Claus Diem

Institut für Experimentelle Mathematik Essen

On the ECDLP over Extension Fields

I thank the organizers and
B. Edixhoven, G. Frey, S. Galbraith, P. Gaudry, J. Scholten, N. Thériault and E. Viehweg.

Claim. There exists a randomized algorithm which takes as input a tuple ($q, n, E / \mathbb{F}_{q^{n}}, P, Q$), where q is a prime power, n a natural number, $E / \mathbb{F}_{q^{n}}$ an elliptic curve and $P, Q \in E\left(\mathbb{F}_{q^{n}}\right)$ with $Q \in\langle P\rangle$ which computes the DLP with respect to P and Q and has the following property:

Let us fix $a, b \in \mathbb{R}$ with $0<a<b$ and let us consider all instances with

$$
a \log _{2}(q) \leq n \leq b \log _{2}(q) .
$$

Then restricted to these instances, the algorithm has an expected running time of

$$
\mathcal{O}\left(2^{D \cdot\left(n \cdot \log _{2}(q)\right)^{3 / 4}}\right)
$$

bit operations for $D=\frac{4 b+\epsilon}{a^{3 / 4}}$.

Please note.

1. I do not have a complete proof of this statement.
2. The algorithm is not practical.

The algorithm is a variant of the index calculus algorithm presented by Gaudry. The main difference is that we increase the factor base.

Let $k:=\mathbb{F}_{q}, K:=\mathbb{F}_{q^{n}}$.
Recall the basic features of Gaudry's basic algorithm.

The factor base is the set of points in $E(K)$ whose x-coordinates lie in a certain 1-dimensional subspace K_{1} of K. It has "roughly" q elements.

The relations

$$
\alpha P+\beta Q=R_{1}+\cdots R_{n}
$$

are found by solving certain systems of polynomial equations over k. These systems have n equations of degree $n \cdot 2^{n-2}$ in n variables. "Usually", the algebraic set they define is 0dimensional.

Let us assume that the homogenizations of these systems define 0-dimensional (proj.) algebraic sets.

The complexity of solving these systems is

$$
\mathcal{O}\left(\left(n \cdot 2^{n-2} \cdot e\right)^{3 n} \cdot \log _{2}(q)^{2}\right)
$$

The time for finding the relations can be estimated as

$$
\mathcal{O}\left(\left(n \cdot 2^{n-2} \cdot e\right)^{3 n} \cdot \log _{2}(q)^{2} \cdot n!\cdot q\right)
$$

The time for linear algebra is

$$
\mathcal{O}\left(q^{2} \cdot\left(\log _{2}(q) \cdot n\right)^{2}\right)
$$

Let us for simplicity work with a total running time of

$$
\mathcal{O}\left(2^{3 n^{2}} \cdot q^{2}\right)=\mathcal{O}\left(2^{3 n^{2}+2 \log _{2}(q)}\right)
$$

Let us consider all instances with

$$
n \leq b \sqrt{\log _{2}(q)}
$$

for some fixed $b>0$.
Then we have

$$
\mathcal{O}\left(2^{3 b^{2} \log _{2}(q)+2 \log _{2}(q)}\right)=\mathcal{O}\left(2^{\left(3 b^{2}+2\right) \log _{2}(q)}\right)
$$

Let us now consider all instances with

$$
a \sqrt{\log _{2}(q)} \leq n \leq b^{2} \sqrt{\log _{2}(q)}
$$

for fixed $0<a<b$.

Then

$\log _{2}(q)=\left(\sqrt{\log _{2}(q)} \cdot \log _{2}(q)\right)^{2 / 3} \leq\left(\frac{n}{a} \log _{2}(q)\right)^{2 / 3}$

The total running time is thus

$$
\mathcal{O}\left(\exp _{2}\left(\frac{3 b^{2}+2+\epsilon}{a^{2 / 3}} \cdot\left(n \cdot \log _{2}(q)\right)^{2 / 3}\right)\right)
$$

For larger n, the complexity can be improved by increasing the factor base and decreasing the size of the systems.

Recall: The factor base had $\approx q$ elements, and we tried to find relations

$$
\alpha P+\beta Q=R_{1}+\cdots+R_{n} .
$$

Let $c \in[1, \ldots, n]$ (to be determined later) and let $m:=\left[\frac{n}{c}\right]$.

Let K_{m} be a randomly chosen m-dimensional k-vector subspace of K. Let the factor base be the set of points in $E(K)$ whose x-coordinates lie in K_{m}. Then the factor base contains roughly q^{m} elements.

We try to find relations

$$
\alpha P+\beta Q=R_{1}+\cdots+R_{c} .
$$

(Note that $n-m c \in[0, \ldots, c-1]$, but this difference can be made 1 or even 0 .)

One can find such relations by solving certain systems with n variables in $m c \leq n$ unknowns of degree $c \cdot 2^{c-2}$ over k. One can expect that "usually" these systems define a zerodimensional algebraic set. Let us again assume that "usually" the homogenizations also define a O-dimensional (proj.) algebraic sets.

Then the complexity to solve these systems is

$$
\mathcal{O}\left(2^{3 n c} \cdot \log _{2}(q)^{2}\right)
$$

and time to find enough relations is more-orless

$$
\mathcal{O}\left(2^{3 n c} \cdot q \cdot q^{m+1}\right)=\mathcal{O}\left(2^{3 n c+(m+2) \log _{2}(q)}\right)
$$

(which is also the total running time).

This is "approximately"

$$
\mathcal{O}\left(2^{3 n c+\left(\frac{n}{c}+2\right) \log _{2}(q)}\right)
$$

Let us set $c:=\left[\sqrt{\log _{2}(q)}\right]$. Then we get

$$
\mathcal{O}\left(2^{\left(4 n \sqrt{\log _{2}(q)}+3 \log _{2}(q)\right)}\right)
$$

Let us assume that

$$
n \leq b \log _{2}(q)
$$

Then we obtain a running time of

$$
\mathcal{O}\left(2^{(4 b+\epsilon) \log _{2}(q)^{3 / 2}}\right)
$$

Let us assume that additionally

$$
a \log _{2}(q) \leq n
$$

Then
$\log _{2}(q)^{3 / 2}=\left(\log _{2}(q) \cdot \log _{2}(q)\right)^{3 / 4} \leq\left(\frac{n}{a} \cdot \log _{2}(q)\right)^{3 / 4}$

This gives a total running time of

$$
\mathcal{O}\left(\exp _{2}\left(\frac{4 b+\epsilon}{a^{3 / 4}} \cdot\left(n \log _{2}(q)\right)^{3 / 4}\right)\right)
$$

On the heuristics.

- One can prove that a factor base with $\geq \frac{1}{2} q^{m}$ elements can be constructed in polynomial time.
- Using a further variation of the algorithm, one can prove in a certain sense that the systems "usually" define 0-dimensional algebraic sets.

Major open questions and tasks.

- Do the homogenizations of the systems really define 0-dimensional algebraic sets?
- Assume that $m c<n$. Is it then true that "usually" if there is at least one solution to the systems in k, there is exactly one?
- Make the algorithm (more) practical by replacing the summation polynomials!

