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Claim. There exists a randomized algorithm

which takes as input a tuple (q, n, E/Fqn, P, Q),

where q is a prime power, n a natural number,

E/Fqn an elliptic curve and P, Q ∈ E(Fqn) with

Q ∈ 〈P 〉 which computes the DLP with respect

to P and Q and has the following property:

Let us fix a, b ∈ R with 0 < a < b and let us

consider all instances with

a log2(q) ≤ n ≤ b log2(q).

Then restricted to these instances, the algo-

rithm has an expected running time of

O

(

2D·(n·log2(q))
3/4)

bit operations for D = 4b+ǫ
a3/4 .
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Please note.

1. I do not have a complete proof of this

statement.

2. The algorithm is not practical.

The algorithm is a variant of the index

calculus algorithm presented by Gaudry. The

main difference is that we increase the factor

base.
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Let k := Fq, K := Fqn.

Recall the basic features of Gaudry’s basic

algorithm.

The factor base is the set of points in E(K)

whose x-coordinates lie in a certain 1-dimen-

sional subspace K1 of K. It has “roughly” q

elements.

The relations

αP + βQ = R1 + · · ·Rn

are found by solving certain systems of poly-

nomial equations over k. These systems have

n equations of degree n · 2n−2 in n variables.

“Usually”, the algebraic set they define is 0-

dimensional.

Let us assume that the homogenizations of

these systems define 0-dimensional (proj.)

algebraic sets.
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The complexity of solving these systems is

O

(

(n · 2n−2 · e)3n · log2(q)
2
)

.

The time for finding the relations can be

estimated as

O

(

(n · 2n−2 · e)3n · log2(q)
2 · n! · q

)

.

The time for linear algebra is

O

(

q2 · (log2(q) · n)2
)

.

Let us for simplicity work with a total running

time of

O

(

23n2 · q2
)

= O

(

23n2+2 log2(q)
)

.

Let us consider all instances with

n ≤ b
√

log2(q)

for some fixed b > 0.

Then we have

O

(

23b2 log2(q)+2 log2(q)
)

= O

(

2(3b2+2) log2(q)
)

.
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Let us now consider all instances with

a
√

log2(q) ≤ n ≤ b2
√

log2(q)

for fixed 0 < a < b.

Then

log2(q) = (
√

log2(q)·log2(q))
2/3 ≤

(n

a
log2(q)

)2/3

The total running time is thus

O

(

exp2(
3b2 + 2 + ǫ

a2/3
· (n · log2(q))

2/3)
)

.
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For larger n, the complexity can be improved

by increasing the factor base and decreasing

the size of the systems.

Recall: The factor base had ≈ q elements, and

we tried to find relations

αP + βQ = R1 + · · · + Rn.

Let c ∈ [1, . . . , n] (to be determined later) and

let m := [nc ].

Let Km be a randomly chosen m-dimensional

k-vector subspace of K. Let the factor base be

the set of points in E(K) whose x-coordinates

lie in Km. Then the factor base contains roughly

qm elements.

We try to find relations

αP + βQ = R1 + · · · + Rc.

(Note that n − mc ∈ [0, . . . , c − 1], but this dif-

ference can be made 1 or even 0.)
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One can find such relations by solving certain

systems with n variables in mc ≤ n unknowns

of degree c · 2c−2 over k. One can expect

that “usually” these systems define a zero-

dimensional algebraic set. Let us again assume

that “usually” the homogenizations also define

a 0-dimensional (proj.) algebraic sets.

Then the complexity to solve these systems is

O

(

23nc · log2(q)
2
)

,

and time to find enough relations is more-or-

less

O

(

23nc · q · qm+1
)

= O

(

23nc+(m+2) log2(q)
)

(which is also the total running time).

This is “approximately”

O

(

23nc+(n
c+2) log2(q)

)

.
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Let us set c := [
√

log2(q)]. Then we get

O

(

2(4n
√

log2(q)+3 log2(q))
)

.

Let us assume that

n ≤ b log2(q).

Then we obtain a running time of

O

(

2(4b+ǫ) log2(q)
3/2)

.

Let us assume that additionally

a log2(q) ≤ n.

Then

log2(q)
3/2 = (log2(q)·log2(q))

3/4 ≤
(n

a
·log2(q)

)3/4

This gives a total running time of

O

(

exp2(
4b + ǫ

a3/4
· (n log2(q))

3/4)
)

.
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On the heuristics.

• One can prove that a factor base with

≥ 1
2qm elements can be constructed in poly-

nomial time.

• Using a further variation of the algorithm,

one can prove in a certain sense that the

systems “usually” define 0-dimensional

algebraic sets.
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Major open questions and tasks.

• Do the homogenizations of the systems

really define 0-dimensional algebraic sets?

• Assume that mc < n. Is it then true that

“usually” if there is at least one solution

to the systems in k, there is exactly one?

• Make the algorithm (more) practical by

replacing the summation polynomials!
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