Errata

After now a year has passed since I submitted my Habilitation thesis "On arithmetic and the discrete logarithm problem in class groups of curves", I realized some mistakes and inaccuracies. Two of the mistakes are quite important, and in fact a particular statement in the work is incorrect. The other mistakes and inaccuracies are relatively minor. I now first discuss the two important mistakes.

1. Lemma 2.109 and more generally the first item of Remark 2.106 are incorrect. It is not true that reductions along a divisor of degree 1 are always unique. Here is a counterexample:
Let \mathcal{C} / k be a hyperelliptic curve with a k-rational point P which is not a Weierstraß point. Let $\tilde{D}:=P+\iota(P)$ and let $D_{0}:=2 \iota(P)-P$, where ι is the hyperelliptic involution. Then $\tilde{D}-D_{0}=2 P-\iota(P)$, which is not linearly equivalent to a point. Thus \tilde{D} is reduced along D_{0}, but $|\tilde{D}|$ has dimension 1 .
The statements hold however if the divisor D_{0} is effective. In particular, reductions along a k-rational point are always unique.
I remark that the incorrect statements mentioned here are not used in the index calculus algorithms in Chapter 3.
2. In order to prove Theorem 2, I wanted to apply Proposition 3.32 with $C:=\frac{1}{2 g_{0}}\left(1-\frac{1}{g_{0}}\right) \cdot \frac{\log (\sqrt{2}-1)}{\log (\sqrt{2})}$ (see page 154$)$. However, this number is negative as $\sqrt{2}-1<1$. In fact, the Hasse-Weil bound does not give a non-trivial lower bound on $\# \mathrm{Cl}^{0}(\mathcal{C})$ for $q=2,3,4$.
However, in Lachaud, Martin-Deschamps: Nombre de points de jacobiennes sur un corps fini (Acta. Arith. 56, 1990, pp. 329-340) the following lower bound on $\# \mathrm{Cl}^{0}(\mathcal{C})$ is proven:

$$
\# \mathrm{Cl}^{0}(\mathcal{C}) \geq \frac{(q-1)^{2}}{(q+1) \cdot q} \cdot \frac{1}{g+1} \cdot q^{g}
$$

By this bound, we have $\# \mathrm{Cl}^{0}(\mathcal{C}) \in \tilde{\mathcal{O}}\left(q^{g}\right)$ for all curves $\mathcal{C} / \mathbb{F}_{q}$. With this result, Theorem 3 immediately implies Theorem 2.
Additionally, the result from [Heß05] cited on page viii also holds if the expected running time is expressed in terms of $\# \mathrm{Cl}^{0}(\mathcal{C})$ instead of q^{g}.

In addition to these mistakes, I have found some relatively minor inaccuracies which I list now in the order of occurrence.

- Page xi, line 4: Replace "[Sem98]" by "[Sem04]".
- Page 100, line 5 of the proof of Lemma 2.108: Replace "then so is every divisor" by "then so is every effective divisor".
- Page 122 , Step 5 of the algorithm: Replace $[\gamma]_{\ell}$ by $[\underline{\gamma}]_{\ell}$.
- Page 131, line -11: Replace "superpolynomial in the cardinality of the ground field" by "superpolynomial in the input length".
- Page 133, Proposition 3.16: Replace the first four sentences by: "Let us fix some $g \geq 2$. Then there exists some algorithm such that the following holds: Upon input of a curve $\mathcal{C} / \mathbb{F}_{q}$ of genus g, elements $a, b \in$ $\mathrm{Cl}^{0}(\mathcal{C})$ and a system c_{1}, \ldots, c_{u} whose size is polynomially bounded in $\log (q)$, if the algorithm terminates, it outputs the discrete logarithm of b with respect to a. Moreover, if c_{1}, \ldots, c_{u} is a generating system, the expected running time of the algorithm is in $\tilde{\mathcal{O}}\left(q^{2-2 g}\right)$."
- Page 133, Proposition 2.17 and Proposition 3.18: Insert after "a curve $\mathcal{C} / \mathbb{F}_{q}$ ": "of genus g ".
- Page 137: Replace the "Procedure" by the following:

Procedure: Construction of the tree of large prime relations

Construct a labeled rooted tree T with vertex set contained in $\mathcal{L} \dot{U}\{*\}$ as follows:
Let T consist only of the root $*$, labeled with 0 .
Let $N_{\max } \longleftarrow\left\lceil q^{1-1 / g+1 / g^{2}}\right\rceil$.
Let $s \longleftarrow 1$.
Repeat
Repeat
Choose $s_{1}, \ldots, s_{u} \in \mathbb{Z} / N \mathbb{Z}$ uniformly and independently at random.
Compute the along P_{0} reduced divisor D in free representation with $[D]-\operatorname{deg}(D) \cdot\left[P_{0}\right]=\sum_{j} s_{j} c_{j}$.
If D splits as $D=\sum_{j} r_{j} F_{j}+Q$ with $Q \in \mathcal{L}-(\mathcal{F} \cup T)$,
insert an edge from * to Q into T, labeled with $\left(r_{j}\right)_{j}$ (in sparse representation).
If D splits as $D=\sum_{j} r_{j} F_{j}+r_{P} P+Q$ with $P \in T_{s-1}, Q \in$ $\mathcal{L}-(\mathcal{F} \cup T)$ and $r_{P}>0$,
insert an edge from P to Q into T, labeled with $\left(r_{j}\right)_{j}$ and r_{P}. In both cases label Q with s and the edge with $\left(r_{j}\right)_{j}$ (in sparse representation).
Until T contains $\min \left\{2^{s-1} \cdot\left\lceil q^{1-1 / g}\right\rceil, N_{\max }\right\}$ edges.
If the number of edges equals $N_{\text {max }}$, STOP.
Let $s \longleftarrow s+1$.

- Page 139, line 12: Replace " $\left[D-P_{0}\right]$ " by " $\left[D-g \cdot P_{0}\right]$ ".
- Page 143 , last paragraph: Replace " D_{0} " by " E " (twice) and "an divisor" by "a divisor".
- Page 146, line 12: Replace "uniformly randomly generated divisors" by "a uniformly randomly distributed divisor".
- Page 150, Step 2 in the algorithm for Lemma 3.27: Replace "For $i=0, \ldots,\left\lceil\frac{n}{m}\right\rceil$ " by "For $\ell=0, \ldots,\left\lceil\frac{n}{m}\right\rceil$ ".
- Page 152, line -3: Replace "is is" by "is".
- Page 153, in the paragraph below Theorem 2. Replace "As in Proposition 2.117, the divisor classes are represented by an along D_{0} reduced divisors, where the height of D_{0} is polynomially bounded in $d^{\prime \prime}$ by "As in Proposition 2.117, the divisor classes are represented by along D_{0} reduced divisors, where D_{0} has degree 1 and a height which is polynomially bounded in $d^{\prime \prime}$.
- Page 156, line 20: Replace " $g^{\Omega(1) " ~ b y ~ " ~} \frac{1}{g^{\Omega(1)} \text { ". }}$
- Page 163 , line -5 : Replace "merely merely" by "merely".
- Page 167, Propositions 3.42 and 3.43: Perform changes analogously to the changes for Propositions 3.16 and 3.17 on page 133.
- Page 171: Perform changes in the "procedure" similarly to the changes in the "procedure" on page 137.
- Page 172: Replace lines $10-22$ by the following:
"We thus obtain: A tree of large prime relations of size $\left\lceil q^{1-\frac{1}{n}}\right\rceil$ is constructed in an expected time of $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$.

Let us now assume that we are in Stage s with $s \geq 2$. We set

$$
M:=\mathcal{F}^{n-2} \times\left(\mathcal{F} \cup T_{s-1}\right) \times(\mathcal{L}-T) .
$$

Now for q large enough (and independently of T, in particular independently of s) this set has cardinality $\geq\left(q^{1-\frac{1}{n}}\right)^{n-2} \cdot 2^{s-2} \cdot q^{1-\frac{1}{n}} \cdot \frac{q}{4}=$
$2^{s-2} \cdot\left(q^{1-\frac{1}{n}}\right)^{n-1} \cdot \frac{q}{4}$. For q large enough the probability that one try gives rise to a new edge is

$$
\geq \frac{D}{16} \cdot 2^{s-2} \cdot q^{-\left(1-\frac{1}{n}\right)}
$$

This implies that for q large enough (independently of s) the following holds: Given any tree T_{s-1} with $2^{s-2} \cdot\left\lceil q^{1-\frac{1}{n}}\right\rceil$ edges, the expected number of tries until a tree T with $\min \left\{2^{s-1} \cdot\left\lceil q^{1-\frac{1}{n}}\right\rceil, N_{\text {max }}\right\}$ edges is constructed is

$$
\leq \frac{32}{D} \cdot(q+1)^{2-\frac{2}{n}}
$$

- Page 181, line 2 of Proposition 3.64: Replace " $n \cdot d^{n}$ " by " n ! d^{n} ".
- Page 191, line 14: Replace " $\operatorname{Res}_{k}^{K}(A) "$ by $" \operatorname{Res}_{k}^{K}\left(A^{\prime}\right)$ ".
- Page 193, line 19: Replace "is is" by "is".
- Page 217, line 16: Replace "in in" by "in".
- Page 228, line -1: Replace "[Gau04]" by "[Gau04b]".
- Page 229, line 4: Replace "Wie" by "Wir".

Leipzig, May 72009
Claus Diem

