An index calculus algorithm for non-singular plane curves of high genus

Claus Diem

University of Leipzig

Presented at the
$10^{\text {th }}$ Workshop on Elliptic Curve Cryptography (ECC)

Toronto, Sep. 18-20 2006

Motivation

Recall that for $\alpha \in(0,1)$ and $c>0$, we have the subexponentiality function

$$
L_{n}[\alpha, c]:=e^{c \cdot \log (n)^{\alpha} \cdot \log (\log (n))^{1-\alpha}} .
$$

There are $L[1 / 3, O(1)]$-algorithms for integer factorization as well as for the discrete logarithm problem in finite fields. However, for the discrete logarithm problem in degree 0 class groups (Jacobian groups) of curves of high genus, there are only $L[1 / 2, O(1)]$-algorithms.

Motivation

Heuristic Result Let $d \geq 4$ be fixed, and let us consider curves over finite fields \mathbb{F}_{q} represented by plane models of degree d. Then the DLP in the degree 0 class groups of these curves can be solved in an expected time of

$$
\tilde{O}\left(q^{2-\frac{2}{d-2}}\right) .
$$

The result

Heuristic Result Let us consider a family of non-singular plane curves over finite fields \mathbb{F}_{q} with $g \in \Omega\left(\log (q)^{2}\right)$, where g is the genus. Then one can solve the DLP in the degree 0 class groups of these curves in an expected time of

$$
O\left(L_{q^{g}}\left[1 / 3,\left(\frac{64}{9}\right)^{1 / 3}+\epsilon\right]\right)
$$

The result

Heuristic Result Let us consider a family of non-singular plane curves over finite fields \mathbb{F}_{q} with $g \in \Omega\left(\log (q)^{2}\right)$, where g is the genus. Then one can solve the DLP in the degree 0 class groups of these curves in an expected time of

$$
O\left(L_{q^{g}}\left[1 / 3,\left(\frac{64}{9}\right)^{1 / 3}+\epsilon\right]\right) \quad\left(\left(\frac{64}{9}\right)^{1 / 3} \leq 1.923\right)
$$

(Compare with the running time of $L_{q^{g}}\left[1 / 3,\left(\frac{64}{9}\right)^{1 / 3}+o(1)\right]$ for the number field sieves for factoring and DLP in prime fields.)

Idea of index calculus

Let $\mathcal{C} / \mathbb{F}_{q}$ be a curve of genus g, and let $a, b \in \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ with $b \in\langle a\rangle$.
The goal is to find an $x \in \mathbb{N}$ such that $x \cdot a=b$.
We fix a smoothness bound s, and let the factor base \mathcal{F} be the set of all prime divisors of degree $\leq s$.
The goal is the generate relations between factor base elements and the inputs a, b for the DLP and to solve the DLP via linear algebra.

The group order

Idea by F. Heß:
By p-adic point counting algorithms, one can determine the L-polynomial of $\mathcal{C} / \mathbb{F}_{q}$ in polynomial time in $\log (q)$. We do this computation at the beginning. Then we can perform all linear algebra computations modulo the group order $\# \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$. We thereby use sparse linear algebra.

Generating relations fast

Let $\mathcal{C} / \mathbb{F}_{q}$ be a non-singular plane curve, given by

$$
F(X, Z, Z)=0 .
$$

Let $d:=\operatorname{deg}(F)$. Note that

$$
g=\frac{(d-1)(d-2)}{2}
$$

Let $D_{\infty}:=\operatorname{div}_{\mathcal{C}}(Z)$ be the intersection of \mathcal{C} with the line $Z=0$; this is an effective divisor of degree d.

Generating relations fast

Idea of the previous algorithm for plane curves of small degree over large finite fields:
Let D be the intersection of \mathcal{C} with any line. Then

$$
D \sim D_{\infty}
$$

that is,

$$
[D]-\left[D_{\infty}\right]=0 .
$$

We now want that D splits over the factor base.

Generating relations fast

What about high genus?
Idea: Intersect the curve with lines, quadrics, cubics, quartics etc.
Let $t \in \mathbb{N}$ and let us consider the linear system

$$
\mathfrak{o}_{t}:=\left\{\operatorname{div}_{\mathcal{C}}(G) \mid G \in \mathbb{F}_{q}[X, Y, Z]_{t}\right\} .
$$

This is a subsystem of the complete linear system

$$
\begin{aligned}
& \left|t D_{\infty}\right|=\left\{D \geq 0 \mid D \sim t D_{\infty}\right\} \\
& =\left\{t D_{\infty}+(f) \mid(f) \geq-t D_{\infty}\right\}
\end{aligned}
$$

In particular it is a projective space. What can be said about its dimension?

Generating relations fast

Lemma For $t<d, \operatorname{dim}\left(\mathfrak{d}_{t}\right)=\binom{t+2}{2}-1$.

Generating relations fast

Lemma For $t<d, \operatorname{dim}\left(\mathfrak{d}_{t}\right)=\binom{t+2}{2}-1$.
Proof.
Let $\iota: \mathcal{C} \hookrightarrow \mathbb{P}_{\mathbb{F}_{q}}^{2}=\operatorname{Proj}\left(\mathbb{F}_{q}[X, Y, Z]\right)$ be the immersion. Let $I=(F) \subseteq \mathbb{F}_{q}[X, Y, Z]$ be the defining ideal of $\mathcal{C} \subset \mathbb{P}_{\mathbb{F}_{q}}^{2}$. We have an exact sequence

$$
0 \longrightarrow I_{t} \longrightarrow \mathbb{F}_{q}[X, Y, Z]_{t}=\Gamma\left(\mathbb{P}_{\mathbb{F}_{q}}^{2}, \mathcal{O}(t)\right) \xrightarrow{t^{*}} \Gamma\left(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(t)\right),
$$

and for $t<d, I_{t}=0$, i.e.

$$
\begin{gathered}
\iota^{*}: \mathbb{F}_{q}[X, Y, Z]_{t} \hookrightarrow \Gamma\left(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(t)\right) . \\
\left|t D_{\infty}\right| \simeq \mathbb{P}\left(\Gamma\left(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(t)\right) \quad \mathfrak{d}_{t} \simeq \mathbb{P}\left(\iota^{*} \mathbb{F}_{q}[X, Y, Z]_{t}\right) .\right.
\end{gathered}
$$

Some notation

For $\alpha \in(0,1)$ and $c>0$, we have the subexponentiality function $L[\alpha, c]$ with

$$
L_{n}[\alpha, c]=e^{c \cdot(\log n)^{\alpha} \cdot \log (\log (n))^{1-\alpha}}
$$

Let $\ell[\alpha, c]$ be the function in two variables (q, g)

$$
\ell_{q, g}[\alpha, c]=c \cdot g^{\alpha} \cdot\left(\frac{\log (g \log (q))}{\log (q)}\right)^{1-\alpha} .
$$

Note that

$$
L_{q^{g}}[\alpha, c]=q^{\ell[\alpha, c]} .
$$

Smoothness

Theorem (Heß) Let $0<\beta<\alpha<1$ and $c, d>0$ be fixed, $\delta>\frac{1-\alpha}{\alpha-\beta}$.

For some curve over a finite field, let $\psi(n, m)$ be the number of effective divisors of degree n which are m-smooth.
Let us consider curves over finite fields \mathbb{F}_{q} with $g \geq(\log (q))^{\delta}$.
Let

$$
n=\lfloor\ell[\alpha, c]\rfloor, m=\lceil\ell[\beta, d]\rceil .
$$

Then

$$
\frac{\psi(n, m)}{q^{n}} \geq L_{q^{g}}\left[\alpha-\beta,-\frac{c}{d}(\alpha-\beta)-o(1)\right] .
$$

Generating the relation lattice

Let us consider non-singular plane curves with $g \in \Omega\left(\log (q)^{2}\right)$.

Heuristic Result 1 Let $c:=\left(\frac{8}{9}\right)^{1 / 3}$, and let $\epsilon>0$ be fixed. Let the smoothness bound be $s:=\ell[1 / 3, c]$. Let $t:=\left\lfloor\ell[1 / 3,4(c+\epsilon)]^{1 / 2}\right\rfloor$. Then for $q^{g} \gg 0$, the s-smooth divisors in \mathfrak{d}_{t} generate the relation lattice of $\mathcal{F} \cup\left\{D_{\infty}\right\}$.

Generating the relation lattice

Let us consider non-singular plane curves with $g \in \Omega\left(\log (q)^{2}\right)$.

Heuristic Result 1 Let $c:=\left(\frac{8}{9}\right)^{1 / 3}$, and let $\epsilon>0$ be fixed. Let the smoothness bound be $s:=\ell[1 / 3, c]$. Let $t:=\left\lfloor\ell[1 / 3,4(c+\epsilon)]^{1 / 2}\right\rfloor$. Then for $q^{g} \gg 0$, the s-smooth divisors in \mathfrak{d}_{t} generate the relation lattice of $\mathcal{F} \cup\left\{D_{\infty}\right\}$.

Note The dimension of \mathfrak{d}_{t} is $\sim t^{2} / 2 \sim \ell[1 / 3,2(c+\epsilon)]$. \Longrightarrow The relation collection and the linear algebra can be performed in a time of

$$
\left.L[1 / 3,2(c+\epsilon)+o(1)]=L\left[1 / 3,\left(\frac{64}{9}\right)^{1 / 3}+2 \epsilon\right)+o(1)\right] .
$$

Arguments for Heuristic Result 1

Heuristic Assumption Up to logarithmic factors, the probability that a uniformly chosen divisor in \mathfrak{d}_{t} is s-smooth is equal to the probability that a uniformly chosen divisor of degree $\operatorname{deg}\left(t D_{\infty}\right)=t d$ is s-smooth.
This degree is

$$
\begin{gathered}
t d \sim \ell[1 / 3,4(c+\epsilon)]^{1 / 2} \cdot(2 g)^{1 / 2}= \\
2(c+\epsilon)^{1 / 2} \cdot g^{1 / 6} \cdot\left(\frac{\log (g \log (q))}{\log (q)}\right)^{1 / 3} \cdot(2 g)^{1 / 2}= \\
8^{1 / 2} \cdot(c+\epsilon)^{1 / 2} \cdot g^{2 / 3} \cdot\left(\frac{\log (g \log (q))}{\log (q)}\right)^{1 / 3}=\ell\left[2 / 3,8^{1 / 2}(c+\epsilon)^{1 / 2}\right]
\end{gathered}
$$

Arguments for Heuristic Result 1

The probability in question is then (heuristically)

$$
P \in L\left[1 / 3,-\frac{8^{1 / 2}(c+\epsilon)^{1 / 2}}{c} \cdot \frac{1}{3}-o(1)\right] .
$$

\Longrightarrow We have

$$
\sim P \cdot q^{\operatorname{dim}\left(\mathfrak{d}_{t}\right)} \in L\left[1 / 3,-\frac{8^{1 / 2}(c+\epsilon)^{1 / 2}}{c} \cdot \frac{1}{3}-o(1)+2(c+\epsilon)\right]
$$

relations over the factor base (and D_{∞}).

Arguments for Heuristic Result 1

The probability in question is then (heuristically)

$$
P \in L\left[1 / 3,-\frac{8^{1 / 2}(c+\epsilon)^{1 / 2}}{c} \cdot \frac{1}{3}-o(1)\right] .
$$

\Longrightarrow We have

$$
\sim P \cdot q^{\operatorname{dim}\left(\mathfrak{d}_{t}\right)} \in L\left[1 / 3,-\frac{8^{1 / 2}(c+\epsilon)^{1 / 2}}{c} \cdot \frac{1}{3}-o(1)+2(c+\epsilon)\right]
$$

relations over the factor base (and D_{∞}).
Claim. For $c=\left(\frac{8}{9}\right)^{1 / 3}$ this is $\geq L[1 / 3, c]$.

Arguments for Heuristic Result 1

That is,

$$
\begin{aligned}
& -\frac{8^{1 / 2}(c+\epsilon)^{1 / 2}}{c} \cdot \frac{1}{3}-o(1)+2(c+\epsilon) \geq c . \\
& \left(\frac{8^{1 / 2}}{3 c^{1 / 2}} \leq c \Longleftrightarrow \frac{8}{9} \leq c^{3} \Longleftrightarrow c \geq\left(\frac{8}{9}\right)^{1 / 3}\right)
\end{aligned}
$$

Input elements and factor base

Let $a, b \in \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ be the input elements. We want to find two relations of the form

$$
\sum_{j} r_{j}\left[F_{j}\right]+r\left[D_{\infty}\right]=\alpha a+\beta b
$$

Input elements and factor base

Let $a, b \in \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ be the input elements. We want to find two relations of the form

$$
\sum_{j} r_{j}\left[F_{j}\right]+r\left[D_{\infty}\right]=\alpha a+\beta b
$$

1. Step: Let D_{0} be some divisor of degree g which splits over the factor base. Choose uniformly randomly α, β and compute an effective divisor D with

$$
[D]-\left[D_{0}\right]=\alpha a+\beta b .
$$

Repeat until D is $L[2 / 3, c-\epsilon]$-smooth.
Time needed: $L\left[1 / 3, \frac{1}{c-\epsilon} \cdot \frac{1}{3}+o(1)\right]$.
This is negligible.

The smoothing procedure

Input: A divisor D of degree $\ell[\alpha, c-\epsilon](\alpha \in[1 / 3,2 / 3])$.
Output: A relation $[D]+\sum_{i}\left[D_{i}\right]+r\left[D_{\infty}\right]=0$ with $D_{i} \geq 0$, $\operatorname{deg}\left(D_{i}\right) \leq \ell[\alpha / 2+1 / 6, c-\epsilon]$.

Heuristic expected running time: $L\left[1 / 3, c+\epsilon^{\prime}\right]$

The smoothing procedure

Input: A divisor D of degree $\ell[\alpha, c-\epsilon](\alpha \in[1 / 3,2 / 3])$.
Output: A relation $[D]+\sum_{i}\left[D_{i}\right]+r\left[D_{\infty}\right]=0$ with $D_{i} \geq 0$, $\operatorname{deg}\left(D_{i}\right) \leq \ell[\alpha / 2+1 / 6, c-\epsilon]$.

Heuristic expected running time: $L\left[1 / 3, c+\epsilon^{\prime}\right]$
E.g.: After an application to a divisor of degree $\ell[2 / 3, c-\epsilon]$, we have a relation with $\operatorname{deg}\left(D_{i}\right) \leq \ell[1 / 2, c-\epsilon]$.

Application of the smoothing procedure

Say we have

$$
[D]-\left[D_{0}\right]=\alpha a+\beta b \quad \text { with } D=\sum_{i} D_{i}, \operatorname{deg}\left(D_{i}\right) \leq \ell[2 / 3, c-\epsilon] .
$$

Then to each D_{i} we apply the smoothing procedure. We obtain

$$
D_{i} \sim-\sum_{j} D_{i, j}+r_{i} D_{\infty} \quad \text { with } D_{i, j} \geq 0
$$

$$
\operatorname{deg}\left(D_{i, j}\right) \leq \ell[1 / 3+1 / 6, c-\epsilon]=\ell[1 / 2, c-\epsilon] \text { and } r_{i} \in \mathbb{N} .
$$

Then we apply the smoothing procedure again to each $D_{i, j}$, then again ... (until we have a representation as a sum of effective divisors of degree $\leq \ell[1 / 3, c]$).

Application of the smoothing procedure

Let $e_{1}:=1, e_{i+1}:=\frac{e_{i}}{2}+\frac{1}{6}$ (such that $e_{i}=\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{2^{n-1}}$). Then we obtain a tree where the degrees of the divisors in row i are bounded by $\ell\left[e_{i}, c\right]$.

Application of the smoothing procedure

We repeat this until $i \approx \log _{2}(g)$. Then $e_{i} \approx \frac{1}{3}+\frac{2}{3} \cdot \frac{1}{g}$.
Then the degrees are

$$
\leq \ell\left[e_{i}, c-\epsilon\right] \in \ell[1 / 3,(c-\epsilon)(1+o(1))] \leq \ell[1 / 3, c] .
$$

We have to apply the smoothing procedure only $L[1 / 3, o(1)]$ times, and the matrix has only $L[1 / 3, o(1)]$ non-zero entries per row.

The smoothing procedure

Let an effective divisor D of degree $\ell[\alpha, c-\epsilon]$ be given. Let $t_{\alpha}:=\left\lfloor\ell[\alpha, 4(c+\epsilon)]^{1 / 2}\right\rfloor$ and consider the linear system

$$
\left|t_{\alpha} D_{\infty}-D\right| \cap \mathfrak{d}_{t_{\alpha}} .
$$

Any divisor D^{\prime} in this linear system satisfies

$$
D^{\prime}+D \sim t_{\alpha} D_{\infty} .
$$

We want to find some D^{\prime} which is $\ell[\alpha / 2+1 / 6, c-\epsilon]$-smooth.

The smoothing procedure

Let an effective divisor D of degree $\ell[\alpha, c-\epsilon]$ be given. Let $t_{\alpha}:=\left\lfloor\ell[\alpha, 4(c+\epsilon)]^{1 / 2}\right\rfloor$ and consider the linear system

$$
\left|t_{\alpha} D_{\infty}-D\right| \cap \mathfrak{d}_{t_{\alpha}} .
$$

This linear system has dimension
$\geq\binom{ t_{\alpha}+2}{2}-\operatorname{deg}(D) \sim \ell[\alpha, 2(c+\epsilon)]-\ell[\alpha, c-\epsilon]=\ell[\alpha, c+3 \epsilon]$
and degree

$$
\sim \ell[\alpha, 4(c+\epsilon)]^{1 / 2} \cdot(2 g)^{1 / 2}=\ell\left[\alpha / 2+1 / 2,8^{1 / 2}(c+\epsilon)^{1 / 2}\right] .
$$

The smoothing procedure

Let an effective divisor D of degree $\ell[\alpha, c-\epsilon]$ be given. Let $t_{\alpha}:=\left\lfloor\ell[\alpha, 4(c+\epsilon)]^{1 / 2}\right\rfloor$ and consider the linear system

$$
\left|t_{\alpha} D_{\infty}-D\right| \cap \mathfrak{d}_{t_{\alpha}} .
$$

Heuristic Result 2 There exists a universal constant C such that for $\epsilon<C$, the linear system $\left|t_{\alpha} D_{\infty}-D\right| \cap \mathfrak{d}_{t_{\alpha}}$ contains $L[1 / 3, \Omega(1)] s$-smooth divisors.

The algorithm

Given: A non-singular plane curve $\mathcal{C} / \mathbb{F}_{q}$ and $a, b \in \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ of high genus with $b \in\langle a\rangle$.

1. Compute $\# \mathrm{Cl}^{0}\left(\mathcal{C} / \mathbb{F}_{q}\right)$ using a p-adic point counting algorithm.
2. Let $s:=\ell\left[1 / 3,\left(\frac{8}{9}\right)^{1 / 3}\right]$, and let the factor base \mathcal{F} consist of all prime divisors of degree $\leq s$.
3. Generate relations by considering divisors of the form $\operatorname{div}_{\mathcal{C}}(G)$ for polynomials G of degree $\leq\left(\ell\left[1 / 3,4\left(\frac{8}{9}\right)^{1 / 3}+\epsilon\right]\right)^{1 / 2}$.
4. Relate the input elements to the factor base, using the "smoothing procedure".
5. Linear algebra

Curves of higher degree

Heuristic Result Let $\frac{1}{2} \leq \beta \leq \frac{3}{4}$. Let us consider curves represented by plane models of degree $d \leq g^{\beta}$ (and $\left.g \in \Omega\left(\log (q)^{2}\right)\right)$.
Then the DLP in the degree 0 class groups of these curves can be solved in an expected time of $L\left[\frac{2}{3} \cdot \beta+\epsilon, O(1)\right]$.

