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1 Introduction

Let p = [2766π] + 62762, which is the smallest 768-bit prime number larger than
2766π for which p−1

2 is prime too?. Let g = 11, which is a generator of the
multiplicative group F×p of the prime field Fp. On June 16, 2016, we finished the
computation of the discrete logarithm of t = [2766e] with respect to g. We found
that the smallest non-negative integer x for which gx ≡ t mod p equals

325923617918270562238615985978623709128341338833721058543950813

521768156295091638348030637920237175638117352442299234041658748

471079911977497864301995972638266781162575370644813703762423329

783129621567127479417280687495231463348812.

By itself, this is a useless result. What is interesting is how we found it, that
we did so with much less effort than we expected, and what the result implies
for cryptographic security that relies on the difficulty of larger similar problems.
These issues are discussed in this paper.

The result was obtained using the number field sieve (NFS, [28,13]). It required
the equivalent of about 5300 core years on a single core of a 2.2GHz Xeon E5-
2660 processor, mostly harvested during the period May to December, 2015, on

? Here [x] denotes the classical entier function, the largest integer less than or equal
to x.



clusters at the authors’ universities. On average each additional discrete loga-
rithm requires two core days. This result is a record for computing prime field
discrete logarithms. It closes the gap between record calculations for general pur-
pose integer factoring and computing arbitrary prime field discrete logarithms,
with the 768-bit integer factorization record [21] dating back to 2009. Although
our effort was substantial, we spent a fraction of what we originally expected.
The purpose of this paper is to describe how this was achieved.

Records of this sort are helpful to get an impression of the security offered by
cryptographic systems that are used in practice. The 768-bit number field sieve
factorization from [21], for instance, required about 1700 core years. Because fac-
toring a single 1024-bit RSA modulus [34] using the number field sieve is about
three orders of magnitude more work (cf. end of Section 2), an educated guess
follows for the worst-case effort to break a 1024-bit RSA key. Interpretation of
the resulting estimate is another matter. Depending on one’s perception, appli-
cations, incentives, taste, . . ., it may boost or undermine one’s confidence in the
security of 1024-bit RSA moduli.

The ratio is similar between the difficulties of computing 768-bit and 1024-bit
prime field discrete logarithms (cf. Section 2). It follows that even the nonchalant
users of 1024-bit RSA, ElGamal [11], or DSA [36] have no reason to be nervous
anytime soon if their concern is an “academic attack” such as the one presented
here (cf. [6]). They have to be a bit more concerned, however, than suggested
by [2, Section 4.1]. Also, we explicitly illustrate in Section 3 that continued usage
of 1024-bit prime field ElGamal or DSA keys is much riskier than it is for 1024-
bit RSA (all are still commonly used), because once a successful attack has been
conducted against a single well-chosen prime field all users of that prime field [27,
Section 4] may be affected at little additional effort [2].

As shown in Section 5 our result gives a good indication for the difficulty of
computing discrete logarithms in multiplicative groups of other 768-bit prime
fields as well. One such group, the so-called First Oakley Default Group, is of
some historical interest as it was one of the groups supported by the Inter-
net Key Exchange standard from 1998 [15], a standard that has been obsolete
since 2005 [16]. In some cryptographic applications, however, one may prefer to
use a generator of a relatively small prime order subgroup of F×p that is chosen
in such a way that comparable efforts would be required by Pollard’s rho in the
subgroup and by the number field sieve in F×p . Our choice of p assures that no
(published) shortcut can be taken for our discrete logarithm computation. It
also represents the most difficult case for the number field sieve, in particular
for its linear algebra step. It follows from the numbers presented below that,
for a discrete logarithm computation, our choice is overall more difficult than a
subgroup order that may sometimes be preferred for cryptographic applications.
With independently optimized parameters the two efforts are however of the
same order of magnitude (cf. Section 4).

Two simple methods can be used to give an a priori estimate of the effort to solve
our 768-bit prime field discrete logarithm problem. The first is direct extrapo-
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lation (cf. Section 2): given that solving a 596-bit prime field discrete logarithm
problem took 130 core years (cf. [7]), extrapolation suggests that our 768-bit
problem should be doable in about thirty thousand core years. For the second
method we observe that the number field sieve for factoring or for prime field
discrete logarithms is essentially the same algorithm. When applied to 768-bit
composites or 768-bit prime fields and when using comparable number fields,
they deal with similar probabilities and numbers of comparable sizes, with the
sole exception occurring in the linear algebra step: although in both cases the
matrix is very sparse and all non-zero entries are (absolutely) very small, when
factoring linear algebra is done in a matrix modulo two, but for discrete loga-
rithm problems the matrix elements are taken modulo the group order (a 767-bit
integer in our case). An opposite effect, however, is caused by the fact that, with
proper care, the number fields will not be comparable because modulo large
primes polynomial selection methods can be used that do not work modulo
large composites.

It follows that the numbers reported in [21] can be used to derive an upper bound
for the 768-bit prime field discrete logarithm effort, simply by using a 767-fold
increase (cf. Section 3) of the linear algebra effort from [21] while leaving the
other steps unchanged. With [21, Section 2.4] we find that fifty thousand core
years should suffice for our problem. If we would switch to a 768-bit prime that
allows a much smaller but cryptographically still interesting subgroup this rough
overall estimate would be reduced by a factor of about five.

Thirty or fifty thousand core years would be a waste of resources for a calcu-
lation of this sort, and the more doable small subgroup alternative would be
of insufficient interest; independent of our estimates, a very similar figure was
derived in [2, Section 4.1]. All these estimates, however, overlook several points.
Direct extrapolation of the 596-bit effort turned out to be meaningless due to
software improvements and because the limited size did not allow an optimiza-
tion that applies to our case. But more importantly, the very different nature
and size of the moduli used in, respectively, the polynomial selection and linear
algebra steps imply a radical shift in the trade-off between the steps of the num-
ber field sieve, which in turn leads to very different parameter and algorithmic
choices compared to what is done for factoring. We are not aware of a satisfac-
tory theoretical analysis of this different trade-off and the resulting parameter
selection, or of a reliable way to predict the practical implication for the relative
hardness of integer factoring and prime field discrete logarithm problems. It is
clear, however, that the issue is more subtle than recognized in the literature,
such as [31,26] and, more recently, [2, Section 4.1].

As described in Section 3, adapting the parameter choices and algorithms to
the case at hand – and guided by multiple experiments – it was found that it
should be possible to reduce the fifty thousand core years estimate by almost
an order of magnitude. This led to the conclusion that actually doing the full
calculation would be a worthwhile undertaking: in the first place because it
shows that for our current range of interest k-bit factoring and computing k-bit
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prime field discrete logarithms require a comparable effort; and in the second
place, and possibly more interesting, because it required more than just a casual
application of known methods.

The previous 596-bit and current 768-bit prime field discrete logarithm records
should not be confused with extension field discrete logarithm records. Due to
recent developments, we now have much better methods than the number field
sieve to compute discrete logarithms in small characteristic extension fields. As a
consequence, those fields are no longer relevant for basic cryptographic applica-
tions such as DSA. Indeed, recent extension field records imply that impractically
large extension fields would have to be used to get an appreciable level of secu-
rity: for instance, computing discrete logarithms in the multiplicative group of
the 9234-bit field F22·35·19 took less than fifty core years [14], and in the 3796-bit
group F×35·479 the problem was dealt with in less than a single core year [18].
On the other hand, the current characteristic two prime extension degree record
involved the much smaller finite field F21279 and took between three and four
core years [20]: the advantage of the new methods over the number field sieve
strongly depends on properties of the extension degree, but for favorable degrees
the advantage is much bigger than the advantage for the number field sieve when
factoring special numbers (such as Mersenne or Fermat numbers) compared to
general ones (such as RSA moduli).

While the correctness of the outcome of our calculation can simply be verified,
independent validation of the other claims made in this paper requires access to
suitable source code and data. We have established a long-standing tradition of
open collaborations [30] with other leading researchers in this field (see [21,22]
and the references therein) which applies to anything relevant for the present
project as well.

The paper is organized as follows. Section 2 presents the background for the rest
of the paper. Section 3 describes the impact of the parameter selection on the
way one of the main steps of the number field sieve is best implemented for the
problem solved here and lists all relevant details of our new record calculation.
Section 4 gives more details about the trade-off between the main steps of the
number field sieve, and presents estimates for the effort required to solve a dis-
crete logarithm problem in a small subgroup. In Section 5 it is shown that our
choice of p = [2766π] + 62762 is not more or less favorable than other primes of
the same size.

2 Algorithm overview

Descriptions of the number field sieve are available in the literature, ranging
from the high level narrative [33] to the somewhat simplified and fully detailed
versions in [29] and [28], respectively.

Index calculus method [24,25,1]. Let Fp be a finite field of cardinality p, identified
with {0, 1, . . . , p − 1} in the usual manner, and let g generate its multiplicative
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group F×p . To compute discrete logarithms with respect to g, an index calculus
method fixes a so-called factor base B ⊂ F×p , collects more than #B multiplica-
tive relations between the elements of B ∪ {g}, and uses linear algebra modulo
the order of g to determine for all elements of B their discrete logarithm with
respect to g. Given this information, the discrete logarithm of any h ∈ F×p is
then found by finding a multiplicative relationship between h and the elements
of B ∪ {g}.

Doing more or less the same modulo a composite N (as opposed to modulo p)
and using linear algebra modulo two (as opposed to modulo the order of g) an
integer solution to x2 ≡ y2 mod N may be found, and thus a chance to factor N
by computing gcd(N, x − y). This explains the similarity in the algorithms for
factoring and computing discrete logarithms as well as the difference between
the matrices for factoring and discrete logarithms that was pointed out in the
introduction. The effect of the prime p versus the compositeN , as also mentioned
in the introduction, is touched upon below and in Section 3.

Different index calculus methods vary mostly in the way the multiplicative re-
lations are found. This affects the way B is chosen. For prime p for instance,
relations may be collected by considering ge for random integers e and keep-
ing those that factor over B. With B the set of primes up to some bound b
one would thus be collecting b-smooth ge-values. Faster methods increase the
smoothness probabilities by generating smaller values in {1, 2, . . . , p− 1}; select
the values in an arithmetic progression so that sieving can be used to faster rec-
ognize smooth values; allow in relations a few large primes between b and a large
prime bound b`; or they manage to combine those speedups. Dan Gordon [13]
was the first to show how for prime p the ideas from the number field sieve for
integer factorization [28] can be included as well. Many other variants have been
proposed since then; the most accurate reference for the one used here is [35].

Relations in the number field sieve. A property of the number field sieve that
sets it apart from the earlier index calculus methods is that for a relation two
distinct numbers must be smooth (with both numbers asymptotically signifi-
cantly smaller than the values considered before). Let f and g be two coprime
irreducible polynomials in Z[X] of degrees df and dg, respectively, chosen in such
a way that they have a root m in common modulo p (see Section 3 for how this
may be done). A relation corresponds to a coprime pair of integers (a, b) with
b ≥ 0 such that the two integers Nf (a, b) = bdf f(ab ) and Ng(a, b) = bdgg(ab ) are
smooth with respect to appropriately chosen bounds.

This is, very briefly, explained as follows. The integer Nf (a, b) is essentially (ex-
cept for the leading coefficient of f) the norm of a−αfb ∈ Z[αf ] ⊂ Q(αf ), where
αf denotes a zero of f and Q(αf ) is the algebraic number field Q[X]/(f(X)).
The smoothness of Nf (a, b) then implies a factorization into small prime ideals
in Q(αf ) of the ideal (a−αfb) (cf. [8]). Noting that mapping αf to the common
root m results in a ring homomorphism ϕf from Z[αf ] to Fp, and defining αg
and ϕg in a similar manner for g, a relation (a, b) thus corresponds to factoriza-
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tions of the ideals (a−αfb) and (a−αgb) that map, via ϕf and ϕg, respectively,
to the same element a− bm ∈ Fp.

The 768-bit factorization from [21] used degrees df = 6 and dg = 1; consequently,
the labels algebraic or rational were used to distinguish values and computations
related to f or g, respectively. These intuitive labels can no longer be used here,
because the primality of our modulus (p) offers flexibility in the polynomial
selection that is not available for composite moduli and that resulted, as could
be expected, in the “better” choices df = 3 and dg = 4 for the present paper.
Though the f - and g-related parts here are thus both algebraic, it will be seen
that the g-part is easier to deal with, and thus, to some extent, corresponds to the
rational side in [21]. Because f and g have rather different properties, different
considerations come into play when selecting the factor bases for Nf (a, b) and
Ng(a, b). The single factor base B is therefore replaced by two distinct factor
bases, denoted by Bf and Bg. For the present purposes it may be assumed
that Bf and Bg consist of the primes bounded by bf and bg. We make no
distinction between f and g for the large prime bound (which is thus still denoted
by b`, with #B` denoting the number of primes bounded by b`), but may allow
different numbers of large primes in Nf (a, b) and Ng(a, b), denoted by nf and ng.

Finding relations in the number field sieve. As each relation requires two numbers
being smooth, collecting relations is a two-stage process: in the first stage pairs
(a, b) for which Nf (a, b) is smooth are located; in the second stage, from the pairs
found those for which Ng(a, b) is smooth as well are selected. Thus, the first stage
treats the numbers that are least likely to be smooth, thereby minimizing the
number of pairs to be considered for the second stage: switching the roles of f
and g would have led to more pairs to be treated in the second stage. Depending
on the factor base sizes, various methods may be used to find relations.

The search for relations is typically limited to a (large) rectangular region S of
the lattice Z2. For the first stage (and numbers in the current range of interest)
index-q sublattices Lq of Z2 are identified such that q divides Nf (a, b) for all
pairs (a, b) ∈ Lq and for primes q close to and often somewhat larger than bf
(these primes are referred to as special q primes). The process described below
is repeated for different special q primes until, after removal of unavoidable
duplicates, enough relations have been collected.

Given a special q prime, lattice sieving is conducted over a rectangular region Sq
(which roughly approximates Lq ∩ S), to locate (a, b) pairs for which Nf (a, b)
is bf -smooth (except for q and at most nf large primes ≤ b`). The number of
“surviving” pairs thus found is denoted by yf . If yf is large (and the pairs are not
spread too widely as for instance in [9,22]), it is best to again use lattice sieving
in Sq to collect from those yf pairs the yg pairs that are actually relations, i.e.,
for which Ng(a, b) is bg-smooth as well (again with at most ng large primes ≤ b`).
This is the regular approach to the second stage, and was used in [21]. But there
are circumstances where the second stage is best done in another manner: in [22],
for instance, factorization trees (cf. [12, Section 4] and [4]) were used. This is
also the approach taken here, as further described in Section 3.
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Effort required by the number field sieve. With natural logarithms, let

E(x, c) = exp
(
(( 64

9 )
1
3 + c)(log x)

1
3 (log log x)

2
3

)
;

this slight variation on a well-known and more common notation allows us to
focus on what is of greatest interest in the present context. The current best
heuristic expected effort to compute a discrete logarithm in F×p using the number
field sieve is E(p, o(1)), asymptotically for p → ∞ [13]. This is the same as the
effort E(N, o(1)) (for N → ∞) to factor a composite N using the number field
sieve [8]. This “same” should, however, be taken with a grain of salt because
the o(1) hides different functions for the two cases.

Optimal factor base sizes. The smoothness probabilities, the number of relations
to be collected, and the dimension of the matrix handled by the linear algebra
all increase with the smoothness parameters bf , bg, b`, nf and ng. The resulting
trade-off leads to optimal factor base sizes #Bf and #Bg, namely E(p, o(1))

1
2

for discrete logarithms and E(N, o(1))
1
2 for factoring. As noted above, even if

[log p] = [logN ], in a given model of computation the optimal values for both
factoring and discrete logarithm computation may be very different because the
two o(1)-functions behave quite differently. Moreover, in practice the situation is
further complicated because of the software and hardware actually used. Thus,
naively using factor base sizes that worked well for a factoring problem for a
similarly sized prime field discrete logarithm problem, as done in the introduction
and despite the “correction” attempted there, will at best result in a rough upper
bound. Section 3 discusses this issue in more detail.

Remark on using E(x, c) in practice. The uncertain function hiding in the o(1)
makes it challenging to use E(p, o(1)) to give an absolute estimate for the effort to
solve a discrete logarithm problem in F×p . It turns out, however, that a somewhat
pessimistic indication can be obtained for the relative effort for F×p̄ compared
to F×p , for p̄ not much bigger than p (say, p̄ ≤ p 4

3 ), by dropping the o(1). Obvi-
ously, this assumes similar software that suffers no ill side-effects nor profits from
new optimizations when moving to the larger p̄. The same works for factoring.

As an example, the three orders of magnitude difference between the efforts of
factoring 768-bit and 1024-bit moduli, as mentioned in the introduction, follows
from E(21024,0)

E(2768,0) ≈ 1200; the jump from 130 core years for a 596-bit prime field
discrete logarithm problem to about thirty thousand core years for 768 bits
follows from E(2768,0)

E(2596,0) ≈ 275 – an extrapolation that failed to be useful because
of the reasons mentioned in the introduction.

3 Computational details

This section provides some background on our parameter choices. For compar-
ison, we also provide the parameters that were used for the 768-bit factoring
effort from [21].
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Polynomial selection. To get an initial impression of the feasibility of the cal-
culation an extensive search was conducted using the method from [17]. First
all integer polynomials g of degree four with coefficients absolutely bounded by
165 (and noting that g(X), g(−X), and X4g( 1

X ) and thus X4g(−1
X ) are equiva-

lent) were inspected, by using, for all the roots of g modulo p, lattice reduction
to find a corresponding degree three integer polynomial f , and measuring the
overall quality of all resulting pairs (f, g) (as usual with respect to their small
modular roots and size properties). For the second search, with bound 330, roots
and size properties of g were first considered and only for the most promising
candidates the roots of g modulo p were calculated and, if any, the polynomial f
was derived. The best pair was found during the first search:

f(X) = 370863403886416141150505523919527677231932618184100095924X3

− 1937981312833038778565617469829395544065255938015920309679X2

− 217583293626947899787577441128333027617541095004734736415X
+ 277260730400349522890422618473498148528706115003337935150,

g(X) = 140X4 + 34X3 + 86X2 + 5X − 55.

Because it requires root finding modulo p, the above search does not work to
find polynomials for the number field sieve for integer factorization. There one
is limited to more restrictive methods that cannot be expected to result in poly-
nomials of comparable “quality”, with respect to the metric used in this context:
indeed, the above pair is noticeably better than the degree (6,1) pair used for the
slightly smaller 768-bit modulus factored in [21]. A more quantitative statement
requires a more careful analysis than we are ready to provide here. No signifi-
cant amount of time was spent on searching for pairs (f, g) of other degrees than
df = 3 and dg = 4.

Parameter selection background. The two main steps of the number field sieve
after the polynomial selection, relation collection and linear algebra, are of a very
different nature. Relation collection is long-term but low-maintenance: core years
are easily harvested on any number of otherwise idle independent cores on any
number of clusters that one can get access to, progress will be steady, and the
process requires almost no human interaction. The results can easily be checked
for correctness (cf. [22, Section 6]) and results that are lost or forgotten are
easily replaced by others. Compared to this almost “happy-go-lucky” relation
collection process, the linear algebra is tedious and cumbersome, despite the
elegance of the block Wiedemann method used for it [37,10]. It involves careful
orchestration of a (modest number of) substeps each of which requires as many
tightly coupled cores as needed to store the data (easily on the order of hundreds
of GB), frequent checkpointing, and a central step that is even more memory-
demanding but otherwise fortunately relatively swift. Overall, based on past
experience core years are collected at about half the rate compared to relation
collection.

For both main steps the required effort is well understood:
• Given relation collection software and any choice of smoothness parameters
a small number of experiments suffices to get an accurate indication for the
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effort required to collect any specified number of relations (it follows from the
description in Section 5 how this may be done).
• Similarly, given block Wiedemann software and any matrix dimension, weight,
and modulus-size, the overall linear algebra effort can be reliably estimated based
on the effort required for a few matrix× vector multiplications on the processor
network of one’s choice.

However, the relations as collected are never directly used for the linear algebra,
because doing so would be hugely inefficient. Instead, a linear algebra prepro-
cessing step is applied to the relations in order to reduce the dimension of the
matrix while keeping its weight under control, thereby (substantially) reducing
the linear algebra effort. This preprocessing becomes more effective as more rela-
tions are available (cf. Section 4) but the precise behavior of both dimension and
weight depends on how (large) primes in a relation can be matched with the same
primes in other relations and is thus uncertain. In practice one collects relations
while occasionally doing a preprocessing attempt, and stops when the resulting
linear algebra effort is within the targeted range. When to stop is a judgment
call as more often than not the additional effort invested in relation collection is
more than the expected linear algebra savings: it thus serves more to reduce the
linear algebra headaches than to reduce the overall effort. As an example, for
the current 768-bit factoring record about twice the strictly necessary relation
collection effort was spent to make the linear algebra more manageable, an ex-
tra effort that was commented on as being “well spent” (cf. [21, Introduction]).
These “negative returns” are further illustrated in Section 4.

Based on consistent past behavior of the preprocessing and given specific smooth-
ness parameters, it can be roughly estimated how many relations have to be col-
lected for a targeted matrix dimension and weight. Given the uncertainty alluded
to above, this estimate can only be a guess, though it is a mildly educated one.
With the known behavior of the software, an overall effort estimate assuming
those specific smoothness parameters can be derived. Repeating this for different
smoothness parameters, the “best” – despite a lack of clear optimization criteria
– overall effort then follows.

Parameter selection. Our starting point was that on current equipment the lin-
ear algebra effort for the 768-bit modulus factored in [21] would be about 75
core years. Given the similarity of the algorithms and sizes, and using the same
smoothness parameters as in [21], the overall effort to solve our discrete loga-
rithm problem can be estimated as 1500 + 767 · 75 = 59025 core years; due to
the small entries of the matrix the linear algebra effort only depends linearly on
the size of the group order. The fifty thousand core years estimate mentioned in
the introduction then follows from the expected favorable comparison of poly-
nomials found using the method from [17] compared to the method used in [21];
we refer to the papers involved for an explanation of this effect.

All that is clear at this point is that attempts to lower this estimate must focus
on lowering the linear algebra effort; thus the smoothness parameters must be
reduced, but by how much and what the overall effect is going to be is unclear.
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Because the block Wiedemann effort is roughly proportional to the product of
the matrix dimension and weight, reducing the matrix dimension by a factor of c
while keeping the same average row-weight, cuts the linear algebra effort by a
factor of c2. Thus, given any targeted linear algebra effort a reduction factor c
for the dimension follows. Assuming that, for our problem, a thousand core
years would be acceptable for the linear algebra effort, a dimension reduction
factor of about 7.6 follows, because 767·75

7.62 ≈ 1000. Compared to the parameters
used in [21], such a drastic reduction requires severely cutting the smoothness
parameters and the number of special q primes one may use. This in turn entails
a more than proportional increase in the search space and thus a substantial
increase in the overall relation collection effort compared to the 1500 core years
spent in [21]. A priori, however, and as argued above, the effect of any of the
changes that one may wish to consider cannot be accurately predicted.

While conducting experiments with a 640-bit example to better understand the
increase in the relation collection effort depending on various possible combina-
tions of smaller smoothness parameters and larger search spaces, we observed a
mildly beneficial side-effect which – once observed – is obvious, but which was
unanticipated: in the notation of Section 2, if Bf decreases, the number yf of
bf -smooth norms Nf (a, b) becomes smaller too, at a given point to an extent
that it becomes more efficient to replace sieving for the second search stage (as
used in [21]) by factorization trees. For the 640-bit example the effect was still
small, i.e., yf was still relatively large. But for our 768-bit prime the impact soon
turned out to be considerable, almost halving the (inflated, compared to [21])
relation collection effort.

The resulting “best” parameters that we settled for are listed in Table 1 (though
for some special q primes larger factor bases were used), along with the pa-
rameters used in [21] for the 768-bit number field sieve factorization. The clear
difference is that the choices for 768-bit factoring were optimized for speed dur-
ing relation collection (collecting relations until the after-preprocessing matrix
dimension and weight were found to be acceptable), whereas our choices try to
squeeze as many relations as possible out of every special q prime under a rel-
atively restrictive smoothness regime. Compared to [21], #Bf is reduced by a
factor of a bit more than two, the number of special q primes is reduced by a
factor of more than twenty, the number of large primes per relation is cut from
4+3 to 2+2 with a large prime bound that is reduced by a factor of 24 from 240

to 236, while #Bg remains unchanged and the search space is on average (forced
to be) more than 28 times larger. As a result the number of relations per core
unit of time drops by a factor of about sixteen compared to [21].

The first preprocessing attempt that resulted in the hoped-for matrix dimension
and weight occurred when 1.09e10 relations had been collected, i.e., about six
times fewer relations than in [21]. The resulting overall relation collection effort
thus became 16

6 · 1500 = 4000 core years. With 920 core years the linear algebra
effort was close to but less than the thousand core years that we had hoped to
achieve. A much smaller set of relations would in principle have sufficed too, but
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it would have resulted in a larger linear algebra effort; Section 4 below describes
the trade-off in more detail.

Some of the details in Table 1 are listed for completeness; for explanations we re-
fer to [21]. Like most of our computational number theory colleagues, we missed
the fact (which apparently had not escaped numerical analysts) that the evalu-
ation stage of the block Wiedemann method can be sped up considerably using
Horner’s rule [19]; it would have reduced our overall effort to approximately 5000
core years.

Table 1: Comparison of 768-bit factoring and computing 768-bit prime field discrete
logarithms.

768-bit factorization from [21] 768-bit discrete logarithm

polynomial selection 2005 and 2007 2015:02:14 – 2015:05:04

more than 2e18 pairs
(f, g) were considered, |gmax|≤165

{
all 5.9e11 g-candidates
110 core years

spending 40 core years
(20 in 2005 and 20 in 2007) |gmax|≤333

{
best 2e13 g-candidates
90 core years

df , dg 6, 1 3, 4

relation collection 2007:08 – 2009:04 2015:05:04 – 2015:12:13

method lattice sieving for both f and g
lattice sieving for f (>98% of effort)
factorization tree for g (<2% of effort)

smoothness bounds
≥2GBRAM

{
bf=min(q,1.1e9) bg=2e8
#Bf=5.6e7 #Bg=1.1e7

{
bf=min(q,4.4e8) bg=2e8
#Bf=2.3e7 #Bg=1.1e7

<2GBRAM

{
bf=4.5e8 bg=1e8
#Bf=2.4e7 #Bg=5.8e6

large primes parameters b`=240(#B`=4.1e10), nf=4, ng=3 b`=236(#B`=2.9e9),nf=2,ng=2

240


1.9e8 < q < 3e8
5.7e6
≈ 8750 seconds
(7.9e5, 590)

#Sq


bounds on q
#q
time per q
(yf , yg) per q

231


4.5e8 < q < 1.1e10
4.8e8
< 100 seconds
((yf large and irrelevant),134)

239


3e8 < q < 6e8
1.5e7
≈ 4950 seconds
(7.3e5, 480)

totals:

238


6e8 < q < 6.3e8
1.5e6
≈ 2550 seconds
(4.6e5, 300)

number of special q primes 4.8e8 2.2e7

yield

with duplicates & unfactored
unique & factored
free relations

64 334 489 730
47 705 019 942

57 223 462

10 802 334 123†
9 060 739 382

19 967 617
effort ≈ 1500 core years ≈ 4000 core years

linear algebra preprocessing

duplicate & singleton removal 2009:05 2015:08:11 – 2015:12:20
filtering 2009:06 2015:12:21 – 2015:12:25

result

 dimensions
weight
average non-zeros per row

192 796 550 × 192 795 550
27 797 115 920 bits

144

23 504 483 × 23 504 413
3 140 911 353mostly very small entries

134
effort a few core years a few core years

linear algebra

block Wiedemann parameters m = 16 × 64, n = 8 × 64 m = 32, n = 16

scalar products

 2009:08:10 – 2009:11:03
8 independent sequences
43 core years (current cluster)

 2015:12:28 – 2016:03:23
16 independent sequences
560 core years

Berlekamp-Massey


2009:11:03
17.3 hours on 224 of 672 cores
896GB RAM
0.5(+1 idle) core years (old cluster)


2016:04:03 – 2016:04:04
33.85 hours on 256 of 4096 cores
8TB RAM
1(+15 idle) core years

evaluation

 2009:11:05 – 2009:12:09
many independent jobs
30 core years (current cluster)

 2016:04:05 – 2016:05:18
480 independent jobs
about 355 core years

effort 75 core years (current cluster) 920 core years

final calculation 2009:12:07 – 2009:12:12 2016:05:18 – 2016:06:16
20 core hours

per square root attempt
200 core years to build database;
43 core hours on average (was 100)
per individual logarithm, varying
between 3 and 220 core hours†: this excludes about 1e8 forgotten relations
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Database. The linear algebra step resulted in the (virtual) logarithms of 24 mil-
lion prime ideals. Spending less than 200 core years for additional sieving and
further processing, a database was built containing the about 3e9 logarithms of
all prime ideals of norms up to 235.

Individual logarithms. Using the database and q-descent, the logarithm of the
target t from the introduction was computed in approximately 115 core hours.
Similar computations for t + 1, t + 2, . . . , t + 10 took on average about 96 core
hours per logarithm.

With improved software any individual logarithm can now be computed at an
average effort of 43 core hours (and a rather large variation, cf. Table 1). Further
software enhancements are easily conceivable, but this already insignificant effort
underscores the point made in the introduction that once a single number field
sieve based attack has been carried out successfully, other attacks against the
same prime field are straightforward.

4 Trade-off

During relation collection occasional preprocessing attempts were made, until the
resulting matrix was found to be acceptable. Data about the non-final attempts
were not kept, so for the purpose of the present paper part of this work was
redone to be able to give an impression how the linear algebra effort decreases
as more relations become available.

Table 2 summarizes the results of these “after the fact” preprocessing attempts
of the sets of relations found for special q primes up to increasing bounds bq,
along with the resulting extrapolations of the block Wiedemann efforts (not
using Horner’s rule for the evaluation stage). Estimates are also listed for the
effort required for a discrete logarithm problem in a 160-bit subgroup of the
multiplicative group of a 768-bit prime field. For each set of relations up to five
preprocessing attempts were made, and the best was selected depending on the
subgroup size; this explains why for five of the 160-bit subgroup entries the ma-
trix dimension and weight are different from those in the 767-bit subgroup entry.
The last two rows show the effect of the 1e8 forgotten relations (cf. Table 1):
including those and spending more time on constructing the matrix could have
reduced the matrix effort by 20 (or 5) core years.

The difference between the linear algebra estimate in the last row for the matrix
as actually used and the effort as reported in Table 1 is due to a lower number
of nodes on which the experiment was run: for a full execution it would lower
the linear algebra effort, but increase the calendar time. The effort required for
polynomial selection and individual logarithms is independent of the bq-value,
and is not included in the “combined effort”. The database building effort may
be up to three times larger for the smallest feasible bq-value, but is not included
either.

12



The numbers in the “combined effort” columns of Table 2 illustrate the negative
returns mentioned in Section 3: with more patience to deal with a larger lin-
ear algebra problem (that would have required disproportionally more calendar
time), our overall effort could have been reduced from 5300 to less than 4000
core years. As in [21], the additional relation collection effort was well spent,
because a large block Wiedemann job requires constant attention and any way
to reduce the calendar time is welcome.

Note that for the smaller subgroup problem the overall least effort is reduced by
a factor smaller than two.

Table 2: Relation collection effort, matrix dimension and weight as a result of prepro-
cessing, estimated linear algebra effort, and the combined effort (all efforts are in core
years), when using special q primes up to bq and both for 767-bit and 160-bit subgroup
orders. The overshoot factor is the ratio of the number of relations and the number of
relations for the least bq (2.8e8) for which enough relations had been found. Relations
are unique and factored and include the free relations.

relation collection 767-bit subgroup order (our problem) 160-bit subgroup order

bq
relation effort overshoot dimension nodes matrix combined dimension nodes matrix combined
count factor and weight effort effort and weight effort effort

2.70e8 2.33e9 insufficient
2.80e8 2.58e9 1300 1.000 5.62e7 9.5e9 25 6575 7875 5.62e7 9.5e9 9 1780 3080
3.06e8 3.24e9 1625 1.255 3.27e7 6.2e9 12 2095 3720 4.00e7 4.7e9 4 500 2125
3.35e8 3.90e9 1850 1.508 2.96e7 4.5e9 9 1420 3270 2.96e7 4.5e9 4 325 2175
3.67e8 4.52e9 2100 1.751 2.62e7 4.4e9 9 1120 3220 2.76e7 3.9e9 4 270 2370
4.03e8 5.15e9 2400 1.995 2.47e7 4.2e9 9 1000 3400 2.57e7 3.8e9 4 240 2640
4.75e8 6.50e9 2975 2.516 2.36e7 3.7e9 9 870 3845 2.48e7 3.3e9 4 210 3185
5.37e8 7.74e9 3475 2.997 2.41e7 3.1e9 6 790 4265 2.41e7 3.1e9 4 190 3665
6.30e8 9.15e9 4000 3.542 2.17e7 3.6e9 6 740 4740 2.08e7 4.0e9 4 180 4180
(used) 9.08e9 4000 3.515 2.35e7 3.1e9 6 760 4760 2.35e7 3.1e9 4 185 4185

5 Other prime fields

To convince ourselves that our results were not due to unexpected, lucky prop-
erties of our choice of prime field, we tested ten other similarly chosen 768-
bit primes and roughly compared them to our p with respect to their sieving
yield. Define the following eleven transcendental or supposed-to-be transcenden-
tal numbers:
ρ0 = π;
ρ1 = e, Euler’s number;
ρ2 = γ, the Euler-Mascheroni constant;

ρ3 =
√

2
√

2
;

ρ4 = ζ(3), where ζ is the Riemann zeta function;
ρ5 = log( 1+

√
5

2 ), the regulator of the “smallest” real quadratic number field;
ρ6 = ΩX0(11), the real period of the “smallest” elliptic curve, namely X0(11)

given by y2 + y = x3 − x2 − 10x− 20;
ρ7 = ĥX0(37)(P37), the canonical height of a generator P37 = (0, 0) of the

13



“smallest” rank 1 elliptic curve, namely X0(37) given by y2 + y = x3 − x;
ρ8 = t0, the imaginary part of the first zero 1

2 + t0i on the critical strip of ζ;
ρ9 = πe;
ρ10 =

∑∞
i=1 10−i!, Liouville’s constant.

For 0 ≤ i ≤ 10 let εi = 767 − [ log ρi
log 2 ] and let pi be the least prime larger than

2εiρi for which pi−1
2 is prime as well. Then p0 = p. Let πj be the number of

primes in [j · 1e7, (j+ 1) · 1e7]; for 19 ≤ j ≤ 62 these intervals cover our range of
special q primes (cf. Table 1).

For each of the eleven primes pi with 0 ≤ i ≤ 10 the following calculation was
carried out:
Polynomial selection. Find the best pair (fi, gi) for pi among the first 5e9 can-
didate polynomials for gi. (This requires about one core year.)
Sieving experiments. For 19 ≤ j ≤ 62 find the number rj of relations when siev-
ing with the parameters as in Table 1 but with the polynomials fi and gi and
the prime pi and for the least special q prime larger than j · 1e7 + 5e6. (This
requires less than four core days, cf. Table 1.)
Overall yield estimate. Let Ri =

∑62
j=19 πjrj .

Table 3
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pi/p0 1.000 0.865 0.735 1.039 0.765 1.225 0.808 1.041 1.125 0.894 1.120
Ri/R 0.844 0.821 0.847 0.820 0.864 0.800 0.795 0.884 0.848 0.798 0.823
Ri/R0 1.000 0.973 1.004 0.972 1.024 0.948 0.942 1.048 1.005 0.946 0.975

We also carried out the same sieving experiments for the polynomial pair (f, g)
from Section 3 and p = p0, finding an overall yield estimate R = 1.02e10. This
is less than the 1.09e10 relations reported in Table 1, because there some of
the sieving jobs used a larger factor base bound than reported in Table 1, thus
producing more duplicates. But it is more than R0 (which was found to be 8.6e9),
matching the expectation that (f, g) is considerably better than (f0, g0). Table 3
lists the relative performance of our p compared to the ten new choices: as can
be seen in the final row, four of the ten perform better and six are worse, but
they are all within a 6% margin from p. It also follows that the core years spent
on polynomial selection for our p were well spent.

Although our tests counter suspicions about p being special, it may be ar-
gued that in practice primes used in cryptography would be chosen with high
entropy [5]. Testing a few “random” primes as well might strengthen our argu-
ment. It is unclear to us, however, how such primes may be obtained in a manner
that is sufficiently convincing to any suspicious reader, without input from that
reader [32].
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6 Conclusion

We presented the computation of a discrete logarithm in the multiplicative group
of a 768-bit prime field. This is a new record in its category, beating the previous
596-bit record. We showed the beneficial effect of judicious choice of parameters
and algorithms, and highlighted the differences with integer factorization. Based
on our findings we may conclude that for sizes that are currently within reach
of an academic effort, the hardness of factoring and computing prime field dis-
crete logarithms is comparable, though discrete logarithms are harder. Although
this was always suspected to be the case, the gap between the two problems is
quite a bit smaller than we expected. Compared to the 768-bit factoring record
(which required 1700 core years as opposed to our 5300 core years) we used less
calendar time and a smaller collaborative and less heterogeneous effort [23]. We
also conclude that the explicit 1024-bit estimates from [2, Section 4.1] should be
redone, as they require not entirely straightforward re-optimization efforts.

Unless algorithmic improvements are proposed or new insights may be expected,
pushing for actual new factoring or prime field discrete logarithm records – as
opposed to studies that result in reliable estimates – is mostly a waste of energy.
We are not aware of any developments based on which we could realistically
expect publication of a 1024-bit record within the next, say, five years. As usual,
this may change at any moment, but so far the predictions made back in 2009
(cf. [6]) have already turned out to be accurate, or remain valid. In this context
it is relevant to note that the project embarked on in [3] is still ongoing.

Acknowledgements. We thank Rob Granger and the anonymous Eurocrypt
2017 reviewers for their useful comments. Part of the computation was carried
out on equipment sponsored by the Swiss National Science Foundation under
grant number 206021-144981.
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