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Abstract

From power series expansions of functions on curves over finite
fields, one can obtain sequences with perfect or almost perfect linear
complexity profile. It has been suggested by various authors to use
such sequences as key streams for stream ciphers. In this work, we
show how long parts of such sequences can be computed efficiently
from short ones. Such sequences should therefore considered to be
cryptographically weak. Our attack leads in a natural way to a new
measure of the complexity of sequences which we call expansion com-
plexity.

1 Introduction

It is well known that linearly recurrent sequences, that is, sequences gener-

ated from linear feedback shift registers (LFSR), are cryptographically weak.

This observation leads to the following well-established definitions; cf. [18],

[16] and other works on linearly recurrent sequences.

We set N := {1, 2, . . .}. Let q be a prime power. By a sequence over Fq

we mean a map from a subset of the form {1, . . . ,m} or from N to Fq. For a

finite sequence a = (a1, a2, . . . , an) over Fq one defines the linear complexity,

La, as the least ℓ such that a is generated by a linear recurrence relation of

order ℓ. Now, for a finite or infinite sequence a = (a1, a2, . . .) of length m

over Fq and for n ≤ m, one defines La(n) as the linear complexity of the

finite subsequence consisting of the first n terms of a, and one defines the

linear complexity profile as (La(n))
m
n=1.

An infinite sequence a = (ai)i∈N over a finite field Fq is said to have

perfect linear complexity profile if |2La(n) − n| ≤ 1 for all n and d-almost

perfect linear complexity profile if |2La(n)− n| ≤ d for all n.

In [20] a general construction of sequences with almost perfect complexity

profile was given. The construction is based on function expansion into

expansion series and will be recalled below. The motivation stated in [20]

to consider this construction is the generation of key streams for stream
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ciphers. Also in [16] the consideration of the construction is motivated by

applications to stream ciphers.

In this work, we show that the coefficients of the sequences constructed

via the method in [20] can be efficiently computed from relatively short

subsequences. Therefore, the sequences should be considered as crypto-

graphically weak.

The proposed attack leads to a new notion of complexity which we call

expansion complexity. The expansion complexity of a sequence is always at

most the linear complexity and captures the immunity against our attack.

Additionally, we show how one can apply well known results on con-

tinued fraction expansion in order to obtain further inside into the series

suggested in [20]. In particular, we refute the conjecture in [20] that all se-

quences with almost perfect linear complexity profile can be obtained with

the construction in [20].

This work is organized as follows: In the next section, we briefly recall

how one is naturally lead from linearly recurrent sequences to expansion

sequences. The third section is devoted to an analysis via continued fraction

expansion. In the forth section, we give the theoretical background of our

attack, and in the fifth section, we discuss computational aspects. The

final section contains a discussion and some research proposals based on our

attack.

Some definitions Let k be a finite field. By a function field over k we

mean a finitely generated extension of k of transcendence degree 1. Let

F/k be a function field with exact constant field k (which means that k is

algebraically closed in F ), and let f ∈ F be non-constant (that is, f /∈ k).

Then we define the degree of f as deg(f) := [F : k(f)]. Thus the degree of f

is the degree of f as a function on the corresponding complete non-singular

curve over k. In particular, the degree of a non-constant rational function

r = a
b
∈ k(t) with coprime polynomials a, b ∈ k[t] is max{deg(a), deg(b)}.

Additionally, we define the valuation degree of r as valdeg(r) := deg(a) −
deg(b). We therefore have v∞(r) = − valdeg(r). We caution the reader to

not confuse the degree of a rational function with the valuation degree. The

latter will only be used in Section 3 on continued fractions.

Acknowledgments I thank Andrei Shelest and Natalia Vasilevskaya for

introducing me to the idea to generate random sequences by power series ex-

pansions and for discussions. I thank Enric Nart for a discussion on Hensel’s

Lemma.
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2 From linearly recurrent sequences to power se-

ries expansions

Let us first recall some facts about linear complexity. These facts lead

naturally to the consideration of continued fraction expansions and to the

construction in [20].

Let still q be a prime power, and let a = (a1, a2, . . .) be an infinite

sequence over Fq. Then we have the associated generating series

s :=
∑

i∈N

ait
i ∈ Fq[[t]] .

With x := t−1 ∈ Fq(t) we obtain that

s =
∑

i∈N

aix
−i ∈ Fq[[x

−1]] .

Both these descriptions of the series s are of importance in the following.

The sequence a is generated by a linear feedback shift register with

generating polynomial g(x) if and only if s · g is a polynomial in x, which

is then automatically of degree < deg(g). Therefore, a is linearly recurrent

with recursion order d if and only if s is a rational function in x of degree d.

Moreover, we have Ln(a) ≤ ℓ if and only if there exists a rational function

f ∈ Fq(x) of degree at most ℓ with s = f+O(x−(n+1)), where the O-notation

is used as in infinitesimal calculus.

It is now natural to consider the continued fraction expansion of s to

study the linear complexity profile of a. This is done in [14] and in [16].

In the next section we recall some results obtained in this way and make

some more observations. Here, we mention just one basic result which can

be obtained in this way (see Proposition 2 in the next section):

As above, let a be an arbitrary infinite sequence over Fq and let d ∈ N.

Then a has d-almost perfect linear complexity profile if and only if Ln(a) ≥
1
2(n+ 1− d) for all n ∈ N.

Whereas the first description of the sequence s is important for the anal-

ysis via continued fraction expansion, it is the second description which

leads naturally to the construction via function expansion into power series

as described in [20] and also in [16]. We observe that s is a rational func-

tion of degree d in x if and only if it is a rational function of degree d in t.

Therefore, s is linearly recurrent with recurrence order d if and only if s is

a rational function of degree d in t.

Let now F/Fq be a function field with exact constant field Fq, and P be

a place of degree 1 of F and t a uniformizing element at P. Then we have

an associated homomorphism of function fields F →֒ Fq((t)). The image of
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some f ∈ F is called the expansion of f with respect to t. Now for any f

with vP (f) ≥ 1, we obtain a power series
∑

i∈N ait
i, and we can consider

the series (ai)i∈N defined by the coefficients.

For example, if F = Fq(t), that is, if t has degree 1, then we obtain

a linearly recurrent sequence with recurrence order deg(f). By the above

considerations, it is particularly natural here to consider expansions of func-

tions f ∈ Fq(x) with respect to the “place at infinity” (with respect to x),

p∞, and the local uniformizer t := x−1.

It is proven in [20] that if t has degree 2 and f is in F − Fq(t) and has

degree d then the sequence (ai)i∈N has d-almost perfect linear complexity

profile. More generally, for arbitrary non-constant t we have

La(n) ≥
n+ 1− deg(f)

deg(t)

for all n ∈ N.

Let us recall the easy proof: Let ℓ := La(n). Then we have polynomials

r, u ∈ Fq[t] with deg(r) ≤ ℓ, deg(u) ≤ ℓ, u(0) = 0 and

s · r ≡ u mod tn+1 .

This is equivalent to

f · r ≡ u mod Pn+1 ,

i.e.

vP(f · r − u) ≥ n+ 1 .

This implies that deg(f ·r−u) = deg(f ·r−u)0 ≥ n+1. On the other hand,

f ·r−u ∈ L((f)∞+ℓ ·(t)∞)−{0} and thus deg(f ·r−u) ≤ deg(f)+ℓ ·deg(t).
We conclude that n+ 1 ≤ deg(f) + ℓ · deg(t).

Definition We call a power series in Fq((t)) obtained by expansion of any

function as just described an expansion series (over Fq). Furthermore, if a

is a series which is the sequence of coefficients of an expansion series (which

then lies in t · Fq[[t]]), then we call the sequence a an expansion sequence

(over Fq).

3 Analysis with continued fraction expansion

Again let q be a prime power. We consider continued fraction expansions

of elements of Fq((x
−1)). We expend the valuation degree function from

Fq(x) to Fq((x
−1)) by valdeg(

∑

i≥n aix
−i) := −n if an 6= 0, and we set

v∞(f) := − valdeg(f) and |f | := q−v∞(f) = qvaldeg(f). Clearly, | · | is a non-

archimedean absolute value, and Fq((x
−1)) is the completion of Fq(x) with

respect to this absolute value.
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Let now a be an infinite sequence over Fq. We consider the continued

fraction expansion of s =
∑

i∈N aix
−i. Let us first fix some standard defini-

tions and recall some basic results. We mainly follow [16] here.

Let

s = [0;A1, A2, A3, . . .]

be the continued fraction expansion of s. Here by definition, the Ai are

polynomials in Fq[x]; they are called the partial quotients of s.

As usual, we define

p−1 := 1 , p0 := 0 , pi := Aipi−1 + pi−2 for i ∈ N

and

q−1 := 0 , q0 := 1 , qi := Aiqi−1 + qi−2 for i ∈ N .

Then for each i, the polynomials pi and qi are coprime, and we have

pi
qi

= [0;A1, . . . , Ai]

and

deg(qi) =
∑

j≤i

deg(Ai) .

We set wi := deg(qi).

In [14] the following proposition is proven (see also [16]).

Proposition 1 Let n ∈ N. Let now j be defined by the following inequalities

wj−1 + wj ≤ n < wj + wj+1 . (1)

Then Ln(a) = wj.

A consequence of this proposition is:

Proposition 2 Let d ∈ N. Then the following conditions are equivalent:

a) The sequence a has d-almost regular complexity profile.

b) Ln(a) ≤ n+d
2 for all n ∈ N.

c) Ln(a) ≥ n+1−d
2 for all n ∈ N.

d) deg(Ai) ≤ d for all i.

Later we will consider a variant of this proposition. For this reason, we now

recall the proof given in [16].

Clearly, a) implies b) and c). We show that b) implies d) and that c)

implies d).
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Let i ∈ N with wi ≥ 1 and let n := wi−1 + wi. Then Ln(a) = wi and

n = 2wi − deg(Ai) = 2Ln(a)− deg(Ai). Therefore deg(Ai) = 2Ln(a)− n. If

now b) is satisfied then deg(Ai) ≤ d.

Let now i ∈ N with deg(Ai) ≥ 2 and let n := wi−1 + wi − 1. Then

Ln(a) = wi−1 and n = 2wi−1+deg(Aj)−1 = 2Ln(a)+deg(Aj)−1. Therefore

deg(Ai) = n+ 1− 2Ln(a). If now c) is satisfied then again deg(Ai) ≤ d.

We now show that d) implies b) and c) and therefore also a).

Let n ∈ N. Then inequalities (1) are equivalent to

2wj − deg(Aj) ≤ n < 2wj + deg(Aj) ,

which is equivalent to

n− deg(Aj) + 1 ≤ 2wj ≤ n+ deg(Aj) .

The claim follows immediately. 2

A remark on expansion sequences Let again d ∈ N. We see from the

previous proposition that there are uncountably many sequences over Fq

with d-almost perfect complexity profile. On the other hand, there are only

countably many expansion sequences, even if one does not require that the

degree of the function is 2. In contrast to this, in the conclusion of [20] it

is conjectured that all sequences with almost perfect complexity profile are

expansion sequences of functions of degree 2. We see that this conjecture

fails in a dramatic way.

It is now natural to study sequences obtained with the construction in

[20] via the theory of continued fraction expansion. The following proposi-

tion is classical.

Proposition 3 The following statements are equivalent:

a) a is an expansion sequence of a function f in a function field F with exact

constant field Fq with respect to a place of degree 1 and a uniformizing

parameter t of degree 2, where f /∈ Fq(t).

b) There exists a quadratic field extension F |Fq(x) for which the place p∞
of Fq(x) is unramified and split into two places P1,P2 of F and there

exists a function f ∈ F − Fq(x) such that s is the expansion sequence of

f at P1 with respect to the uniformizing parameter x−1.

c) s is a root of an irreducible polynomial in Fq(x)[y] of degree 2 in y.

d) The continued fraction expansion of s is periodic.
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In analogy to quadratic number fields, for a field k, a quadratic extension

F |k(x) in which the place p∞ is unramified and split is often called a real

quadratic function field. Note here that this might be seen as an abuse of

terminology as a “real quadratic function field” is not a function field but

an extension of the field Fq(x). Just as the theory of continued fractions

for real quadratic number fields, the corresponding theory for real quadratic

function fields over finite fields is well developed. A good overview over

many aspects for odd characteristic is [19], the case of even characteristic is

discussed in [21].

The theory of continued fraction can be used to obtain bounds on the

degrees of the partial fractions Ai. We now discuss these results and relate

them to Proposition 2.

Let now ay2 + by + c ∈ Fq[x, y] with a, b, c ∈ Fq[x] and a 6= 0 be an

irreducible polynomial. Let F be the extension of Fq(x) defined by the

polynomial, and let f the residue class of y. We assume that p∞ is unramified

and split in F ; let P1 be one of these places. We consider the expansion s

of f at P1 and the corresponding continued fraction expansion. We use the

notations from above.

We note first that

deg(f) = max{deg(a), deg(b), deg(c)}

and therefore

deg(Ai) ≤ max{deg(a), deg(b), deg(c)} (2)

for all i ∈ N by the considerations of the previous section and Proposition 2.

We now give potentially better bounds for i large enough.

The function g := af is a root of the monic polynomial y2 + by + ac, so

af is integral over Fq[x]. Moreover, clearly, a divides ac which is the norm

of g over Fq(x). We therefore have

f =
g

a

with g integral, a ∈ Fq[x] and a|N(g). We are now in the situation which is

considered in continued fraction expansions.

We make a case distinction according to whether the characteristic is

odd or even.

We first consider the “classical” case that the characteristic is odd. We

have the discriminant ∆ = b2 − 4ac. From Proposition 3.2 (c) of [19] we

learn that |Ai| ≤ |
√
∆|, that is, |Ai|2 ≤ |∆|, for i large enough. In other

words:

deg(Ai) ≤
deg(∆)

2
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for i large enough. This inequality is always at least as strong as inequality

(2). By the proof of Proposition 2, we have

n− deg(∆)

2
+ 1 ≤ 2Ln(a) ≤ n+

deg(∆)

2

for n large enough.

Let now the characteristic be even. Then by Section 3 of [21] we have

|Ai| ≤ |b|, that is,
deg(Ai) ≤ deg(b)

for i large enough. (In the introduction to [21] there are some assumptions

on the minimal polynomial of g (in our notation), but these assumptions are

not relevant for Section 3 of [21].) We thus have

n− deg(b) + 1 ≤ 2Ln(a) ≤ n+ deg(b)

for n large enough.

4 Defining polynomials

Let an expansion sequence a over Fq defined by some function field F with

exact constant field Fq a place P of degree 1 and a uniformizing parameter

t be given. Note here that we make no assumption on the degree of t.

Convention Let us assume that Fq(t, f) is a proper subfield of F . Let

now P′ be the restriction of P to Fq(t, f). Then P′ is also a place of degree

1, and the series of f defined by P and the local parameter t is identical

to the one defined by P′ and the local parameter t. So, in our study of

expansion sequences, we can restrict our attention to sequence arising as

above with F = Fq(t, f), and we do so in the following.

The elements t and f are algebraically dependent over Fq. So there exists

a non-trivial polynomial h = h(t, y) ∈ Fq[t, y] with

h(t, f) = 0 . (3)

Equation (3) is equivalent to

h(t,
∑

i∈N

ait
i) = 0 , (4)

so we have a non-trivial polynomial h which satisfies the latter condition.

Let now I be the ideal of polynomials h ∈ Fq[t, y] with h(t, f) = 0.

The ideal I is the kernel of the homomorphism

Fq[t, y] −→ F , t 7→ t , y 7→ f (5)
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and also of the homomorphism

Fq[t, y] −→ Fq[[t]] , t 7→ t , y 7→
∑

i∈N

ait
i . (6)

Note that the latter fact implies that I is canonically attached to the se-

quence a.

The ideal I is a prime ideal and V (I) is a (possibly singular) plane

affine curve with function field F . As V (I) is one-dimensional, by Krull’s

Hauptidealsatz I is generated by a single irreducible polynomial. As usual,

we call such a polynomial a defining polynomial of the curve V (I). Such a

polynomial is unique up to a constant.

Let us consider the situation from the point of view of projective geome-

try: Let for this C be the complete non-singular curve over Fq corresponding

to F , where we fix an isomorphism of function fields Fq(C) ≃ F . The place

P corresponds to an Fq-rational point of C which we denote by P . Let now

h0(t, y) be a defining polynomial of V (I), and let H0(T, Y, Z) ∈ Fq[T, Y, Z]

be the homogenization of h0. Let

D0 := sup{− div(t),− div(f), 1} = sup{(t)∞, (f)∞} , (7)

where for some function g ∈ F ∗, (g)∞ is the pole divisor of g. Clearly,

deg(D0) ≤ deg(t) + deg(f). By definition, t, f, 1 generate O(D0). Thus

O(D0) and the global sections t, f, 1 of O(D0) define a morphism C −→ P
2
Fq

which is given on an open subset U of C by Q 7→ (t(Q) : f(Q) : 1) for

Q ∈ U(Fq). (Every rational map from C to some projective space P
n
Fq

over

Fq can be extended to a morphism from C to P
n
Fq
. Here we have the stronger

condition that t, f, 1 as global sections of O(D0) directly define a morphism.

See Section II.7 of [8] for background information.)

As by assumption F = Fq(t, f), the morphism is birational onto its

image. It follows that the image V (H0) has degree deg(D0). We have

therefore

deg(h0) = deg(H0) = deg(D0) ≤ deg(t) + deg(f) . (8)

We now turn the situation around and just assume that we are given

some sequence a over Fq for which a non-trivial polynomial h ∈ Fq[t, y] with

h(t,
∑

i∈N ait
i) = 0 exists. Then the polynomials h with this property define

again a non-trivial proper ideal of Fq[t, y]; let Ia be this ideal. Just as above,

let h0 be a polynomial of Ia of minimal degree. Clearly, h0 is irreducible.

Let F := Fq(t)[y]/(h0) and f the residue class of y. Then we have the

embedding F −→ Fq((t)) given by t 7→ t and f 7→ ∑

i∈N ait
i over Fq. This

embedding defines in a unique way a valuation v on F with v(t) = 1 and
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thus a place P of F of degree 1. Moreover, the expansion of f at P with

respect to t is of course the power series
∑

i∈N ait
i.

The ideal Ia is now by definition the kernel of the homomorphism in

(5) and thus also the kernel of the homomorphism in (6). By the previous

considerations we conclude that Ia is generated by h0.

We have proven:

Proposition 4 The expansion sequences are exactly the sequences a for

which a non-trivial polynomial h ∈ Fq[t, y] with h(t,
∑

i∈N ait
i) = 0 exists.

Furthermore, if such a polynomial exists, the ideal of such polynomials is

generated by a single irreducible polynomial.

This leads to the following definition.

Definition Let a be an expansion sequence. We call the ideal Ia the

defining ideal of a, any non-trivial element of Ia a defining polynomial of

a and a generating element h0 of Ia a minimal defining polynomial of a.

Finally, we call the degree of a minimal defining polynomial of a the degree

of a (as an expansion sequence).

Note that a necessary condition that a polynomial h0 ∈ Fq[t, y] is a

defining polynomial of any expansion sequence is that its constant term is

trivial.

Let now h0 be an irreducible polynomial in Fq[t, y] with trivial constant

term. As above, let F = Fq(t)[y]/(h0), and let f be the residue class of y.

Now the expansion sequences with minimal defining polynomial h0 cor-

respond bijectively to the places P of F of degree 1 with t, f ≡ 0 mod P.

From a geometric point of view, the situation is as follows: Let H0 be the

homogenization of h0 and (C, ϕ) a non-singular curve C over Fq together

with a birational morphism ϕ : C −→ V (H0); this datum is unique up to

unique isomorphism. Now the places P of F of degree 1 with t, f ≡ 0 mod P

correspond in a unique way to points P ∈ C(Fq) with ϕ(P ) = [0 : 0 : 1].

By this geometric description, two facts are immediate:

First, there are at most deg(h0) expansion sequences with minimal defin-

ing polynomial h0.

Second, if V (h0) is non-singular at (0, 0) then there is exactly one such

sequence. Let now h0 =
∑

i,j ci,jt
iyj . Then h0 is singular at (0, 0) if and

only if c1,0 = c0,1 = 0.

For the general case, we have the following proposition.

Lemma 5 An expansion sequence of degree d0 is uniquely determined by its

defining polynomial and its initial sequence of length d20.
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Proof. We consider h0 as a polynomial in y. As t is a local parameter

of P, the extension F |Fq(t) is separable, and therefore h0 is a separable

polynomial. Let h0 =
∑d

i=0 ci(t) · yi with ci(t) ∈ Fq[t] and cd(t) 6= 0, let ∆

be the discriminant of h0, and let R be the resultant of h0 and h′0 = ∂h0

∂y
.

We have R = ±cd∆, R is a non-trivial polynomial in Fq[t] of degree at most

d0(2d0 − 1), and the discriminant ∆ is a non-trivial polynomial in Fq[t] too.

Assume now that we have two distinct roots ρ, ρ̃ of h0 as a polynomial

over Fq[[t]] with ρ ≡ ρ̃ mod tn+1 for some n. Then ρ − ρ̃ ≡ 0 mod tn+1.

Now (ρ− ρ̃)2 is a divisor of ∆. Therefore ∆ ≡ 0 mod t2n+2. We obtain that

2n+ 2 ≤ d0(2d0 − 1), and therefore n < d20. 2

So far, we have fixed the minimal defining polynomial. The minimal

defining polynomial of an expansion sequence of degree d0 is however also

uniquely determined by its initial sequence of degree d20. The key statement

is the following lemma. The proof of the lemma is an easy adaption of the

proof of Lemma 2.2 in [1].

Lemma 6 Let a be an expansion sequence over Fq of degree d0. Let h ∈
Fq[t, y] be a non-trivial polynomial such that with d := deg(h) and n := dd0
we have

h(t,

n
∑

i=1

ait
i) ≡ 0 mod tn+1 . (9)

Then h is a defining polynomial for a.

Proof. Let a be an expansion sequence defined by F, f, t,P, where these

objects are as above. Let D0 be as in (7). Then h(t, f) ∈ L(d ·D0). If now

h(t, f) is non-trivial then deg(h(t, f)) = deg(h(t, f)∞) ≤ deg(h) · deg(D0) =

dd0.

Let us assume that congruence (9) holds for some n ∈ N. Then h(t, f) ≡
0 mod Pn+1. Under the assumption that h(t, f) is non-trivial, we now have

deg(h(t, f)) ≥ vP (h(t, f)) ≥ n+ 1.

If n ≥ dd0 this is a contradiction. Therefore, we then have h(t, f) = 0

and thus h(t,
∑

i∈N ait
i) = 0. 2

Together these two lemmata give the following result.

Proposition 7 An expansion sequence of degree d0 is uniquely determined

by its initial sequence of length d20.

5 Computations

We now discuss computational aspects.
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Our main goal is here as follows: Given an initial sequence of length at

least d20 of an expansion sequence a of degree d0, we want to compute large

initial sequences of a. For this, we proceed as follows: First, we compute a

minimal defining polynomial. Then from the minimal defining polynomial

and the initial sequence we compute the further coefficients of the expansion

sequence.

At the end of the section we also discuss why the results also apply if a

finite intermediate sequence is given. This case is particularly relevant for

cryptanalytic applications.

Recovering the minimal defining polynomial

Lemma 6 immediately gives rise to an algorithm to determine a minimal

defining polynomial from a suitable initial sequence: Let some finite initial

sequence of length at least d20 of an expansion sequence of degree d0 be given.

The degree d0 itself need not be known a priori.

For d = 1, 2, . . ., we make an ansatz for h0 as a polynomial of degree

d with unknown coefficients. Then (9) with n = d2 gives d2 homogeneous

linear equations on the coefficients of h. We solve this system of equations

by linear algebra. If we have found a non-trivial solution, we compute the

corresponding polynomial. This is then a minimal defining polynomial.

Note that the number of monomials in Fq[t, y] of degree at most d is
(

d+2
2

)

. Thus a particular system to be solved has size d2 ×
(

d+2
2

)

. We

therefore obtain the following proposition.

Proposition 8 A minimal defining polynomial of an expansion sequence of

degree d0 can be computed in polynomial time in d0 · log(q) from an initial

sequence of length d20 or more.

We remark that in practice, one might try to apply this idea with n at

least
(

d+2
2

)

but smaller than d2.

Approaches to compute initial sequences

Let us now assume that we are given an initial sequence of length n ≥ d20
and a minimal defining polynomial h0 of an expansion sequence a of degree

d0. We wish to compute efficiently further coefficients of the sequence a.

Three approaches to this problem come to mind:

1. A direct approach. For some m > n, we use the congruence

h0(t,
∑m

i=1 ait
i) ≡ 0 mod tm+1 to obtain a system of equations for the

unknowns an+1, . . . , am. We then solve this system.
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2. Expansions of functions with a function field theoretic approach. Let

F := Fq[t, y]/(h0), and let f be the residue class of y. Now every place

P of F of degree 1 with t, y ≡ 0 mod P determines uniquely an expan-

sion sequence of F , and one of these is
∑

i∈N ait
i. By (5), the series a

determines a unique place. We therefore have the following approach:

First we determine all places P with t, y ≡ 0 mod P. For each such place

P, we compute the expansion of f at P to the power d20. From this,

we determine which place is the correct one. Then we compute further

coefficients as desired.

3. Hensel’s Lemma. We use a non-archimedean variant of Newton’s iteration

or – with other words – we use some effective version of Hensel’s Lemma.

The use of Hensel’s Lemma (as formulated in [11]) to compute expansion

sequences was already suggested in [10] for the case that t has degree 2. It

is extremely efficient. However, in order that it can be applied, the initial

sequence has to satisfy a condition (see condition (13) below). This condition

are missing in [10].

Because Hensel’s Lemma cannot always be applied and also because

of independent interest, we now first discuss the function field theoretic

approach. Then we come to Hensel’s Lemma and give a criterion under

which (11) is satisfied. The direct approach is not discussed in the following.

Let us for the following fix a definition:

Definition Let
∑

i∈N0
ait

i ∈ Fq[[t]] and n ∈ N0. Then we call the polyno-

mial
∑n

i=0 ait
i the initial series of

∑

i∈N0
ait

i of length n.

Expansions of functions

We consider the general problem to compute an initial series of an expansion

series of a function in a function field with respect to a place of degree 1 and

a local parameter. For concreteness we only consider function fields over

finite fields.

A first problem is how to represent the objects for computational pur-

poses, most importantly the place of degree 1.

There are several approaches here, but one approach has proven itself

to be particularly successful. The general idea of this approach is to adapt

ideas which are successfully used for number fields. This approach has in

particular been popularized by F. Hess in his work [9]. It is also implemented

in the computer algebra system MAGMA ([2]). We describe this approach

briefly. Besides [9], more information on this approach can be found in [6],

and even more information, including proofs of all the following claims can

be found in Chapter 2 of [5].
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Let F/Fq be a function field, and let C be a non-singular proper curve

over Fq with a fixed isomorphism Fq(C) ≃ F . (As we do not assume that Fq

is the exact constant field of F here, the curve C need not be geometrically

irreducible.) The field F itself shall be given by an irreducible polynomial

h0 ∈ Fq[t, y] which is separable in y. (C is then birational to V (h0).) We

consider the separable field extension F |Fq(t). We have the “finite” order,

which is the closure of Fq[t] in F and the “infinite” order, which is the

closure of Fq[
1
t
]( 1

t
) in F . Bases of the orders over the base rings Fq[t] re-

spectively Fq[
1
t
]( 1

t
) can be computed in polynomial time in deg(h0) · log(q).

Now a divisor on C is represented by a pair of two fractional ideals – one

fractional ideal for each order. The fractional ideals themselves are also

represented by bases over the base rings Fq[t] respectively Fq[
1
t
]( 1

t
). Basic

arithmetic can now be performed just as for ideals in number fields and as

described for example in [3]. Furthermore, as shown in [9], there is an easy

algorithm to compute, for a given divisor D of C, the Riemann-Roch space

L(D). With appropriate representations of the objects involved (which we

have not described in all details), divisor arithmetic and the computation of

the Riemann-Roch spaces can be performed in polynomial time in deg(h0),

log(q) and the degrees of the divisors involved.

We now come to our application. Let an irreducible polynomial h0 ∈
Fq[t, y] which is separable in y be given. Let F := Fq[t, y]/(h0). We are

interested in the places P of F of degree 1 with t, y ≡ 0 mod P. Let D :=

min{(t)0, (y)0}. Then the places we search for are exactly the places of

degree 1 in the support of D. Now, D can be computed in polynomial time

in deg(h0) · log(q). The factorization of D as a formal sum of prime divisors

(the so-called “free representation” of D) can be computed in an expected

time which is polynomially bounded in deg(h0) · log(q). (Here we have to

factor polynomials, so this part of the algorithm is randomized.) From this

factorization, the desired places can be read off.

At this point, we are left with the task to compute an initial part of an

expansion series at a place of degree 1 with respect to the local parameter

t. We consider this from a more general point of view.

We consider the general situation described above. So let again F be a

function field over Fq, which is now given by some irreducible polynomial

h0 ∈ Fq[t, y] which is separable in y. Let C be a complete non-singular curve

with a fixed isomorphism F ≃ Fq(C). Furthermore, letP be a place of degree

1 of F with local parameter t. Let P ∈ C(Fq) be the point corresponding to

the place P.

Let now fi for i ∈ N0 be inductively defined as follows:

f0 := f , fi+1 :=
fi − fi(P )

t
(10)

14



Then the expansion sequence of f at P with respect to t is
∑∞

i=1 ait
i with

ai = fi(P ).

So we only have to consider one algorithmic problem: How can one

efficiently evaluate a function at an Fq-rational point? That is, given F , f

and P , how can one compute f(P )?

Let us first mention that this problem is not completely trivial for various

reasons. One reason is that the point is not given by t and y-coordinates

but as an ideal in an order of F . But let us now assume that we know the

coordinates t(P ), y(P ). If then f is given by a polynomial in Fq[t, y], it is

trivial to evaluate f at P . If however f is given as a fraction of polynomials

or a sum of fractions of polynomials, it is not a priori clear now to perform

the evaluation in complete generality.

There is however an easy solution via Riemann-Roch spaces: Note first

that f(P ) is the unique element a ∈ Fq such that f − a vanishes at P. All

functions f − a lie in L((f)∞), and they lie in L((f)∞ − P ) if and only if

a = f(P ).

So we first compute a basis b1, . . . , bℓ of the space L((f)∞ − P ). Then

1, b1, . . . , bℓ is a basis of L((f)∞). We determine a, a1, . . . , aℓ ∈ Fq with

f = a+ a1b1 + · · ·+ aℓbℓ with a linear algebra computation. Then f − a ∈
L((f)∞ − P ) and therefore f(P ) = a. This computation can be performed

in polynomial time in deg(f) · deg(h0) · log(q).
Now fk lies in L((f)∞ + k · (t)∞) and therefore deg(fk) ≤ deg(f) + k ·

deg(t) ≤ (k + 1) · deg(h0). It follows that the computation of the initial

series
∑n

i=1 ait
i can be performed in polynomial time in n · deg(h0) · log(q).

Let us now return to our initial problem, the computation of an sequence

of a particular length n from an initial sequence of length d20, where d0 is

the degree of the expansion sequence.

We have to consider expansions with respect to t at all Fq-rational points

P of C with (t(P ), y(P )) = (0, 0). There are ≤ d0 such points. Therefore,

the computation can be performed in polynomial time in n · d0 · log(q).

Hensel’s Lemma

The computation via Hensel’s Lemma is particularly efficient – provided

that it is possible.

The following lemma and proposition are crucial.

Lemma 9 Let R be a complete discrete valuation ring with normalized val-

uation v, and let t be a local parameter. Let g ∈ R[y], and let r ∈ R be such

that v(g(r)) > 2v(g′(r)). Let

r̃ := r − g(r)

g′(r)
.

15



Then

v(g′(r̃)) = v(g′(r)) , v(g(r̃))− 2v(g′(r̃)) ≥ 2(v(g(r))− 2v(g′(r))) .

This lemma is proven in the course of the proof of Proposition 2 in Sec-

tion II.2 of [11]. The next proposition follows easily.

Proposition 10 Let R be a complete discrete valuation ring with normal-

ized valuation v, and let t be a local parameter. Let g ∈ R[y], and let r0 ∈ R

be such that

v(g(r0)) > 2v(g′(r0)) . (11)

Let b := v(g(r0))− 2v(g′(r0)). Now let (rk)k∈N be a sequence in R such that

for k ∈ N0

rk+1 ≡ rk −
g(rk)

g′(rk)
mod t2

k+1b+2v(g′(r0)) . (12)

Then

v(g′(rk)) = v(g′(r0)) , v(g(rk))− 2v(g′(rk)) ≥ 2k · b ,

rk+1 ≡ rk mod tb·2
k+v(g′(r0)) , g(rk) ≡ 0 mod tb·2

k+2v(g′(r0))

for all k ∈ N0. In particular, (rk)k∈N0
converges to a root ρ of g with

ρ ≡ r0 mod tv(g(r0))−v(g′(r0)) and, more generally, ρ ≡ rk mod tb·2
k+v(g′(r0)).

Moreover, ρ is the unique root of g with ρ ≡ r0 mod tv(g
′(r0))+1 (and thus in

particular with ρ ≡ r0 mod tv(g(r0))−v(g′(r0))).

The proposition is one of the various statements which might be called

“Hensel’s Lemma”. It is closely related to Proposition 2 in Section II.2 of

[11]. However, we only require that the congruence (12) is satisfied. In

contrast in Section II.2 of [11] an equality in R is demanded.

For the proof, note first that the congruence in the conclusion (except

the uniqueness) follow immediately from the first two statements and (12).

The statements for arbitrary k follow immediately by induction from the

lemma. The induction base k = 0 is trivial. So let us assume that the state-

ments hold for a particular natural number k. Let r̃k+1 := rk − g(rk)
g′(rk)

. Then

by the lemma applied with rk and r̃k+1 we obtain that

v(g′(r̃k+1)) = v(g′(rk)) = v(g′(r0)) and v(g(r̃k+1)) − 2v(g′(r̃k+1)) ≥
2(v(g(rk)) − 2v(g′(rk))) ≥ 2k+1b, that is, v(g(r̃k+1)) ≥ 2k+1b + 2v(g′(r0)).

As rk+1 ≡ r̃k+1 mod t2
k+1b+2v(g′(r0)) it follows that v(g(rk+1)) ≥

2k+1b+ 2v(g(r0)) and v(g′(rk)) = v(g′(r̃k)) = v(g′(r0)).

The uniqueness is essentially stated in Proposition 4.1.37 of [4]. For the

convenience of the reader, we recall the easy proof here:

Let us assume that there are two distinct roots ρ1, ρ2 ∈ R of g with

ρ1 ≡ ρ2 ≡ r0 mod tv(g
′(r0))+1. By Gauß’ Lemma we have g = (y−ρ1)(y−ρ2)h
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with some h ∈ R[y]. This gives g′(ρ1) = (ρ1 − ρ2)h(ρ1) and therefore

v(g′(r0)) = v(g′(ρ1)) ≥ v(ρ1 − ρ2), that is, ρ1 6≡ ρ2 mod tv(g
′(r0))+1, a

contradiction. 2

Just as previously, let h0 ∈ Fq[t, y] be an irreducible polynomial, let

F := Fq[t, y]/(h0), and let f be the residue class of y. We which to apply the

above “Hensel’s Lemma” with R = Fq[[t]], v the corresponding normalized

valuation, g = h0 and r0 =
∑n

i=1 ait
i for some initial sequence (a1, . . . , an).

We now address the task to find a suitable condition under which

v(h0(r0)) > 2v(
∂h0
∂y

(r0)) (13)

holds.

Note first that the condition is satisfied if ∂h0

∂y
(r0) 6= 0. We now consider

the general case.

Proposition 11 Let a be an expansion sequence of degree d0 with minimal

defining polynomial h0 =
∑d

i=0 ci(t)y
i, and let n ≥ 2d30. Then

r0 :=
∑n

i=1 ait
i fulfills the condition v(h0(r0)) > 2v(∂h0

∂y
(r0)).

Proof. Let Z be the splitting field of h0 ∈ Fq(t)[y] over Fq(t). We fix an

embedding F →֒ Z, and we prolong the valuation v to Z. We denote the

resulting valuation again by v.

Let h0 = c ·∏m
j=1(y − fj) ∈ Z[y], where c ∈ Fq[t] and f1 = f . By Gauß’

Lemma, v(fj) ≥ 0 for all j. Furthermore v(h0(r0)) ≥ v(c) + v(r0 − f) ≥
v(c) + n + 1 ≥ n + 1. With an easy adaption of the proof of Lemma 5 we

have for j > 1 v(f − fj) ≤ d20 and thus v(r0 − fj) ≤ d20 too.

We have ∂h0

∂y
(r0) = c · ∑m

ℓ=1

∏

j 6=ℓ(y − fj). Now for ℓ > 1,

v(
∏

j 6=ℓ(r0 − fj)) ≥ v(r0 − f) ≥ n + 1. Furthermore v(
∏

j>1(r0 − fj)) ≤
(m − 1) · d20 ≤ d30 − d20. Therefore v(∂h0

∂y
(r0)) ≤ v(c) + d30 − d20 ≤ d30 and

2∂h0

∂y
(r0) ≤ 2d30 < n+ 1 ≤ v(h0(r0)). 2

The computation is in principle straightforward: Let an irreducible poly-

nomial h0 such that (13) holds and a finite sequence (a1, . . . , an) be given.

Let us assume that (13) holds with r0 :=
∑n

i=1 ait
i.

We apply Hensel’s Lemma with g := h0. As above, let b := v(g(r0)) −
2v(g′(r0)). In the k-th iteration, we compute the unique polynomial of

minimal degree rk+1 for which (12) holds. The computation takes place

inside the residue class ring Fq[t]/(t
2k+1b+2v(g′(r0))).

Note that this computation is very efficient because we essentially double

the length of the computed initial sequence at every iteration. One can now

combine this method with fast arithmetic. Like this, one obtains:
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Proposition 12 There exists a Turing machine with the following specifi-

cation: Upon input of an irreducible polynomial h0 such that (13) holds and

a finite initial sequence (a1, . . . , an) for which (13) holds the machine never

terminates and it outputs the coefficients of an expansion sequence with min-

imal defining polynomial h0 and initial sequence (a1, . . . , an). Moreover, the

running time until the mth coefficient is output is in Õ(m · deg(h0)).

Storage requirements

With the two methods discussed above and also with the “direct approach”

mentioned above, the storage requirements are enormous: In order to com-

pute an+1, the complete initial sequence (a1, . . . , an) has to be stored. It is

an interesting question if there is any method to compute entries of a which

uses less storage.

For the time being, the storage requirements put serious constraints on

the use of expansion sequences for stream ciphers – independently of our

attack.

Finite intermediate sequences

We now consider a variant of the above. In cryptanalytic applications, it is

unlikely that one has access to an initial sequence. It is more realistic to

assume that one has access to a finite subsequence (ak+1, . . . , ak+m) of an

expansion sequence a.

Let a be given by F,P, t, f as above, and furthermore let fk be defined

as in (10). Then the sequence (ak+i)i∈N is the expansion sequence of t · fk+1

with respect to t at P. So all the above considerations hold when applied

to this sequence.

Let now dk be the degree of this expansion sequence. (This generalizes

the definition of d0 given above.) As t · fk+1 ∈ L((f)∞ + k · (t)∞), we have

dk ≤ deg(f) + k · deg(t) .

In terms of d0, we have

dk ≤ (k + 1) · d0 .

The dependence on k is surely a weakness of the attack. We remark

however again that for any of the three methods mentioned above, for the

generation of some element an+1, the complete initial sequence (a1, . . . , an)

has to be computed and stored.
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6 Outlook and comments

We have seen that expansion sequences should be regarded as cryptograph-

ically weak. It is now natural to define a new notion of complexity of se-

quences over Fq:

For a finite sequence a of length n we define the expansion complexity, Ea,

as the minimum of the degrees of non-trivial polynomials h(t, y) ∈ Fq[t, y]

with h(t,
∑n

i=1 ait
i) = 0 mod tn+1. Clearly, we always have Ea ≤ La. We

define the expansion complexity profile of a finite or infinite sequence a of

length m as (Ea(n))
m
n=1, where Ea(n) is the expansion complexity of the

initial sequence of length n of a. We remark that for a given sequence, one

should not only consider the expansion complexity profile of the sequence

but in fact all expansion complexity profiles for arbitrary starting points

(that is, for the corresponding left-shifted sequences). In the realm of linear

complexity, the corresponding suggestion was already made in [17], and a

first study in this direction is [12].

The new notion of expansion complexity leads to some new research

directions. One interesting task is to develop a probabilistic theory of ex-

pansion complexity, just as a probabilistic theory of linear complexity has

been developed in [13] and [15]. A first task is here to study the probability

distributions of expansion complexities for uniformly randomly distributed

sequences of a fixed length.

After such a theory has been developed, pseudorandom generators for

cipher streams should be analyzed from a statistic point of view via the

theory. Let us note here that a corresponding statistic program for lin-

ear complexity is part of a test suite, issued by NIST, for pseudorandom

sequences for cryptographic use ([7]).

Finally, we would like to make a remark on terminology: In [18], [14]

and various other works, the authors speak of “sequences with perfect linear

complexity profile”. In the beginning of [20] the authors speak of sequences

with “perfect linear complexity profile” or with “almost perfect linear com-

plexity profile”. However, later in this work and also in [16], the authors

speak of “(almost) perfect” sequences instead. Moreover, sequences with

d-almost perfect complexity profile are called “d-perfect”. Here we would

like to make the following remark: The previous expressions are completely

adequate. However, the newer expressions are questionable. It is one thing

to express that a mathematical object is “(almost) perfect” with respect

to a particular aspect under consideration. It is however something else to

say that a mathematical object is “(almost) perfect” by itself. Concretely,

having in mind the results of this work, we would like to suggest to return

to the older terminology and to discontinue speaking of “(almost) perfect

sequences” and of “d-perfect sequences”. Consequently, we have avoided
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the usage of the expressions “(almost) perfect sequence” and “d-perfect se-

quence” in this article.
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