin
t Fq-rational points, we have:
aL ∼ 16

q2
, bL ∼ 32

q3/2
, cL ∼ 24

q
.Moreover, for all lines L for whi
h the interse
tion with C 
onsists of 3 distin
t Fq-rationalpoints (one of whi
h is a double point), we have

aL ∼ 8

q3/2
, bL ∼ 12

q
, cL = 0 .Proof. Let L be a line interse
ting C in s distin
t Fq-rational points. The probability that afa
tor base F is 
hosen su
h that # (L ∩ F) = r is

1
(#C(Fq)

⌈2q1/2⌉
)

(

s

r

)(

#C(Fq) − s

⌈2q1/2⌉ − r

)

∈
(

s

r

)

(

2q1/2 + O(1)

q + O(
√

q)

)r

⊆
(

s

r

)

(

2q1/2

q

(

1 + O(q−1/2)
)

)r

⊆
(

s

r

)

(

2q−1/2
)r

·
(

1 + O(q−1/2)
)

.For the line L to be 
onsidered by the relation 
olle
tion step, we must have r ≥ 2. Therefore,when s − r is 0, 1 or 2 respe
tively, the estimate above gives the probabilities aL, bL, cL,ex
ept that cL is 0 if s = 3. (Note for the last assertion that in the algorithm only lines whi
hpass through two di�erent points of the fa
tor base are 
onsidered.) The resulting equivalentsfollow. �Proposition 9 is now a 
onsequen
e of the following proposition.Proposition 19. If we 
hoose the fa
tor base F uniformly at random from the set of allsubsets of C(Fq) with ⌈2q1/2⌉ elements, the expe
ted values B,C of FP, PP relations satisfyasymptoti
ally for q −→ ∞:
B ∈ 4

3
q1/2(1 + O(q−1/2)) , C ∈ q(1 + O(q−1/2)) .Proof. We have

B =
∑

L

bL , C =
∑

L

cL ,where the sums run over all lines in P2
Fq

whi
h interse
t the 
urve in Fq-rational points.Combining Proposition 14, the proof of Proposition 18, and the fa
t that the number of lineswhose interse
tion with the 
urve 
ontain a double point is in O(q), the 
laims follow. �6 Experimental study of the heuristi
 assumptionThe analysis in Se
tion 4 relies on Heuristi
 Assumption 12. In order to test this assumption,for ea
h of the base �elds F219 to F224 , we built 160 graphs of large prime relations, built from10 (pseudo-)randomly 
hosen fa
tor bases over 16 random 
urves of genus 3 given by arbitraryplane quarti
s. We thereby dis
arded FP relations, that is, we only 
onsidered PP relations.The reason for this is that the number of FP relations is asymptoti
ally negligible, but FPrelations might lead to distortions whi
h hide phenomena o

urring for q −→ ∞.
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omparison with the same number of instan
es of Bernoulli random graphs
G(q, p), where p = 2

q . As dis
ussed after Proposition 9, su
h graphs have an expe
ted numberof edges ∼ q. The graph instan
es are 
onstru
ted by �rst 
hoosing the number of edgesa

ording to the 
orresponding binomial distribution (approximated by a normal distribution),and then pi
king an instan
e of a uniform random graph.Note that a 
omparison following more 
losely the statement of Heuristi
 Assumption 12would be to 
onstru
t, for ea
h 
urve, instan
es of the Bernoulli random graph G(L ∪̇ {∗}, p),where p is su
h that the expe
ted number of edges is exa
tly the same as the number Cde�ned in Proposition 19. However, for 
omputing exa
tly C we would have to determine theexa
t number of lines in P2
Fq

whi
h lead to 
ompletely split divisors; we are not aware of anysu�
iently fast method for this task.Our 
omparison 
riteria are both derived from the properties stated in Proposition 8, aswell as the usage of the graph of large prime relations in the algorithm.Given a graph G and a vertex x, we de�ne:
Nk(x) = {y ∈ G, dG(x, y) ≤ k} ,

tree_depth(x, S) = min {k #Nk(x) ≥ S} ,

cc_depth(x) = max {k Nk(x) ) Nk−1(x)} .It is easily seen that when x belongs to a 
onne
ted 
omponent Γ, we have
cc_depth(x) ≤ diameter(Γ) ≤ 2cc_depth(x).Based on this, we use cc_depth as a rough (indire
t) measure of the diameter of the giant
onne
ted 
omponent.Furthermore, we also measure tree_depth(x, q5/6), as the a

ordan
e of this quantity be-tween the graph of large prime relations and the random graph 
ase ensures the su

ess ofStep 4 of the algorithm of Se
tion 3.Table 1 gathers these measurements. For ea
h set of graphs, as well as for the 
orrespondinginstan
es of Bernoulli random graphs, we give the extremal values as well as the observedmean for tree_depth(x, q5/6) and cc_depth(x) for verti
es x pi
ked at random within thegiant 
onne
ted 
omponent. The size of the giant 
onne
ted 
omponent is also given, inmillions of verti
es. Finally, we give the average number of edges present in the graphs, as aratio 
ompared to the expe
ted value q. Table 1 shows no noti
eable deviation between thegraph of large prime relations and the 
orresponding random graph.7 Pra
ti
al aspe
ts and 
omputationsFor pra
ti
al implementation of the algorithm, the following modi�
ations were made.

• The fa
tor base is not 
hosen at random. Instead, we pi
k all the Fq-rational points whoseabs
issa has an integer representation within the interval [0, B], where B is ⌈2√q
⌉ or anearby bound (experiments were made with B =

⌈

4
3

√
2q
⌉, whi
h was su�
ient). Thenmultiples of the input elements are 
omputed whi
h are represented by 
ompletely splitdivisors. (For this, about 6 multiples have to be 
omputed for ea
h input element.) The
orresponding points of C(Fq) are inserted into the fa
tor base.
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q tree_depth(x, q5/6) cc_depth(x) giant 
.
. (in millions) #edges/q

219
real 14 . . .16.8 . . . 26 29 . . .34.7 . . . 47 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00random 14 . . .16.8 . . . 26 30 . . .34.5 . . . 42 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00

220
real 15 . . .17.6 . . . 28 32 . . .36.4 . . . 49 0.83 . . .0.83 . . . 0.84 0.99 . . .1.00 . . . 1.00random 15 . . .17.6 . . . 28 32 . . .36.5 . . . 48 0.83 . . .0.83 . . . 0.83 0.99 . . .1.00 . . . 1.00

221
real 15 . . .18.4 . . . 30 33 . . .38.2 . . . 48 1.67 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00random 16 . . .18.4 . . . 29 33 . . .38.1 . . . 48 1.66 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00

222
real 16 . . .19.2 . . . 28 35 . . .39.8 . . . 51 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00random 16 . . .19.1 . . . 28 35 . . .39.7 . . . 50 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00

223
real 17 . . .20.0 . . . 29 37 . . .41.7 . . . 53 6.67 . . .6.68 . . . 6.68 1.00 . . .1.00 . . . 1.00random 17 . . .20.0 . . . 34 36 . . .41.6 . . . 55 6.67 . . .6.67 . . . 6.68 1.00 . . .1.00 . . . 1.00

224
real 18 . . .20.8 . . . 31 39 . . .43.3 . . . 53 13.35 . . .13.36 . . . 13.37 1.00 . . .1.00 . . . 1.00random 18 . . .20.8 . . . 29 38 . . .43.3 . . . 52 13.35 . . .13.36 . . . 13.36 1.00 . . .1.00 . . . 1.00Table 1: Comparison of the graph of large prime relations with a Bernoulli random graph

• The relations used for the matrix 
onstru
tion in Step 5 of the algorithm are the sameas relations used for building the graph (following the non-simpli�ed algorithm in [13℄).
• As the problem size grows, it be
omes 
umbersome to deal with the whole graph formemory reasons. Sin
e the previous modi�
ation implies that we are interested in 
y
leso

urring in this graph (as des
ribed in [13℄), we �rst perform a ��ltering� pass: All PPrelations are gathered, and used to identify a smaller set of relations 
ontaining a smallersubgraph with su�
iently many 
y
les. This ��ltering� step is done in the spirit of e.g. [6℄.We have been able to 
arry out dis
rete logarithm 
omputations in the degree 0 
lassgroup of the C3,4 
urve de�ned by Y 4 + Y 3 + Y 2 + X2Y + X3 + X + 1 = 0 over the �eld F231 .Choosing a 
urve with a model de�ned over F2 avoids the problem of 
omputing the grouporder, whi
h is readily obtained. The group order has 93 bits, and it has a 90-bit prime fa
tor.The implementation has been 
arried out in C/C++ and run on 2.4GHz Opteron pro
essors.A pair of distin
t points Fi, Fj ∈ F is pro
essed in 3.4 mi
rose
onds, yielding the satisfyingpa
e of 6.7 mi
rose
onds per PP relation. This is the only step of the algorithm whi
h issensible to the 
hoi
e of the 
urve, and if the C3,4 
urve is repla
ed by a random non-singularplane quarti
, a PP relation is produ
ed in 8.1 mi
rose
onds on average. In 
omparison, astep of the algorithm in [13℄ applied to hyperellipti
 
urves of genus 3 is performed in 5.0mi
rose
onds on the same hardware, but su

eeds in produ
ing a PP relation only with aprobability of roughly 2#F

q .Most pro
esses dealing with the relations produ
ed and the graph of large prime relationsare dominated by the input/output 
osts, as indi
ated by Table 2. Indeed, the graph 
onsid-ered has roughly 2 · 109 edges, and about as many verti
es. This motivates the prime need forredu
tion of the graph to a smaller subgraph 
ontaining su�
iently many 
y
les. We isolatedroughly 380 million relations, yielding about 200 000 re
ombined relations. This was morethan enough, and made it possible to sele
t only the lightest relations.We eventually produ
ed a 87 803 × 87 803 matrix with an average of 352 non-zero 
oe�-
ients per row. The linear system has been solved using the blo
k Wiedemann algorithm injust below a day, using 4 dual-CPU ma
hines. The solutions were 
he
ked using Magma.In 
omparison with this index 
al
ulus experiment, we extrapolate on the feasibility of su
han atta
k using Pollard's Rho method, or the parallel 
ollision sear
h algorithm from [25℄. For
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lo
k time Time spent on I/ORelation 
olle
tion (1 CPU) 8h ≈ 50%Relation �ltering (1 CPU) 1day ≥ 95%Linear algebra (4×2 CPUs) 1day ≤ 5%Table 2: Running times for di�erent stages of the 
omputation(one C3,4 
urve over F231 with a model over F2)su
h an atta
k, fast arithmeti
 in the degree 0 
lass group is required. Let us 
ount only�eld multipli
ations: algorithms from [12, 3℄ require between 130 and 170 multipli
ations peroperation in the degree 0 
lass group.1 Approximately √π#G/2 operations in the degree 0
lass group G would be required to 
ompute one dis
rete logarithm, hen
e at least 1.6·1016 �eldmultipli
ations. In 
omparison, our implementation requires on average 86 �eld multipli
ationsto obtain one PP relation (and no ex
eptional e�ort has been put into trimming down thisnumber), therefore the total 
ost of the relation 
ollision step is 1.7 · 1011 �eld multipli
ations.This implies that the parallel 
ollision sear
h method 
an be expe
ted to require about 105times as mu
h CPU time as the relation 
olle
tion step in our implementation, hen
e anestimated 
ost of about 370 000 hours on one CPU.It should be noted that Pollard's Rho method is also surpassed by the presented algorithmeven for tiny experiments. Over the �eld F217 , all the steps of the dis
rete logarithm 
om-putation by the index 
al
ulus approa
h 
an be performed in approximately 5 se
onds, whilePollard's Rho method would require approximately 10 minutes.We wish to extrapolate from our index 
al
ulus 
omputation to the feasibility of 
ompu-tations in larger groups. The limiting fa
tor is thereby that we allow resour
es (in hardwareand time) 
omparable to the latest fa
torization re
ord: the fa
torization of RSA-200 withthe General Number Field Sieve [2℄. Note that for this re
ord, both for the relation 
olle
tionand the linear algebra, only o�-the-shelf hardware was used. (A

ording to [2℄, the relation
olle
tion 
ould have been performed on a single 2.2 GHz AMD Opteron CPU in 55 years.The linear algebra took pla
e on a 
luster of 40 dual-CPU 2.2 GHz AMD Opteron 
omputers
onne
ted with gigabit ethernet and took three months.)The relation 
olle
tion step s
ales with no di�
ulty. For a �eld size of q = 237 (hen
ea group size near 2111), it 
ould be 
ompleted in just above three weeks on one ma
hine,in
luding input/output overhead. However the overhead indu
ed by relation �ltering and theexpe
table overhead of linear algebra are not so easily over
ome. The amount of PP relationsto be 
onsidered (1.3 · 1011) and the size of the linear system to be solved (740 000 unknowns)are 
omparable in magnitude to re
ent works. The above mentioned fa
torization re
ordshandled 3 · 109 partial relations, and for the re
ords for �nite �eld dis
rete logarithms [17, 24℄,linear systems of this size have already been solved.These re
ords indi
ate that taking into a

ount the overhead for managing the data size,the presented algorithm 
an probably be employed until approximately a group size of 2111,using hardware and time 
omparable to the resour
es used in the fa
torization of RSA-200.1These �gures are valid for odd 
hara
teristi
. We assume that the 
ost for 
hara
teristi
 2 would be similar.
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