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Abstract

The GHS attack is originally an approach to attack the discrete-
logarithm problem (DLP) in the group of rational points of an elliptic
curve over a non-prime finite field of characteristic 2. It is a method to
transform the original DLP into DLPs in class groups of specific curves
of higher genera over smaller fields.

In this article we give a generalization of the attack to degree 0
class groups of (hyper-)elliptic curves over non-prime fields of arbi-
trary characteristic. We solve the problem under which conditions the
kernel of the “transformation homomorphism” (GHS-conorm-norm ho-
momorphism) is small. We then analyze the resulting curves for the
case that the characteristic is odd.

2000 Mathematics Subject Classification Primary 94A60, 11T71. Secondary
11Y99, 14H30.

1 Introduction

The discrete-logarithm problem (DLP) in the group of rational points of an
elliptic curve over a finite field and more generally in the degree 0 divisor
class group of a (hyper-)elliptic curve over a finite field is a well-studied
cryptographic primitive for public-key cryptosystems. The security of this
primitive relies on the difficulty of solving the DLP.

In [8], a new approach to attack the DLP in the group of rational points of
elliptic curves over non-prime finite fields of characteristic 2 was introduced.
Following [16], we call this approach the GHS attack.

The GHS attack is a method to transform the DLP in the group of
rational points of an elliptic curve over a non-prime field into DLPs in class
groups of specific curves of higher genera over smaller fields. The hope is
that if the genus of a resulting curve is not “too large” and one finds “nice”
explicit equations, it might be possible to solve the DLP via index calculus
methods.
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The curves of higher genera over smaller fields were originally discovered
as smooth, projective curves which are birational to components of intersec-
tions of Weil restrictions of an affine part of the elliptic curve with certain
hyperplanes. Then function field theory was applied to study the result-
ing curves; see [8, 3.2-3.4], expecially [8, Theorem 12]. In this article, our
starting point is a generalization of the function field theoretic approach de-
veloped in [8]. (The role of Weil restrictions in the GHS attack is discussed
in an appendix. There one also finds a discussion how the GHS attack fits
into Frey’s “Weil descent” idea.)

Notations and terminology

The terminology follows [13] and [21]. By a function field, we mean a finitely
generated field extension F'|k of transcendence degree 1. If k is a perfect field
(e.g. a finite field), the function field F'|k is called regular if k is algebraically
closed in F; cf. [13, VIII, 4].

We make the following convention: If K|k is a finite extension of fields,
we denote function fields/curves over K with a prime and those over k
without a prime. This philosophy is not consistent with the notations in [8].
For example, the meaning of F and F’ is interchanged.

Outline of the GHS attack for (hyper-)elliptic curves in arbi-
trary characteristic

We give a brief description of a generalization of the original GHS attack
from elliptic curves to (hyper-)elliptic curves and from characteristic 2 to
arbitrary characteristic in the function field-theoretic setting. We will refer
to this generalization also as GHS attack.

Let p be a prime, ¢ a power of p, n > 1 an odd natural number.! Let H’
be a (hyper-)elliptic curve over Fyn. Let an explicit (hyper-)elliptic equation
of an affine part of H' be fixed. The fixed equation of H' induces an explicit
description of CI°(H'), the degree 0 divisor class group of H' (see for example
[17]), and with respect to this description, we consider the DLP in CI°(H).

Assume that — with the possible exception of vulnerability to the GHS
attack which we will study — H' would be regarded as “cryptographically
suitable”. For the present article it is most important that #CI1°(H') should
be prime up to a small cofactor, and the large prime factor of #CI°(H’)
should be > 2190, In order to guarantee that the known index calculus
attacks are not more efficient than generic attacks, the genus of H' should

'n [8], it is shown that in characteristic 2 the GHS attack can also be applied to certain
elliptic curves if n is even. In this article, we concentrate on the case that n is odd. The
case that p is odd and n = 2 is discussed in [22].
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be at most 3; cf. [2], [7]. 2
Let Fyn (H') be the function field of H'. Then CI°(F, (H')) = CI°(H).
Let the extension F'|K(H') be defined as in (2), and let us assume for
simplicity that F’'|K is regular; see also Lemma 1. Then there exists a
regular function field F|F, such that Fy F' = F'; see Proposition 3.
Consider the following homomorphism of groups.

NF’|F [¢] ConF'UFqn (H’) : Clo(Fqn (H,)) — CIO(F) (1)

Here, Conpr |, (g7) is the conorm homomorphism, and N g is the norm
homomorphism. We call homomorphism (1) the GHS-conorm-norm homo-
morphism.

Via this homomorphism, one wishes to transform the DLP in CIO(IFqn (H"))
into the DLP in CI°(F). In order that this is possible, it is necessary that
the large subgroup of prime order is preserved, i.e. that the kernel of (1) and
the large subgroup of prime order have trivial intersection. We will give a
condition which is both necessary as well as sufficient in order that this is
the case; see Proposition 5 and Theorem 1.

The goal of the attack is now to find a “nice” explicit (for example
hyperelliptic) equation of F, represent CI°(F) with the help of this equation
and then try to break instances of the DLP in CI°(K(H')) by transforming
them with (1) into instances of the DLP in CI°(F) and then solving them
with index calculus methods; cf. [2], [7].

Besides finding “nice” equations for F', it is of greatest importance that
#CI°(F) = ¢9&) is not too large (g(F) = genus of F). For example, if
@9F) > 21024 1y the current state of the art of index calculus, it is impos-
sible to solve the resulting DLP in CI°(F).

The attack was previously analyzed in detail for elliptic curves and p = 2;
see [8], [16], [12], [14]. Similar results to the ones in [8] can be found in [5]
for certain hyperelliptic curves — again for p = 2.

In this article, we prove in particular (see Section 6):
Let p be odd. Then:

o If n is prime, n > 11, and H' = E' is an elliptic curve such that
q" > 2160 then #CIO(F) ~ g9(F) > 25000,

e For n = 5,7 there exist examples of elliptic curves E' for which the
genus of F' is 5 respectively 7. These examples are optimal in the sense

?Furthermore, #C1°(H') should not equal p (cf. [19], [20]), and the (multiplicative)
order of p modulo the large prime factor of #CI1°(H') should be so large that the attacks
via the Weil- and the Tate-pairing (cf. [15], [4]) are infeasible.
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that the genus of F is smallest possible under the condition that the
large subgroup prime order of E'(K) ~ CI°(E") is preserved under (1).

In the first case, the size of C1°(F) is so large that the attack fails unless
a substantial improvement on the solution of the DLP in class groups of
high-genus curves / function fields is made or some very special properties
of the function field F' can be exploited. In the second case, the attack might
be successful.

The rest of the article is organized as follows: In the next section, we
prove the existence of the function field F', in Section 3, we prove under which
conditions the kernel of the GHS-conorm-norm homomorphism is small. We
then turn to the case that the characteristic is odd. After having given some
background information on Kummer theory of function fields, we analyze
the genera of the resulting function fields, first for general odd extension
degree in Section 5, and then for prime extension degree in Section 6. In
Section 7, we show how for certain important examples explicit defining
equations for F' can be derived. In the last section, we draw conclusions,
and in an appendix we discuss the relation between the GHS attack and
Frey’s “Weil descent” idea.

2 The GHS attack in arbitrary characteristic

We begin by showing that the necessary constructions for the attack can be
carried out independently of the characteristic provided that the extension
degree n is odd.

We first fix some notation that we will use throughout the article.

Let K|k be a non-trivial extension of finite fields of odd degree n. Let
K denote a fixed algebraic closure of K. Let H' be a (hyper-)elliptic curve
over K, i.e. a smooth geometrically irreducible curve of genus g > 1 over K
such that there exists a non-constant morphism of degree 2 from the curve
to the projective line.

Let K(H') be the function field of H' and fix some embedding K (z) <
K (H') such that the extension K(H')|K(z) has degree 2 (for ¢ > 2, K(H')
contains a unique rational subfield of index 2, and the embedding K (z) —
K (H') is unique up to an automorphism of K(x)).

Fix a separable closure K (z)%P of K (z) (containing K (H') and K (z)).
In the following, we will entirely work within this closure. If K | K is some
algebraic extension (inside K), we denote the composite KK (H') (inside
K(z)%P) by K(H').

We denote the Frobenius automorphism of K|k by Ok|k- By setting
ok |k(T) := T, 0k, extends to an automorphism of K (z)|k(z), also denoted
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by ok . We extend ok to some automorphism Gx; of K(z)*P and let
a;'qk(K(H’)) be the image of K (H') under 6 ,*. (As K(H')|K (z) is Galois,
this is independent of the chosen extension of o &)

Let

F':= K(H') o (K(H") - o, (K(H")). (2)
This is the Galois closure of K (H') over k(z) (inside k(z)%P); cf. [21, A.11.].
Let m,m € N be defined by

[F': K(z)]=2™, [KF':K(z)] = 2™. (3)

Lemma 1 FEither F'|K is regular or F' is reqular over the unique quadratic
extension of K.

Proof Let K be the algebraic closure of K in F'. Then Gal(K|K) ~
Gal(K ()| K (z)). This group is on the one hand cyclic and on the other hand
a quotient of Gal(F'|K(z)). Now Gal(F'|K(z)) is isomorphic to (Z/2Z)™,
and thus its only cyclic quotients are the trivial group and the cyclic group
of order 2. O

Under our assumption that n is odd, we have the following lemma;:

Lemma 2 The Frobenius o, on K(x) extends to an automorphism of
F'\k(x) of order n, and two such extensions are conjugate to each other in

Gal(F'|k(x)).
Proof By Galois theory, we have a short exact sequence
1 — Gal(F'|K(z)) — Gal(F'|k(z)) — Gal(K (z)|k(z)) — 1,

where Gal(K (z)|k(z)) ~ Gal(K|k). The order of Gal(F'|K(z)), 2™, is prime
to m, since by assumption n is odd. By two well-known group-theoretic
theorems by Zassenhaus (which are rather elementary in the special case we
are considering), the sequence splits and two sections are conjugate to each
other; see [11, I, 18.1,18.2]. The statement of the lemma is a reformulation
of this fact. O

Now let us fix an extension o, of ok; as in the lemma, and let F :=
F'V“KIk) be the fixed field under Ok|k- Then [F': F| = n,F' = KF and
FNK=k.

If F'|K is regular, it follows that F|k is regular. If F'|K(z) is not regular,
let Ak be the unique quadratic extension. Then by Lemma 1, F'|K\ is
regular, and F'|) is regular.
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Proposition 3 Assume that F'|K is reqular. Then there ezxists a subexten-
sion F|k(z) of F'|k(x) such that F|k is reqular and KF = F'. Further, any
two such extensions F|k(x) are isomorphic.

If F'|K is not regular, let Ak be the unique quadratic extension. Then
F'|AK is regular and there exists a subextension F|\(x) of F'|\(z) such that
F'|X is regular and AK F = KF = F'. Again, any two such extensions are
isomorphic.

Proof We have to show that any extension Fi|k(z) or Fi|A(z) as in the
proposition is isomorphic to the extension F|k(z) or F|A(z) constructed
above. Assume that F'|K is regular (the other case is proved analogously).
Let Fi|k(z) be a subextension of F'|k(z) such that Fi|k is regular and
KF; = F'. The fact that Fy|k is regular is equivalent to F; N k(z) = k(z).
In particular we have F; N K(z) = k(z). This means that the restriction
homomorphism Gal(F'|F;) — Gal(K (z)|k(z)) is an isomorphism; see [13,
VI, Theorem 1.12]. Thus F'|F and F'|F; are cyclic extensions of order n,
and there exists a generating element in the Galois groups of F'|F; which
restrict to o, € Gal(K (7)|k(z)). By Lemma 2, this generating element of
Gal(F'|F1) is conjugate to the above chosen extension gy of 0. This
implies that F'|k(z) and F1|k(z) are isomorphic field extensions. ]

Remark If n is not odd but n = m, Lemma 2 and thus Proposition 3
still hold. This follows from the fact that in this case F' ~ K(H') ®k/(s)

ok k(K (7)) ®K(z) " k() U?(_kl(K(H'))-

3 The kernel of the GHS-conorm-norm homomor-
phism
We keep the notations of the last section. For instance, K|k is an extension

of finite fields of arbitrary characteristic of odd degree n. Again, we work
entirely within a fixed separable closure of K(z).
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We first want to state a necessary condition in order that — in crypto-
graphically relevant situations — the kernel of (1) does not contains the large
subgroup of prime order.

The idea is as follows: Assume that K(H')|k(z) is Galois. Then by
construction, F' = K(H'), thus KF = K(H'). In cryptographically relevant
situations, it follows that the large subgroup of prime order is contained in
the kernel of (1).

Lemma 4 Let u be an intermediate field of K|k. The following statements
are equivalent:

1. K(H'") = og|(K(H") (where o), = Ul[ﬁ::] is the Frobenius of K|u)
2. K(H")|u(z) is Galois

3. There exists an extension M|u(z) of degree 2 such that M|p is regular
and KM = K(H").

Proof As the Galois closure of K(H')|u(z) is K(H')og,(K(H'))- -
oK “[K W=1(K(H'")), the equivalence of the first two points is obvious.

It is also obvious that the third condition implies the first two.

So let K(H')|u(z) be Galois. By Proposition 3 applied to K |u instead of

K|k, we see that there exists an extension M |u(x) such that M|y is regular
and KM = K(H'). By construction M|u(z) has degree 2. O

Remark Ifn iseven, the first two points are also equivalent, and the third
implies these two points.

Let p be an intermediate field of K|k such that 4 C K, assume that the
conditions of the lemma are satisfied, and let M|u(x) be as in the lemma. We
claim that (1) factors through the norm homomorphism from CI°(K (H'))
to C1°(M).

Let Fj be the Galois closure of M|k(z). By the argumentation fol-
lowing Lemma 2 applied to u|k, M|k(z) and F{, there exists an extension
Fo|k(z) with pFy = Fj and Fy N = k. As in the last section, let A be
the unique extension of k of degree 2. Then depending on whether F'|K
is regular or F'|AK is regular, Fy|k is regular or Fp|A is regular. Further
F' = KF| = KF), and thus by Proposition 3 Fy|k(z) is isomorphic to
F|k(z). (In particular, F' is contained in the Galois extension Fj|k(z).) We
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thus obtain the following diagram.

F'=KFy
F! = uF, K(H')=KM

T

M

Fy, F
This induces the commutative diagram

CI°(F")y =<—— CIY(K (H"))

| |

CIO(nFy) C1I°(M)

|

CI°(F).

(Here the left-arrows are conorm homomorphisms and the down-arrows are
norm homomorphisms.) It follows that (1) factors through normg gy as :
CI%(K (H'")) — CI°(M).

Proposition 5 Let pu be an intermediate field of K|k and assume that
K(H")|u(z) is Galois. Then there exists a regular function field M|p with
KM = K(H') such that (1) factors through Ny (g : CI%K(H")) —
CIo(M).

Cryptological application Assume that the curve H' is cryptographi-
cally suitable — i.e. in particular the genus of H' is small (< 3) and the
order of CI°(K (H")) is prime up to a small cofactor — and that a field p C K
as in the proposition exists. Then the proposition implies that the kernel
of (1) contains the large subgroup of prime order, and thus the GHS attack
fails. This follows from the theorem of Hasse-Weil; cf. [21, V.2.1.].

The following theorem can be viewed as a converse to the last proposi-
tion.

Theorem 1 Let K|k, H', F and F' be as in Proposition 3. Assume that
for no intermediate field p of K|k such that p C K, K(H')|u(z) is Galois.
Then the kernel of (1) contains only elements of order a 2-power. 3

8 After having finished the preparation of the manuscript, we were informed that in the
context of [8], F. Hess obtained a similar result.
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Proof In fact, we will prove that the kernel of (1) is annihilated by multipli-

cation with 2™~! i.e. that every element of the kernel has an order dividing
2m-1,

We first fix a notation: If o : A; — As is a homomorphism of function
fields, we denote the conorm from C1°(4;) to C1°(Ay) with respect to a by
Q.

Let + : K(H') < F' be the inclusion. As in Section 2, let ok ), be a fixed
extension of o, to F'|k(z) and let F = FIIKIk),

Then by definition, Congr g1y = ¢, and

n—1
Congr|p o Nprj g o Conpr| g1y = Z‘;f\(/lkz ou: CI°(K(H") — CI°(F").
=0

As the conorm homomorphism Cong p is injective (see [21, TIT.6.3. (f)]),
the kernel of N p o Conpr|(gry : CI°(K (H')) — CI°(F), i.e. the kernel of
(1), equals the kernel of

n—1
> g’ oL CIU(K (H')) — CI(F').
=0

We want to study the kernel of this homomorphism.

Let of) : K(H') — o}, (K(H")) be the restriction of Gk to K(H').
Let ¢; : a}'qk(K(H’)) < F' be the inclusions. Then Z?:_ol @i oL =
> Lo %-

The conorm homomorphisms

i 2 O (o (K (H'))) — CI(F')

induce a homomorphism

il : @ Cl (0o (K(H'"))) — CI°(F),
1=0

and the conorm homomorphisms

Oy s UK (H) — (o (K ()

induce a homomorphism

—_— . n—1 .
(Ojp)i : UK (HN) — [T C0p (K (HD) = D O oo (K (H)-
- i i=0
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Combining these two homomorphisms, we obtain:

Zo,qk OL—ZL,oaK‘k (@i 1) 0 (@)i:CIO(K(H’)) — CI°(F")

The homomorphism (01’(| )i is obviously injective, and we will prove now

that the exponent of the kernel of @; ¢; divides 2™~1.

The norm homomorphisms

Ni = Npijo i (k(7) : CI°(F') — O (o, (K(H)))

induce a homomorphlsm

(N;); : CI°(F") —>H01° (ok (K @01 (o k(K (H)))

1=0

We claim that (N;); o (®;¢) = 2m—1_ This implies in particular that the
exponent of the kernel of ®; ¢; divides om—1,
The claim follows from the following two claims:

e For i : O, e, — 1, NF"UIi(\k_(K(H’)) o ConF'|UI”"qk(K(H’)) :
Clo(alzqk(K(H’))) — Clo(a}qk(K(H'))) is multiplication by 2!,

e Fori,7=0,...,n—1,1# 4, N F,|UIJ-<‘k(K(H,)) o ConF,‘a;'qk(K(H,)) :

Cl(oj (K (H"))) — 010(0JK|k(K(H'))) is trivial.

The first claim is standard, we prove the second.
By assumption and Lemma 4, fornoi =1,...,n—1, K(H') = ali(‘k(K(H’)).
This means that for no 4,5 = 0,...,n — 1 with i # j, a;ﬂk(K(H’)) =

o (K (H)).-

Let 1 # 5 € {0,...,n — 1}, let L' := a}(‘k(K(H'))aI]{‘k(K(H')). Then
L'|K () is an extension of degree 4, and F'|L’ is an extension of degree 2™ 2.
FI
_[‘//
ot (K (H) o (K ()
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We have

NF’|anqk(K(H’)) ° ConF’\G}'qk(K(H’)) -
NL’|UIJ'<‘k(K(H')) o] NF’|L’ o COnFI|LI o ConL’|0'I”"(|k(K(H’)) =

. -2 i
Nujog wrqmy © 27710 Conpoi re(ary),

where [2772] denotes multiplication by 2™~2. Tt thus suffices to prove that

L’|crlj<|k(K(H’))OCOHL’W;{\k(K(H')) = 0. By the following lemma, NL’.|a}.'(|k(K(H'))°
CODLI|0.Ii(|k(K(H/)) = Conaqu(K(H,mK(w) o Na;'qk(K(H’)NK(w)’ and this is equal
to 0 as CI°(K (x)) = 0. O

Lemma 6 Let A be a function field over a field K, let B|A and C|A be
finite Galois extensions, let BC be a composite of B and C over A such that
inside BC, BNC = A. Then

Npcic © Conggp = Congpa o N4 : CI(B|K) — CI°(C|K).

Proof The statement follows from the corresponding statement on the level
of divisors:

Npc|c o Congejp = Congjg o Npj4 : Div(B|K) — Div(C|K)

This statement can be proven as follows:

On the level of divisors, the conorm homomorphism is injective. It thus
suffices to check that COnBc|CONBc‘COCOnBc‘B = ConBC|C’OCOHC|AONB\A :
Div(B|K) — Div(C|K).

We denote the conorm on the level of divisors with respect to a homo-
morphism of function fields a : Ay — A also by a. If 7 € Gal(BC|C), we
denote its restriction to B by 7, and we denote the inclusion B — BC by «.
By assumption on the composite BC|A, Gal(BC|C) — Gal(B|A),7 — T
is an isomorphism (see [13, VI, Theorem 1.12]) and 7¢ = 7 : B — BC.

Now, for D € Div(B|K), Conpgcic © Npgjc © Conggp(D) =
>recaielo) TUD)) = t(Xrzcqai(sja) T(P)) = ConpcpoCong aoNp (D) =
Conpcya © Npa(D) = Congg|c o Cong g © Np (D). O

Remark The theorem is also valid for n = [K : k] even, provided that the
field F' as in Proposition 3 exists.

Corollary 7 Let n be prime and assume that K(H') C F'. Then the kernel
of (1) contains only elements of order a 2-power.
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4 Composites of (hyper-)elliptic function fields

For the rest of the article, we restrict ourselves to the case that the charac-
teristic is odd.

The main goal is now to calculate the genus of F' = K(H') o, (K(H')) - -
a;@l (K(H')) or — what is the same — the genus of K F'|K and furthermore
to check whether F'|K is regular.

In [8], Artin-Schreier Theory was used to study the extension F'|K(zx).
Since we work in odd characteristic, we wish to substitute this by Kummer
Theory.

We first give an exposition to the results we need and come back to the
GHS attack in the following section.

Let A be a field with char(A) # 2, let AP be a fixed separable closure,
and let puo C A* be the subgroup consisting of 1 and -1.
We have a pairing

Gal(A%P|A) x A* — o
(o,u) — @ where v? = u, v € AP,

Let U be a finite subgroup of A*/A*2. Let A[v/U] be the subfield of v/A
generated over A by the square roots of the preimages of the elements of U
in A*.

Then the above pairing induces a non-degenerate pairing
() : Gal(A[VU]|A) x U — py (4)

of finite abelian groups of exponent 2.
We can regard U as an Fs-vector space. Since the pairing is non-
degenerate,

[A[VU] : A] = 2dime (V) (5)
The non-degeneracy of the pairing also implies:

Lemma 8 The assignment V — A[W] gives bijection between the subvec-
tor spaces of U and the subextensions of A[v/U]|A.

Now let K be a perfect field with char(K) # 2. Fix an algebraic clo-
sure K and a separable closure K ()P containing K (z). All the following
extensions of K(x) should be regarded inside K (z)*P. We now apply the
above statements to the case that A = K(z).

We fix the following notation: If h € K (z)*, its image in K (z)*/K (z)*?
is denoted by h.

Let fi,...,fn € K(z)*, let L;|k(z) be the extension given by y? = fi(z)
inside K (z)%P. Let L be the composite of the L; inside K (x)%P.
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Let U be the Fy-vector space generated by the f; € K(z)*/K (z)*2. Let
U be the image of U inside K (z)*/K(z)*?>. Then L = K(z)[vU], KL =
K(2)[VT).

Lemma 9 L|K is reqular iff U — U is an isomorphism.

Proof L|K is regular iff [L : K(z)] = [KL : K(x)]. By (5) this is equivalent
to U= U. O
Especially:

Lemma 10 Let all f; be monic, i.e. the leading coefficient is 1. Then L|K
is regular.

Proof Under this condition, all elements of U are images of monic rational
functions. Now, if a monic rational function of K is a square in K(z), it is
also a square in K(z). (As K|K is separable.) O

We want to study the ramification of L|K (x) in terms of the ramification
of L;| K (x).

Lemma 11 L|K(z) is ramified at a place p of K(x)|K iff there exists an i
such that L;|K(z) is ramified. If this is the case, the ramification indez of
p in L|K(x) is 2.

Proof This is a special case of Abhyankar’s Lemma,; see [18, Lemma (2.14)]
or [21, Proposition I11.8.9]. * ]

Let « be the algebraic closure of K in L. We now want to calculate the
genus of the function field L|x. Since the genus is invariant under extension
of the constant field, we can instead calculate the genus of K L|K.

Let r be the number of places of K (z)|K which ramify in at least one of
the K L;|K (). By the above lemma this is equal to the number of ramified
places of KL|K(x). Let

m := dimp, (U). (6)
Then by (5) [KL : K(z)] = 2™, and by the Hurwitz genus formula (see [21,
I11.5.6))

g(Llk) = g(RLIK) =27(0 — 1) + }r(2 - )F +1
=—2M 4722 4 1 =2""2(r —4) + 1.

(7)

If m > 3, g(L|k) = g(KL|K) is odd. In particular:

We would like to stress that the lemma is only valid because we assumed that
char(K) # 2. In particular, it cannot be applied to study the GHS attack in charac-
teristic 2.
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Lemma 12 Ifm > 3, L|k is not a rational function field.

Applying this result to subextensions of K L|K (z) — which by Lemma 8
all have the form 7(33)[\2/7 ] for some vector subspace V of U —, we obtain:
If m > 4, KL|K(x) does not contain a rational subfield of index 2. This
implies:

Lemma 13 If m > 4, L|K(z) does not contain a rational subfield of in-
dex 2.

Proof Let M|K(z) be a subfield of index 2. Then either KL|KM is an
extension of degree 2 or it is trivial. In both cases, g(K M|K) > 1. O

We will need the following explicit description of K (z)*/K*2.
Let P be the set of monic irreducible polynomials over K. Unique fac-
torization in the ring K|[z] induces an isomorphism

K*EB@pePZ;)K(a:)*,
(¢; (fp)per) — CHpeprP.

Thus
K*/K* & @pepF2 — K(z)*/K(2)*. (8)

Note that if K is finite (and as always char(K) is odd), K*/K*? ~ Fy.

5 Analysis of the GHS attack in odd characteristic

We now apply the above results to the special case of the GHS attack in
odd characteristic with respect to an odd extension degree n.

Let k be a finite field of odd characteristic, K|k an extension of odd
degree n. Let H' be a (hyper-)elliptic curve of genus g, and let K(H')|K(z)
be an extension of degree 2.

As in Section 2, let F” be the Galois closure of K (H')|k(z) inside K (z)%¢P.
In order for the attack to be successful we assume (see Proposition 5):

For no intermediate field p of K|k with p C K, K(H')|u(z) is Galois.

The extension K (H')|K(z) is given by a WeierstraB-equation of the form

y* = c f(x),

where f is a monic square-free polynomial of degree 2¢g + 1 or 2g + 2 and
¢ € K*. By Kummer Theory we can change ¢ by multiplication with an
element of K*2. Since K*/K*? ~ Fy ~ k*/k*2, we can choose ¢ € k* and
we do so.
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Now F' is generated over K(z) by yo,...,yn—1 where y; satisfies
v = colou()(@).
Thus F' = K(z)[vU] where U C K(z)*/K(z)*? is the vector subspace
n

)
generated by the images U%‘k(f) of Jziqk(f) in K(z)*/K(z)*?. Let U be the

image of U in K(z)*/K(x)*?. Then by (5), the numbers m and ™ defined
in (3) can be expressed as follows:

m = dimg, (U), m = dimg, (U). (9)
Lemma 10 and Proposition 3 imply:
Proposition 14 If ¢ =1, F'|K is regular, and so is F|k.

We fix the following notations: Let oy, € Gal(K|k) ~ Gal(K (x)|k(z)) be
the Frobenius automorphism relative to k. Analogously to 0}’(‘ LK (H')) we
define o} (K (H')). Then o/(K(H')) equals the composite FU}'(“C(K(H’)).
Moreover, KF' = K(H') o,(K(H'))--- o' (K (H")).

We ask at which places K F'|K(z) is ramified, i.e. by Lemma 11 which
places of K (z)|K ramify in at least one of the extensions o} (K(H'))|K (z).

We identify the places of K(z)|K with P U {oo}, where P is the set of
monic linear polynomials over K. The Frobenius o), operates on the places,
and this operation corresponds to the operation on P U{cc} induced by the
operation on K (z) (where o%(00) = o).

The extension K(H')|K(z) is ramified at some place p € P iff p divides
f- (Note our assumption that f be square free.) It is ramified at oo iff
the deg(f) = 29 + 1. Let R be the set of ramified places of K (H')|K (z),
ie. #R =2g+ 2. Then o} (_(H’))|F( ) is ramified exactly at of(R), and
KF'|K(z) is ramified exactly at JI'_, ok(R) Let r := # Ul ak( ) be the
number of ramified places of KF'|K (z).

By (7) we obtain

g(F) = g(F') = 2™ 2(r — 4) + 1. (10)

The number 7 is obviously bounded from above by n. Further, r < n-#R =
n(2g + 2). Thus

g(F) <2 2(2g+2)n—4)+1=2"""((g+ )n—2)+1.  (11)

We are searching for a lower bound for g(F).
As in the last section, if b € K (x)*, we denote its image in K (z)*/K (z)*?
by h. If h € K(z)*, we denote its image in K (z)*/K (x)*? by h.
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Since U is m-dimensional, there exist 4;, [ = 1,...,m™ such that O'K‘ o(f)

form a basis for U. This means in particular that UZ 0 Uk( ) =Ur, ol (R),
and we have r = # ", o} (R) < - #R = m(2g + 2). This implies

1. (12)

r
2g + 2

m> [
Here, for z € Q, [z] denotes the smallest integer greater or equal z.

We now want to bound r from below by a function depending only on
n. We use the fact that by assumption for no intermediate field p of K|k
with p C K, Gal(K(H"))|u(z)) is Galois.

The group Gal(K|k) operates on |J, ak(R). Let Gal(K|A) be the
kernel of the homomorphism Gal(K|k) — Aut(J!-, a,'c(R))

Lemma 15 K C A.

Proof We show K = K NA. We have Gal(K|K N A) = (Gal(K|K) U
Gal(K|A)). The polynomial ¢ f is fixed by both of these groups, thus it is
fixed by Gal(K|K N A). It follows that ¢ f € K N A, and this implies that
K(H")|KNA(z) is Galois. Tt follows from the assumption that K = K NA.

O
By definition of A, we have an injective homomorphism
n—1 )
Gal(Alk) — Aut(U o (R))- (13)
i=0

Let 6 := [A : k], let 0 = [, prime p° be the prime decomposition of 4.
By (13) we know that the cyclic group of order § can be embedded in the
symmetric group on 7 elements. This implies

r> Z . (14)
p7(5]7;é0
Let n = Hp prime p™ be the prime decomposition of n. By the above lemma,

n|d, thus for all primes p, n, < d,. With (14), we obtain
r> > pm. (15)
panp;éo
Inserting (12) and (15) into the right-hand side of (10), we obtain

ZpnpF0P P 7’
g(F) > 2w 1237 g - (16)
pa”p#o

Combining everything we obtain the following theorem.
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Theorem 2 Let K|k be an extension of finite fields of odd characteristic
and odd degree n =[], jyimeP™- Let H' be a (hyper-)elliptic curve over K
of genus g. Choose some extension K(H')|K(x) of degree 2, given by an
equation of the form y? = c f(z) where f is monic and c € K*.

Then via the GHS attack one obtains a function field F, regular over k
or its unique quadratic extension, an extension KF|K(H') of degree 2™ for
some m < n, and a homomorphism from CI°(K(H')) to CI°(F) with the
following properties:

o Ifc=1, F|k is regular.
o g(F) <2" M (g +1)n—2) +1.

o If there exists some field p with k C p C K such that K(H')|u(z) is
Galois, there exists a regular function field M|y with KM = K(H')

such that the homomorphism factors through Ny gras CI%K(H") —
Ccl°(M). ®

o If there does not exist such a i, the kernel of the homomorphism con-
tains only elements of order a 2-power and

Ypnp#0P P
g(F) > ol "ot -2 Z p™r —4) + 1.
p,TLp;éO

Proof The existence of F' and the homomorphism was already shown in

Section 2. The first point is Proposition 14, the second is (11), the third is

Proposition 5, the fourth is (16). O
Further, by Lemma 13:

Proposition 16 Let m be defined as in (9). If m > 4, F'|K(x) does not
contain a rational subfield of index 2.

Note that this is a major difference between the GHS attack in odd char-
acteristic and in characteristic 2. Indeed, according to [8], if H' is an ellip-

tic curve and K has characteristic 2, one can always choose an extension
K(H')|K(z) such that F'|K(z) has a rational subfield of index 2.

6 Analysis for prime extension degree

Now let n be an odd prime. We will analyze the attack in more detail in
this case and outline some possible applications as well as limitations of the
attack.

®In cryptological applications, this means that the large subgroup of prime order of
CI°(K(H")) is not preserved under the homomorphism.
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Let the notations be as above and let n be prime. We still assume that
K(H')|k(z) is not Galois, i.e. that K(H') C F', for otherwise the attack
fails.

Note that by (16),

g(F) > 2/=5172(n — 4) 4 1. (17)

We want to give a new bound for ¢g(F') from below.

The operation of Gal(K|k) ~ Gal(K(z)|k(z)) on K(z)* restricts to an
operation on the subgroup (K* U K(x)*?), and we obtain an operation on
K(x)*/{(K UK (z)*?). This group is included in K (z)*/K(z)*?, and U is a
subgroup of K (z)*/{K UK (z)*?). The operation of Gal(K|k) induces a non-
trivial operation of Gal(K|k) on U which gives rise to a non-trivial operation
of the group ring Fy[Gal(K|k)] on U. By construction, U is the image of
f € K(z)*/K (x)*? under the operation of Fo[Gal(K |k)]. As Fo[Gal(K |k)] ~
Fy[Z/n7Z), U is a cyclic Fy[Z/nZ)-module with a non-trivial operation by
Z|nZ.

Definition For some natural number n, let @2(n) be the multiplicative
order of 2 modulo n, i.e. pa(n) = [F2[(y] : Fal.

Lemma 17 Let n be an odd prime number. Let V be a cyclic Fo[Z/nZ)]-
module. Then

dimp, (V) = k@a(n) or dimp, (V) =1+ k pa2(n)

for some k = 0,..., If the operation by Z/nZ is non-trivial, then

k> 1.

w2(n)

Proof Let V. = Fo[Z/nZ])v for some v € V, and let Ann(v) < F2[Z/nZ]
be the annihilator of v. Then as Fy[Z/nZ]-module, V is isomorphic to
Fy[Z/nZ]/Ann(v).

On the other hand, we have canonical isomorphisms Fs [Z /nZ] ~ Fy [z] /(=" —
1) ~ Fy @ Fo[z]/(z" 1+ --- + 2z + 1) of rings, and the 1ring Fo[z]/(z"! +

.-+ 4z + 1) is (non-canonically) isomorphic to Fy[(,] 7> . This implies the

result on the dimension of V. a
We obtain:
m = kKga(n) orm =1+ kK ps(n) (18)
for some k = 1,...,(:2?7}).

Remark Note the similarity of this result with the one obtained in [16]
(our m corresponds to m in [16]). However, there is an important difference.
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In odd characteristic we have the additional bound ™ > [5%5] (see (12)
and note that » > n as n is prime).
Equations (10) and (18) imply (as r > n):

Proposition 18 Let n be prime. Then additionally to the bound (17), we
have the following bound for the genus of F.

g(F) > 2¢2M=2(p —4) 1

We now want to outline explicit examples of applications of the attack for
n = 5,7 and elliptic curves H = E’. Then we will show that for cryp-
tographically suitable elliptic curves and prime extension degree n > 11,
log ((#k)9U7) > 5000.

In order to be able to describe the vector space U explicitly we make the
following definition.

Let S be the set of monic linear polynomials of K which divide at least
one of the oliqk(f). If we identify the places of K (z)|K with PU{occ} where
P is the set of monic linear polynomials of K, § = U?:_()l ot (R)\{oo} where
— as in the last section — R is the set of ramified places of K(H')|K ().

By (8), U is included in F5. Here, if (e5)scs denotes the standard basis
of Iﬁ‘g, e, corresponds to 5 € U.

6.1 n=5¢

If H' = E' is an elliptic curve, by (17), the genus of F is bounded from
below by 2, and by Proposition 18, it is bounded from below by 5. We will
now give examples of elliptic curves for which F'|k is regular and the genus
of F is indeed 5.
Let p be a prime and g a power of p. Let k = F,, K = Fjs. Let a € K\k,
let
f(@) = (z —a)(z — a¥)(z — a®)(z —a”) € K(2).

Let E' be the elliptic curve over K given by y? = f(z). Let K(E')|K(x) be
the extension given by this equation.

Since f is monic, F|k is regular; see Theorem 2. We want to calculate
m and then g(F').

We have S = {z —a,z —a%, 2z — @’z —a’ z—a®, x — aq4}, r=>5.

We regard the image of U under the inclusion into ;. We enumerate the
elements of S by z—a <3 1,...,z—ad" < 5 and identify F5 with FJ. Then f

5Results similar to the ones for n = 5 or n = 7 can be obtained for n = 3. In this
case, there exist elliptic curves E' over K such that g(F) = 3 and F|k is regular and even
hyperelliptic. Since there is little hope that in the foreseeable future the DLP in class
groups of genus 3 hyperelliptic curves can be more efficiently attacked via index calculus
methods than with generic attacks, we omit the details.
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corresponds to the vector

, Thus m =

] and ok (f), ok k2 (f)s ok k3 (f)s ok 6 (f)
0
1
1
1
1

— = = O =
_ O ==
_ O R ==

1
1
1
1
0
correspond to the vectors [

dimp, (U) equals the rank of the matrix

O =
e el e =)
_— = O
—_ = O =
=R o o

which is 4. With (10) we conclude: F|k is regular and g(F) = 2472(5 —4) +
1=05.

Note that this means that up to small subgroups E'(F,) and CI°(F) are
isomorphic.

6.2 n=7

We want to give elliptic curves for which F' is regular and g(F) = 7.
Let q be as above, k = Fy, K = F7. Let a € K\k, let

Let E' be the elliptic curve over K given by 42 = f(z). Let K(E')|K(z) be
the extension given by this equation. Again F'|k is regular.

Then S = {z —a,z —a4,...,z — aqﬁ}, r = 7. As above we identify 5
with Fy .
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1

1

1

Now z corresponds to the vector | 0 |, 7 equals the rank of the matrix

1

0

0
1 0 01 011
1100101
1110010
0111001
1 01 1100
01 01110
001 0111

The first three columns are linearly independent, and the sum of the first,
the second and the fourth equals zero. This relation is preserved under
shifting. Thus the fourth up to the seventh vectors are linearly dependent
on the first three. So the rank of the matrix is 3.

We conclude again with (10): F|k is regular and g(F) = 23-2(7—4)+1 =
7. Again up to small subgroups, E'(K) and CI°(F) are isomorphic.

Remark The example was constructed in the following way: z7 — 1 splits
over Iy into (z +1)(z® + 2% + 1)(23 + 2 + 1). Let s be the cyclic shifting in
FZ. Then application of (s + 1)(s® + s2 + 1) = (s* + s2 + s + 1) to the first
vector of the standard basis yields the vector corresponding to f. It follows
that s3 + s+ 1 applied to this vector is trivial and U is 3-dimensional.

6.3 n>11
Let n > 11 be a prime. We want to give explicit lower bounds on ¢9(F)
#CI1°(F) for elliptic curves H' = E'.

Let ¢ be a power of a prime, k = F,, K = Fpn. Let H = E' be an
elliptic curve over K. Let ¢ := logy(¢"), thus logy(q) = +.

Since n > 11 > 8, (17) implies

n n 1 n
g(F) >2/%172(n — 4) > 2[11—25,” _ol%1-3,,
Together with the definition of ¢, we obtain

logy (q?)y = IE)E o ori1-3 .
n
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It follows that if n > 29, then

log, (¢9F)) > 32.

We now use Proposition 18 to obtain lower bounds on log,(¢9(f)) = @

for n = 11,13,17,19, 23.

n | ga(n) g(F) logy (¢*))
11| 10 >210-2(11 —4) + 1 = 1793 > 163 ¢
13| 12 >21272(13 —4) + 1 = 9217 > 709c
17| 8 >28"2(17 - 4) +1 =833 >49c
19 18 [ >28-2(19 —4) +1=983041| >51739¢
23| 11 > 217223 —4) +1=9729 > 423 ¢

We thus obtain the following result:

Proposition 19 Let K|k be an extension of finite fields of prime degree n >
11, let H' = E' be an elliptic curve. Then logy((#k)9%)) > 321log,(#K). In
particular, if E'(K) has cryptographically relevant size, i.e. logy(#K) > 160,
then logy ((#k)9F)) > 5000.

7 Explicit equations

In this section, we continue the discussion of the examples of the last section
for n =5 and n = 7. We show how one can derive explicit equations of the
resulting fields F'.

We keep the notations of the previous sections. We start off more gen-
erally with n some odd integer.

7.1 Four lemmata

The following four lemmata will be used to calculate explicit equations of the
fields F'. The proofs of the first two of them are also valid in characteristic
2.

Lemma 20 The inclusions UIZ’Qk(K(H’)) — F' induce an isomorphism
F'~ K(H') () ox k(K (H') ®k(a) - Ox(a) oy (K(H'))-

Proof If m = n, the statement is obvious, so we assume that m < n.

Let g be the largest integer §uch that [K(H')--- UQ‘EI(K(H’)) : K(z)] =
2. We claim that K (H')--- a;g|;1(K(H')) = F'. This implies that ig = m,
and the statement of the lemma follows.
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By definition of ig, a%k(K(H’)) C K(H’)---U;})‘ZI(K(HI)). It follows

that  K(H') oy p(K(H')) o (K(H)) = K(H')ogp(K(H))
U;é)‘;l(K (H")). Now we proceed by induction: Assume that for some j

with i < j <n—1, Th € K(H') aK|k(K(H'))...g;})';l(K(H')). Then
o E(H") C ox (K (H)) o, (K(H") © K(H')--- 0, (K(H)) =
K(H') oxp (K (H")) - 0,8 (K (H)).

It follows that K (H')--- a;‘g‘;l(K(H')) =F'. O

Let g(z,y) € K(z)[y] be a defining polynomial for K(H') over K(z).
For i = 0,...,m, choose a root y; of a}ﬂk(g)(w,y) in a}'ﬂk(K(H’)).

Recall that Gal(K|k) operates by taking preimages and conjugation on
Gal(F'|K (x)).

Lemma 21 If all elements of Gal(F'|K(z)) have norm 1 under the opera-
tion of Gal(K|k), there exists an extension oy, of ok to F'|k(x) of order
n which operates in the following way:

ORIk Yo = Y1, Y1 = Y2, -5 Ym—1 > Ym-

Proof Let ok, be an extension of ok, to F'|k(z) of order n.

Applying Lemma 20 to o (K (H')) instead of K (H'), we see that F' =~
ok (K(H')) ®k(z) *+* Ok (z) o j,(K(H')). This implies that there exists an
a € Gal(F'|K(z)) such that a ook, operates as described in the statement
of the lemma. Now « o o), has order n as o has — by assumption — norm
1. Thus a ok is an extension of ok, of order n which operates on the y;
as stated in the lemma. 0

Lemma 22 Assume that m = m = pa(n). Then there is no proper subfield
of F|k(x).

Proof Lemma 17 implies that there is no proper subspace of U which is
invariant under the operation of Gal(K|k). This implies that there is no
proper subextension of F’|K(z) which is invariant under the operation by
Gal(K|k), and it follows that there is no proper subfield of F|k(x). O

The condition of the Lemma is in particular fulfilled in the examples for
n = 5 and n = 7 in the last section. When searching for “nice” equations
for F, we have to cope with this unpleasant fact.

The Galois group Gal(K|k) operates on Gal(F'|K(z)) as well as on U.
Moreover, via the non-degenerate pairing (4) Gal(F'|K (z)) is naturally iso-
morphic to the dual space of U. The following lemma shows that under this
isomorphism the induced operation of Gal(K|k) on the dual space of U is
the same as the operation on Gal(F'|K(z)).
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Lemma 23 Under the pairing (4) we have:
For a € Gal(F'|K(z)), u € U and o € Gal(K|k), (o(a),u) = (o, 07 (u)).

Proof Let a € Gal(F'|K(z)), u € U, o € Gal(K|k), and let v € F' such that

2 — u. Then (o(),u) = Jaa;l(u) _ o_(asfa_—ll(sju))) _ asfa—_ll(%)) = (a, a_l(u)).
a

Let us assume — as is the case in the examples for n = 5and n =7

in the last section — that the constant c in the defining equation y?> = cf
of K(H')|K(z) is equal to 1. Then U ~ U, m = m, and F|k is regular;
cf. Proposition 14. From the preceding lemma it follows in particular:

n—1
" p2(n)
(instead of m = 1 + kpa(n)); cf. (18). Then all elements u € U satisfy

u+ ogip(u) + -+ U%_‘kl(u) = 0, and thus all elements o € Gal(F'|K(z))

satisfy a o) - a%_‘kl(a) = id, i.e. they have norm 1.

Let n be prime and assume that m = kpa(n) for some k = 1,..

The assumption m = k@2(n) holds in particular for the examples for
n =5 and n = 7. We can thus use Lemma 21 to extend o, to F'[k(z).

7.2 n=5

We continue with the example in Subsection 6.1.
For i =0,1,2,3, let y; be a root of the equation y? = O'Ii(‘k(f) in F'. Let

2 3
ys:=yoy1 4293/ [(z — a)(z — a¥)(z — a®)(z — a?)?].
Then 74 is a root of the equation y? = ai‘k(f). Let

Z:=9Y0 +y1+y2+ Y3+ ys-

As m = 4 = ¢y(5), all elements of Gal(F'|K(z)) have norm 1, and thus
there exists an extension o of ok x to F'|k(z) which operates by

Yo — Y1, Y1 = Y2, Y2 > Y3, Y3 > Y4.

We fix this extension and obtain a subfield F' of F' as in Proposition 3. It
follows that z is invariant under Gal(F'|F) ~ Gal(K|k), thus z lies in F.
We claim that it is a primitive element of F'|k(x).

By Lemma 22, we only have to show that z does not lie in k(z). Assume
that z € k(z). Then in particular, it is fixed by the automorphism « of
F'|K(z) given by yo — —yo, ¥1 — Y1, Y2 > Y2,y3 —> y3. We obtain that
z = a(z) = —yo+y1+y2+ys—yas. It follows that yo+ys = 0, a contradiction.

For j = (jo, j1, 72, js) € 35, let

zj = (_1)joy0 + (_1)j1y1 + (_1)J'2y2 + (_1)1'3y3 + (_1)j0+j1+j2+j3y4.
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Then 2(g0,00) = 7, and the z; are the Galois conjugates of z under the
operation of Gal(F'|K(z)).

The z; are the images of z under all inclusions of F' into F' fixing K (z).
It follows that the minimal polynomial of z in F|k(z) is

hi=J[ (T-2)e€k@)T]

jEF§0’1’2’3}

All y; are contained in the Galois closure of K[z] in F’, and so is z. It follows
that h is contained in K[z, T], thus it is contained in k[z,T).

The polynomial & is a defining polynomial for F'|k(z). It has degree 16
in T, and its degree in z is bounded by 32.

Note that we have chosen a particular extension of ok, to F'|k(z),
thus by construction A is the defining polynomial for a particular extension
Fl|k(z) such that F|k is regular and KF = F'. However, by Proposition 3
these extensions are all isomorphic, thus h defines all these extensions.

73 n=7

Let us now continue the example in Subsection 6.2.
For i = 0,1,2, let y; be a root of the equation y? = a}qk(f) in F'. Let

2

y3 = yoy1/[(z — aqg(m —al 2]

ya = y1y2/l(e —a? )(z —a? )]
Ys = y2ys/l(z —a? )(z —a? )]
Yo := Yz ya/[(z — a®)(z — aT)].

Then for alli = 1,...,6, y; is a root of the equation 4% = O'quk(f). Let

z=Yo+y1+y2+ys+ys+ys+ ys-

As m = 3 = ¢y(7), all elements of Gal(F'|K(z)) have norm 1, and thus
there exists an extension o, of o, to F'|k(z) which operates by

Yo = Y1, Y1 > Y2, Y2 — Y3.

We fix this extension and obtain a subfield F' of F' as in Proposition 3. By
construction, z is invariant under the operation of 5;{““ thus it lies in F.
We claim that it is a primitive element of F'|k(z), and again by Lemma 22
we only have to show that it does not lie in k(x).

Assume that z € k(z). Then in particular, it is fixed by the automor-
phism « of F'|K(z) given by yo — —¥o, y1 — —Yy1, Y2 = —y2. We have z =
a(z) = —yo—y1—yo+y3+ya—ys+ye. It follows that yo+y1+y2+ys = 0. Ap-
plying the automorphism of F'|K(x) given by yo — —yo, y1 — Y1, Y2 = Y2
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to this equation, we obtain —yo+y1 +y2—ys = 0. It follows that y; +y2 = 0,
a contradiction.
. L 0,1,2
For j = (.70’.71,.72) € ]Fé }7 let

J3:=Jo+n

Ja=7J1+ Jo

Js:=J2+Js=Jjo+Jj1+Jj2
Je:=J3t+ja=Jo+j1+i1+Jj2=2Jo+ ]2

Let
6

zj 1= Z(—l)j"yi.

i=0
Then z(g,0,0) = #, and the z; are the Galois conjugates of z under the oper-
ation of Gal(F'|K(z)).
Analogous to the previous case, the minimal polynomial of z in F|k(z)
is
hi= [ (T-2)e€k@)T]

jngo,l,z}

Again this is contained in k[z,T]. The polynomial & is a defining polynomial
for F|k(z) as well as the other extensions Fi|k(z) such that Fi|k is regular
and KF; = F'. Tt is a polynomial of degree 8 in T, and its degree in z is
bounded by 16.

We finish with an explicit calculation based on these results. 7
Let p := 10000019, this is a prime such that p” has 163 bit, let a € F,7 be
a root of the following irreducible polynomial in the polynomial ring F, [A].

AT+5581056 A°+1071250A°+7891954 A* 43686323 A>+1634662 A% +5314472 A+6311551
Let E' be the elliptic curve over Fyr given by
y? = (z —a)(z — aP)(z — apz)(ac - ap4).
The order of E'(F,7) is 4 -1 where [ is prime and
I = 2500033250189525600163640252013683579685963948773.

One checks that [[F,[(] : F,], i.e. the multiplicative order of p modulo /, is
> 10000, thus the DLP in E'(F,7) is resistant against the attacks based on
the Weil- and the Tate-Pairing; cf. [15], [4]. This means that up to now the
elliptic curve E’ would have been regarded as cryptographically suitable.

"The following explicit example was calculated using the MAGMA computer algebra
package.
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Via the approach presented above one finds the following defining poly-
nomial for F.

T8 + (9999991z* + 7032752° + 143001922 + 15021112 + 6267729) T5+
(9999907z° + 42196502° + 4300171z + 491591323+

3056838z2 + 7690930z + 4968619) T5+

(9999809° + 54910627 + 505702% + 69638132° + 631870z*+

249958473 + 755017522 + 7984600z + 8893034) T4+

(99997952 + 40654812° + 58009882® + 873834227 + 54650582° + 196724125+
2095794z* + 44446547 + 838165672 + 2592793 + 8848697) T3+

(999987922 + 5491062 + 865091220 + 10595942° + 915651325+
93407317 + 7885968z° + 69539961° + 57345565+
41135923 + 2896371z% + 9062942z + 3377385) T+

(99999712 + 42196503 + 71804372 4+ 81925532 + 6767478x'0+
4323463x° + 383764428 + 478844527 + 385125 + 437687425+
1282375z* + 54720152 + 614785322 + 4182920z + 4970743) T+

10000012216 4 70327525 4+ 7150095214 + 2321271213 + 9233281212
4214131921 + 5465933210 + 1278572z° + 37211288 + 104184827+
19117925 + 85233792° + 96492322* + 209920223 + 589299422+
9327110z + 3852461

One can check that F has genus 7 and that [ divides the order of CI°(F).

Moreover, F' has at least two Weierstrass places of degree 1. One of these
places is given by the simultaneous vanishing of £+ 7735061 and T'+3901461,
the other by the simultaneous vanishing of x 4+ 8799748 and T" + 1933887.
The first pole number is 7 in both cases.

The reader should be warned however that in a similar manner one
can also give examples such that F' does not have any Weierstrass place of
degree 1.

8 Conclusions

We showed that in principle the GHS attack can be generalized from ellip-
tic curves over finite non-prime fields of characteristic 2 to (hyper-)elliptic
curves over finite non-prime fields of arbitrary characteristic — provided that
the extension degree in consideration is odd. We then analyzed the genera
of the resulting curves for the case that the characteristic is odd.

For elliptic curves and applications of the GHS attack with respect to
prime extension degree n we showed: For n > 11, the size of CI°(F) is so
large that the attack fails unless there is a breakthrough in the solution of
the DLP in class groups of high genus curves.

However for n = 5 and n = 7, there exist elliptic curves such that the
genus of F' is b respectively 7. For these examples, explicit equations of the
resulting fields F' can be derived. These results are optimal in the sense
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that the degree 0 class group of F' is then up to small subgroups isomorphic
to the group of rational points on the elliptic curve. It would now be an
interesting task to try to break the DLP in the class groups of the resulting
fields F' using index calculus methods. However, before one can do so, the
known index calculus attacks first have to generalized from hyperelliptic to
more general curves to cope with the fact that the explicit equations we
derived are not hyperelliptic.

Finally, we would like to stress that it might be possible to apply other
methods than the GHS attack to transform the original DLP into potentially
easier DLPs in class-groups of curves of higher genera over smaller fields. In
particular for elliptic curves E’, just as in even characteristic, it might be
possible to use the “extended GHS attack”; see [6]. Here, one first applies
an isogeny and then uses the GHS attack for the isogenous curve.

A The GHS attack and the Weil restriction 8

The GHS attack can be viewed as a special case of Frey’s “Weil descent” idea;
cf. [3]. This idea is based on the idea of finding “nice” smooth, projective,
irreducible k-curves X which are (over k) birational to curves on the “Weil
restriction” W/k of H' with respect to K|k and then trying to transform
the DLP from CI°(H') into a DLP in C1°(X). More concretely, if E' = H' is
an elliptic curve, the original idea was to transform the DLP in E'(K) into
the DLP in W (k) (by the definition of W, E'(K) ~ W (k)), and from there
to Jac(X) (k) ~ CI°(X) by pull-back.

Originally, the consideration of the function field F' (in characteristic
2) was motivated by the fact that it is the function field of a curve on
the Weil restriction W/k. In this appendix, we make the relation between
Frey’s “Weil descent” idea and the GHS attack a little bit more explicit (and
thereby try to point out a common inaccuracy concerning the GHS attack).

Let us first recall the definition of the Weil restriction.

Let 8’ — S be a finite, flat morphism of locally noetherian schemes,
let Y’ be a (quasi)-projective S’-scheme.

It is well known that there exists a (quasi)-projective S-scheme W =
Resg' (Y"), called the Weil restriction of Y' with respect to S — S, with
the following universal property (for a proof see [1, 7.6]):

There is a S’-morphism w : W x5 S’ — Y’ such that: For all S-
schemes X and all K-morphisms ¢ : X xg S’ — Y, there exists a unique
S-morphism b : X — W such that ¢ = wo (b Xg idgr). (Conversely, any
b: X — W defines in a unique way a ¢ : X xg S8 — Y'. In fact, set
c:=wo (bxgidg).)

8In this appendix, we use the theory of arithmetic algebraic geometry as in [10].



THE GHS ATTACK IN ODD CHARACTERISTIC 29

As usual, W and w are unique up to a unique isomorphism. (The Weil
restriction is usually defined as a representing object of the contravariant
functor Homg (— ®g S’,Y’) from the category of S-schemes to the category
of sets; cf. [1, 7.6]. The above mentioned universal property is an easy
reformulation of this definition.)

Additionally, if S — S corresponds to an extension of fields K|k and
Y' is a K-variety, the Weil restriction W is a k-variety. Moreover, if Y’ is
geometrically reduced or geometrically irreducible or smooth, so is W, and if
Y' is a abelian K-variety, (e.g. an elliptic curve), W is an abelian k-variety.

If S” and S are connected and S — S is Galois (in the sense of [9, V]),
then W xg S is naturally isomorphic to J[,cay(sr—5)0(Y’), and under
this isomorphism, b X gidgr : X x5 8" — Y" is given by (0(c))reaut(s'—s5)-
Here, o(Y') is Y' regarded as a S’ scheme via the structure morphism

g

Y — S8 — S

We keep the notations of the article. We do not make an assumption
on the characteristic of k, and we do not assume that n = [K : k] is odd.
However, we assume that as in Proposition 3, a function field F'|k which is
linearly disjoint from K|k and satisfies K ® F ~ KF = F' exists. °

Let W := ResX (H') be the Weil restriction of H' with respect to K |k.

Under the bijection between isomorphism classes of function fields and
isomorphism classes of normal, complete (projective), irreducible curves the
field F' corresponds to a normal (smooth, non-singular), projective, irre-
ducible k-curve X.

As K ®; F ~ KF, the extension KF|K(H') induces a covering (i.e. a
finite morphism) ¢ : Xg = X ®; K — H', and by the universal property of
W this covering corresponds to a non-constant k-morphism from X to W.

We now describe this morphism more concretely. The extension

1
K(H")|K(x) corresponds to a covering H' — PL.. Let Resgf((H’) be the
k

Weil restriction of H' with respect to PL, — P;. This is a K-curve which
is (in general) reducible. © By the universal property of W = Resf (H'),

1 1
the universal morphism Resﬁ{‘(H’) Q) K ~ Resif(H’) Xp1 Pl — H' cor-
k k
1
responds to a morphism Resﬁ{‘ (H') — ResX (H').
k

By the universal property of ReskK (PL), the identity id : P}, — P cor-

9For linear disjointness see [13, VIII, §3]. Note that if A is a field, B|A is an algebraic
extension of fields and C|A is any extensions of fields, then the question whether B|A and
C|A are linearly disjoint (in some common overfield) is equivalent to whether B ® 4 C' is
a field. In particular it is independent of the chosen common overfield of B and C.

YLet H' be an elliptic K-curve as in [8] (denoted there by E). Then in the situation of

1
[8], the affine curve curve € studied in [8] is an affine open part of Res];f (H").
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responds to a morphism P, —s Resy (P};) which is a closed immersion (see
1
[1, 7.6, p.197]), and Resgf(H') is naturally isomorphic to ResX (H') X ResK (P1,)

1
P;. The above morphism Resillc" (H') — ResK (H') is induced by the mor-
phism P: — Resk (PL) via base-change, and as “closed immersion” is
stable under base-change, it it is also a closed immersion.

. . . Pl
Now, the covering ¢ : X — H' induces a morphism X — Resp i (H",
k

and the morphism X — Resy (H') factors through this morphism. !

1
The following argument shows that X is birational to its image in Resi{‘ (H').
k
We only have to check this after base change. After base change K|k,
1
the morphism X — Resi{‘ (H') is given by
k

(ali(‘k(c))?;()l t X — H' xp1ogp(H') Xp1 -+ Xp1_ 0?{‘,61([{’).

(Where o ), : Spec(K) — Spec(K) is the automorphism corresponding to
OK|k K — K)
On the total quotient rings, this morphism induces a homomorphism

K(H') ®k(z) K(ok(H")) ®@K(z) "+ Ok (a) K(U%Q(H')) — F'.

By the very definition of F’, this homomorphism is surjective, and it follows
that X is birational to its image, i.e. it is the normalization of its image.

It follows also that X is the normalization of its image on W. Further-
more, one can show that — in the case that H' is an elliptic curve — the
GHS-conorm-norm homomorphism is the same homomorphism as the one
suggested by Frey (see above).

Not only the field F' corresponds to a curve on the Weil restriction —
whenever one is given a function field A|k, linearly disjoint to K|k, and a
finite extension K ®; A ~ KA|K(H'), one obtains a smooth, projective,
irreducible k-curve X with a covering X — H'. This induces a non-
constant k-morphism X — W.

On the other hand, let X be a smooth, projective, irreducible k-curve
with a k-morphism onto a k-curve on W and assume that X is also ir-
reducible. Then the morphism X — W induces a covering Xx — H’,

1
' Although it is stated correctly in [8] that the curve Resﬁ{‘ (H') is (in general) re-
k

1
ducible, some authors seem to confuse Resﬁ{‘(H ") and its components. See for example
k

the introductions to [6], [12], [16].
In particular, the proof of the existence of the function field F' (our notation) given in

1
[5, 4.2 and 4.5] is not correct as the author confuses (in [5, 4.2]) the curve Resﬁ{‘ (H") (our
k

notation) with its components.
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and this induces an extension K(Xg)|K(H') of function fields. If we set
A := k(X), we obtain a function field A|k, linearly disjoint to K|k, and an
extension K ®; A ~ KA|K(H').

Moreover, one can show that if H' is an elliptic curve, just like in the
GHS attack, the homomorphism Ny (x,)k(x) © Cong (x,) k(ar) : H (K) =~
CI°(K(H')) — CI°(k(X)) is the same homomorphism as the one suggested
by Frey.

We thus obtain a possible reinterpretation of Frey’s “Weil descent” idea
in terms of covering theory of curves.

It is an interesting task to find other methods than the GHS attack for
constructing suitable regular function fields A|k with extensions K A|K (H'),
or — what amounts to the same — to find suitable geometrically irreducible k-
curves on the Weil restriction of H' with respect to K|k. But this is beyond
the scope of this article.
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