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Abstract

We study the elliptic curve discrete logarithm problem over finite
extension fields. We show that for any sequences of prime powers
(qi)i∈N and natural numbers (ni)i∈N with ni −→ ∞ and ni

log(qi)
−→ 0

for i −→∞, the elliptic curve discrete logarithm problem restricted to
curves over the fields Fq

ni
i

can be solved in subexponential expected

time (qni
i )o(1). We also show that there exists a sequence of prime

powers (qi)i∈N such that the problem restricted to curves over Fqi
can

be solved in an expected time of eO(log(qi)
2/3).
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1 Introduction

The classical discrete logarithm problem in finite prime fields can be solved

in an expected time which is subexponential in the bit-length of the group

size via the so-called index calculus method. In contrast, it is not known

if the discrete logarithm problem in the groups of rational points of elliptic

curves over finite fields (the elliptic curve discrete logarithm problem for

short) can be solved in subexponential expected time (in the bit-length of

the group size). While some infinite classes of elliptic curves are known

for which the problem can be solved in subexponential expected time (for

example supersingular elliptic curves over prime fields), it was up to now not

known if there exists a sequence of finite fields of increasing size such that the

problem restricted to curves over these fields can be solved in subexponential

expected time.

We prove that such a sequence of finite fields exists. Indeed, we establish

the following results. Here and in the following, q is always a prime power

and n a natural number.

1. Let sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with

ni −→ ∞ and ni
log(qi)

−→ 0 for i −→ ∞ be given. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

the fields Fq
ni
i

can be solved in an expected time of

(qni
i )o(1) .

2. Let β ∈ [12 , 1) and a, b > 0 be fixed. Let

α :=
1− β

2β
=

1

2
· (

1

β
− 1) ∈ (0,

1

2
] and γ :=

2β

β + 1
= 2 · (1−

1

β + 1
) < 1 .

Then the discrete logarithm problem in the groups of rational points of

elliptic curves over finite fields Fqn with

a · log(q)α ≤ n ≤ b · log(q)β

can be solved in an expected time of

eO(log(qn)γ) .

3. Let positive real numbers a < b be fixed. Then the discrete logarithm

problem in the groups of rational points of elliptic curves over finite fields

Fqn with

a ·
√

log(q) ≤ n ≤ b ·
√

log(q)

can be solved in an expected time of

eO(log(qn)2/3) .
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Note that in Result 2, γ as a function of β is strictly monotonically increasing

from 2
3 for β = 1

2 to 1 in the limit, and α is strictly monotonically decreasing

from 1
2 to 0 in the limit. Result 3 is a special case of Result 2 for α = β = 1

2 .

Our main result is the following theorem.

Theorem The discrete logarithm problem in the groups of rational points

of elliptic curves over finite fields Fqn can be solved in an expected time of

eO(max(log(q),n2)) .

We note that all results in this work hold for all specified instances; the

averaging only takes place on the running times for a fixed input, and there

is no averaging over input classes.

Given the Theorem, it is easy to establish Results 1 and 2 (and therefore

also Result 3) above. Result 1 follows immediately, and a proof of Result 2

is as follows:

Let α, β, γ and a, b as in Result 2 be given. Note that β = 1
2α+1 and γ =

1
α+1 . Now first, as a · log(q)α ≤ n, log(q) = log(q)γ·(α+1) ≤ ( 1

a · log(q) ·n)γ =

1
aγ · (log(qn))γ . Second, as n ≤ b · log(q)β , n2 = n

γ·(1+ 1
β

)
≤ (n · b

1
β · log(q))γ =

b
γ
β · (log(qn))γ .

The method: Index calculus

Index calculus is originally a method to compute discrete logarithms (or

indices in the classical terminology) in the multiplicative groups of finite

prime fields. It can briefly be described as follows:

Let a prime p and a, b ∈ F∗
p, where a is a generating element, be given.

The task is to compute the discrete logarithm of b with respect to a, that is,

the smallest number x ∈ N0 with ax = b. For this, one first fixes a so-called

smoothness bound S ∈ N and considers the set of all prime numbers ≤ S; this

set is called the factor base. Then one searches for relations between input

elements and classes mod p of factor base elements. After one has obtained

enough relations, one derives the discrete logarithm by linear algebra.

A similar method can also be used to compute discrete logarithms in

other finite groups: If one considers the multiplicative groups of finite fields

of a fixed characteristic, one substitutes prime numbers by irreducible poly-

nomials whose degree is below a certain bound. If one considers the degree

0 class groups of curves over a fixed finite field, one proceeds similarly, sub-

stituting polynomials by effective divisors and irreducible polynomials by

prime divisors.

3



It is common to use the term index calculus to refer to the general method

of computing discrete logarithms by relation generation and linear algebra.

The algorithm for the Theorem is also based on this method. However,

in contrast to the algorithms mentioned above, the factor base is defined

in an algebraic rather than an arithmetic way, in particular, there is no

smoothness bound. Relations are derived by solving systems of multivariate

polynomial equations over Fq.

On the proof

We give here a very brief overview of the algorithm leading to the Theorem

above.

Let E/Fqn be an elliptic curve. Then we compute a covering ϕ : E −→

P1
Fqn

of degree 2 which satisfies ϕ ◦ [−1] = ϕ as well as a certain additional

condition (Condition 2.7). The factor base is then given by

{P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)} . (1)

The relation generation relies on an algorithm which we call decompo-

sition algorithm. Given an elliptic curve E/Fqn the extension degree n, a

covering ϕ as above and some point P ∈ E(Fqn), this algorithm either fails or

outputs tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈ P1(Fq) for i = 1, . . . , n

such that

P1 + · · ·+ Pn = P .

The decomposition algorithm is based on solving multivariate systems of

polynomial equations over Fq. Of course it fails if there is no such tuple

(P1, . . . , Pn). But it might also fail if the algebraic set defined by the associ-

ated multivariate system is not zero-dimensional. We remark here that the

most difficult part of the proof is to show that for a uniformly distributed

point P ∈ E(Fqn) with a sufficiently high probability the algebraic set de-

fined by the associated multivariate system is indeed zero-dimensional. In

order to prove this result, we pass to higher-dimensional schemes over Fq

by using Weil restrictions. The proof then relies crucially on intersection

theory in products of projective lines.

Some historical comments

In 2004 I. Semaev put a preprint on the archive of the International Asso-

ciation for Cryptographic Research (IACR) in which he discussed the pos-

sibility of index calculus in the groups of rational points on elliptic curves

over prime fields ([Sem04]). In his work, Semaev defined the factor base via

an upper bound on the x-coordinates of points, where the elliptic curve is

given by a Weierstraß model.
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He also introduced so-called summation polynomials: Let E be an elliptic

curve over a field K, given by a Weierstraß model, and let m ∈ N, m ≥ 2.

Let K be an algebraic closure of K. Then the m-th summation polynomial

as defined by Semaev is an irreducible polynomial f ∈ K[x1, . . . , xm] such

that the following holds: Given P1, . . . , Pm ∈ E(K)− {O}, we have

f(x(P1), . . . , x(Pm)) = 0←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} : ǫ1P1+· · ·+ǫmPm = O ,

where we identify A1(K) = P1(K)− {∞} with K. These summation poly-

nomials have degree 2m−2 in each variable.

Now, any algorithm to determine solutions with “small coordinates” for

multivariate equations of high degree would give rise to an algorithm for

relation generation. However, no efficient algorithm for this task is known

(except for very special equations), and therefore, Semaev’s approach does

(currently) not lead to an algorithm which is faster than generic algorithms

to solve discrete logarithm problems.

Semaev’s work lead both P. Gaudry and the author to reflect on the

question whether a similar approach over extension fields might not give al-

gorithms which asymptotically are faster than generic algorithms for certain

input classes.

In [Gau09] Gaudry argues on a heuristic basis that for any fixed extension

degree n ≥ 2 and q −→ ∞, the elliptic curve discrete logarithm problem

over fields Fqn can be solved in an expected time of

Õ(q2− 2
n )

on a randomized random access machine.1 The author on the other hand

tried if a common variation of n and q would lead to a sequence of finite

fields such that the elliptic curve discrete logarithm problem over these fields

would becomes subexponential, and this study finally lead to the present

work.

We note that all previous results on classes of elliptic curves for which

the discrete logarithm problem can be solved in subexponential expected

time rely on a transfer : First a homomorphism from the group under con-

sideration to another group is applied and then the problem is solved in the

second group.

This contrasts to the direct application of index calculus in the groups

of rational points of elliptic curves in [Gau09] and the present work. We

note that one might argue that we implicitly use the isomorphism E(Fqn) ≃

Res
Fqn

Fq
(E)(Fq), where Res

Fqn

Fq
(E) is the Weil restriction of the elliptic curve

1Using a suitable variant of Gaudry’s algorithm and techniques of the present work, a
proof of this result is given in [Die09].
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E/Fqn with respect to Fqn |Fq. The important aspect is here nonetheless that

no computation is performed in doing so. Weil restrictions are of crucial

importance for the analysis of the algorithm, but the algorithm itself can be

formulated without even mentioning Weil restrictions, and we do so.

An outline

Let us give an outline of the rest of this article:

In the next section, we give the algorithm for the Theorem above. For

this we start off with a “decomposition algorithm” followed by the compu-

tation of a suitable covering ϕ and finally the index calculus algorithm for

the Theorem. In Section 3 we introduce homogeneous summation polyno-

mials via a geometric approach. In the last section we give some geometric

background on the decomposition algorithm and its analysis.

Notation and Terminology

We set N := {1, 2, 3, . . .} and N0 := {0, 1, 2, . . .}.

An algebraic closure of a field k is denoted by k. If R is a ring with an

ideal I and a ∈ R, the residue class of a in R/I is denoted by [a]I . If I = (r),

we also use the notation [a]r.

If X and Y are two subschemes of a scheme Z, then we set X ∩ Y :=

X ×Z Y , the scheme theoretic intersection.

Let now X and Y be locally noetherian schemes. Then a finite and flat

morphism X −→ Y is also called a flat covering.

Products of projective lines play an important role in this work. We set

P1 := Proj(Z[X, Y ]) and x := X
Y . We identify (P1)n componentwise with

Proj(Z[X1, Y1]) × · · · × Proj(Z[Xn, Yn]). Therefore we have bases Xi, Yi ∈

Γ((P1)n,O(0, . . . , 0, 1, 0, . . . , 0)), where the 1 is at the ith position. For any

commutative ring A we have the multigraded homogeneous coordinate ring

A[X1, Y1, . . . , Xn, Yn] of (P1
A)n. In the following by a multihomogeneous

polynomial in A[X1, Y1, . . . , Xn, Yn] we mean a polynomial which is homo-

geneous with respect to the multigrading. A multihomogeneous ideal in

A[X1, Y1, . . . , Xn, Yn] is then an ideal in A[X1, Y1, . . . , Xn, Yn] which is gen-

erated by multihomogeneous polynomials. Now for some multihomogeneous

ideal I, we denote the subscheme defined by I in (P1
k)

n by V (I). Moreover,

we set xi := Xi
Yi

and An := Spec(Z[x1, . . . , xn]).

Additionally, we set P2 := Proj(Z[X, Y, Z]) and x := X
Z , y := Y

Z . The

elliptic curve E/Fqn under consideration is always given by a Weierstraß

model in P2
Fqn

.

Finally, let f be a partial function from N to R which is defined on an
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infinite subset S of N such that f is eventually positive. Then we define the

usual sets O(f) and Õ(f) of functions S −→ R. Additionally, we define the

set of functions which are polynomially bounded in f as

Poly(f) :=

{g : S −→ R : ∃c > 0, N ∈ N : |g(n)| ≤ f(n)c for all n ∈ S with n ≥ N} .

We do not use the usual “Landau-style notation” g = O(f) etc. but g ∈ O(f)

instead.

Sets O(f) etc. occur frequently in statements on (expected) running

times. We then implicitly fix a (reasonable) representation of the mathe-

matical objects in question (e.g. elliptic curves etc.) by bit-strings, as usual.

Acknowledgments

I thank Steven Galbraith, Pierrick Gaudry, Éric Schost, Nicolas Thériault,

and the anonymous referees for their helpful comments.

2 The key algorithms

In this section we outline the algorithm for the Theorem.

2.1 The decomposition algorithm

The decomposition algorithm relies on “homogeneous summation polynomi-

als”. These polynomials can be obtained by homogenizing the summation

polynomials introduced by Semaev in [Sem04] in an appropriate way. A more

systematic point of view is however to regard Semaev’s summation polyno-

mials as being obtained by dehomogenization of the homogeneous summa-

tion polynomials. The homogeneous summation polynomials are studied in

detail in Section 3; here we merely mention the key results which are needed

to describe the decomposition algorithm.

In Section 3 we show the following two propositions.

Proposition 2.1 Let E be an elliptic curve over a field k, and let us fix a

covering ϕ : E −→ P1
k of degree 2 with ϕ ◦ [−1] = ϕ. Let m ∈ N with m ≥ 2.

Then there exists an – up to multiplication by a non-trivial constant unique –

irreducible multihomogeneous polynomial Sϕ,m ∈ k[X1, Y1, X2, Y2, . . . , Xm, Ym]

such that for all P1, . . . , Pm ∈ E(k) we have Sϕ,m(ϕ(P1), . . . , ϕ(Pm)) =

0 ←→ ∃ǫ1, . . . , ǫm ∈ {1,−1} such that ǫ1P1 + · · · ǫmPm = O. The poly-

nomial Sϕ,m has multidegree (2m−2, . . . , 2m−2).
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Definition 2.2 We call a multihomogeneous polynomial Sϕ,m as in the

proposition an mth summation polynomial of E with respect to ϕ.

Proposition 2.3 Given an elliptic curve E in Weierstraß form over a finite

field Fq m ∈ N with m ≥ 2 and ϕ : E −→ P1
Fq

of degree 2 with ϕ ◦ [−1] =

ϕ, the mth summation polynomial with respect to the covering ϕ : E −→

P1
Fq

can be computed with a randomized algorithm in an expected time of

Poly(em2
· log(q)).

Now let K|k be a finite field extension of degree n with basis b1, . . . , bn,

let E be an elliptic curve over K (rather than over k), and let ϕ : E −→ P1
K

be a covering of degree 2 with ϕ ◦ [−1] = ϕ.

Now let P ∈ E(K). Let Sϕ,n+1(X1, Y1, . . . , Xn, Yn, ϕ(P )) be a polyno-

mial obtained by inserting the coordinates of ϕ(P ) for the variables

Xn+1, Yn+1 in an (n + 1)th summation polynomial of E with respect to ϕ;

note that this polynomial is unique up to multiplication with a non-trivial

constant.

Let S(1), . . . , S(n) ∈ k[X1, Y1, . . . , Xn, Yn] be defined by

n
∑

j=1

bjS
(j) = Sϕ,n+1(X1, Y1, . . . , Xn, Yn, ϕ(P )) . (2)

Clearly, if S(j) is non-zero, just as Sϕ,n+1 it is multigraded of multidegree

(2n−1, . . . , 2n−1). Note also that a different basis of K|k would give rise

to a system of polynomials over k which generate the same k-vector space.

The same holds if the summation polynomial is multiplied by a non-trivial

constant or if the coordinates of ϕ(P ) are simultaneously multiplied by a

non-trivial constant. In particular, the subscheme V (S(1), . . . , S(n)) of (P1
k)

n

does not depend on these choices.

For Q1, . . . , Qn ∈ P1(k), the following conditions are equivalent:

• There exist P1, . . . , Pn ∈ E(K) such that P1 + · · · + Pn = P and

ϕ(Pi) = Qi for all i = 1, . . . , n.

• Sϕ,n+1(Q1, . . . , Qn, ϕ(P )) = 0.

• For all j = 1, . . . , n, S(j)(Q1, . . . , Qn) = 0, that is, (Q1, . . . , Qn) is a

k-rational point of V (S(1), . . . , S(n)).

Definition 2.4 A tuple (P1, . . . , Pn) ∈ E(K)n with P1 + · · ·+ Pn = P and

ϕ(Pi) ∈ P1(k) for i = 1, . . . , n is called a decomposition of P with respect

to ϕ. Let such a decomposition be given and let Qi := ϕ(Pi). If now

(Q1, . . . , Qn) is an isolated point of V (S(1), . . . , S(n)), the decomposition is

called ϕ-isolated.
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The “decomposition problem” is now the following computational prob-

lem: Given a prime power q, n ∈ N, an Fq-basis b1, . . . , bn of Fqn |Fq, an

elliptic curve E over Fqn (given by a Weierstraß model), ϕ : E −→ P1
k as

well as P ∈ E(Fqn) of degree 2 with [−1] ◦ϕ = ϕ, output a list of decompo-

sitions of P with respect to ϕ containing all ϕ-isolated decompositions. A

“decomposition algorithm” is then a randomized algorithm for this problem.

We now outline such an algorithm. The basis is the following proposition.

Proposition 2.5

a) Let k be a field, and let F1, . . . , Fn ∈ k[X1, Y1, . . . , Xn, Yn] be multigraded

polynomials of multidegree (d, d, . . . , d) for some d ∈ N. Then “with

multiplicities”, there are ≤ n! · dn isolated points in V (F1, . . . , Fn). Or

with other words: The degree of the degree 0 part of the cycle defined by

V (F1, . . . , Fn) is ≤ n! · dn. Equality holds if and only if the scheme is

0-dimensional.

b) There exists a randomized algorithm with the following specification:

Given a system of multihomogeneous polynomials F1, . . . , Fn ∈

Fq[X1, Y1, . . . , Xn, Yn] of multidegree (d, d, . . . , d) for some d ∈ N and

prime power q, the algorithm outputs a list of Fq-rational points of

V (F1, . . . , Fℓ) containing all Fq-rational isolated points. Moreover, the

expected running time is in Poly(n! · dn · log(q)), and the list has a size

of Poly(n! · dn).

Sketch of a proof. Part a) follows from intersection theory in (P1
k)

n. For

background information, we give a more general statement in subsection 4.2

(Lemma 4.7).

The computational statement can be obtained via an algorithm by Rojas

([Roj99]) and the factorization of a univariate polynomial. This algorithm

relies on “twisted Chow forms” or – as one might also say – on U -resultants

of toric deformations. We note here that the use of twisted Chow forms for

polynomial system solving was pioneered by Canny ([Can90]).

Let k = Fq, and let (Gm)k = A1
k − {0} be the 1-dimensional standard

torus over k. Then given F1, . . . , Fn as above, with the algorithm by Rojas

and the factorization of a univariate polynomial, one can obtain a list of Fq-

rational points of V (F1, . . . , Fℓ)∩((Gm)k)
n containing all Fq-rational isolated

points. The expected running time is in Poly(n! · dn · log(q)), and the list

has size ≤ n! · dn.

Now P1
k can be covered by two copies of (Gm)k. Therefore by applying

Rojas’ algorithm 2n-times with different coordinates on the P1
k’s one can

obtain a list of points which contains all Fq-rational points. 2

We then have the following decomposition algorithm.
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We have already remarked that one can compute the polynomial Sϕ,n+1

in an expected time of Poly(en2
· log(q)). Thus one can also determine the

polynomials S(1), . . . , S(n) in an expected time of Poly(en2
· log(q)). We then

apply an algorithm as in the previous proposition. (As the polynomials are

symmetric, we only have to apply Rojas’ algorithm n instead of 2n times.)

Let L be the list output by this algorithm.

We now want to find all tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) ∈

P1(Fq) for all i = 1, . . . , n and P1 + · · · + Pn = P . For this we iterate

over entries of L. For each such entry (Q1, . . . , Qn) we consider all possibles

tuples (P1, . . . , Pn) ∈ E(Fqn)n with ϕ(Pi) = Qi for i = 1, . . . , n and check if

P1 + · · · + Pn = P . We output all tuples (P1, . . . , Pn) for which this is the

case.

Now for each tuple (Q1, . . . , Qn) ∈ L we need Õ(2n) · Poly(log(q)) bit

operations, and we have Poly(en2
) such tuples (Q1, . . . , Qn). The expected

total running time is then still in Poly(en2
· log(q)).

We obtain:

Proposition 2.6 There exists a decomposition algorithm which operates in

an expected time of Poly(en2
· log(q)).

In order to analyze the index calculus algorithm we need a lower bound

on the probability that a uniformly randomly distributed point has a ϕ-

isolated decomposition. In order to derive such a lower bound, we need the

following condition on the covering ϕ:

Condition 2.7 There exists a point R ∈ P1(Fq) which is a ramification

point of ϕ such that the points R, σ(R), . . . , σn−1(R) are all distinct and ϕ

is unramified at σ(R), . . . , σn−1(R).

Here and in the following σ is the relative Frobenius automorphism of

k|k.

In the next subsection we prove:

Proposition 2.8 Given a prime power q, n ∈ N and an elliptic curve over

Fqn in Weierstraß form such that (q, n) 6= (3, 2) one can compute a covering

ϕ : E −→ P1
Fqn

of degree 2 with ϕ ◦ [−1] = ϕ satisfying Condition 2.7 in an

expected time of Poly(n · log(q)).

The key result for the analysis of the algorithm for the Theorem is now

as follows:

Proposition 2.9 Let ǫ > 0. Then for n large enough2 and (2 + ǫ) · n2 ≤

2As usual, by the phrase “for n large enough” we mean that there exists a constant
C > 0 such that the statement holds for n ≥ C.
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log2(q) the following holds: Let E/Fqn be an elliptic curve, and let ϕ : E −→

P1
Fqn

be a covering of degree 2 with ϕ ◦ [−1] = ϕ such that Condition 2.7 is

satisfied.

Then the probability that a uniformly distributed point of E(Fqn) has a

ϕ-isolated decomposition is ≥ q−
1
2 .

Section 4 is devoted to the proof of this proposition.

2.2 Computing a suitable covering

We discuss how a covering ϕ : E −→ P1
Fqn

satisfying Condition 2.7 can be

computed efficiently.

We make some case distinctions. In each case we start off with a specific

Weierstraß model and determine some automorphism α of P1
Fqn

. Then we

set ϕ := α ◦ x|E .

2.2.1 Even characteristic

Let first j(E) = 0. Then by an easy coordinate change the “affine part” of

E is defined by a polynomial

y2 + a3y + x3 + a4x + a6 .

(see [Sil86, Appendix A]) (with a3 6= 0). Now x|E is ramified exactly over

∞. We set α := ax−1
x for some a ∈ Fqn which is not contained in any proper

subfield of Fqn |Fq.
3 Then α maps ∞ to a, and thus ϕ is ramified exactly at

a. Clearly the condition is satisfied.

Let now j(E) 6= 0. Then wlog. E the “affine part” of E is defined by the

polynomial

y2 + xy + x3 + a2x
2 + a6 .

Then x|E is ramified exactly over 0 and ∞. We set α := x + a with a as

above. Then ϕ is ramified at a and ∞, and again the condition is satisfied.

2.2.2 Odd characteristic

Now wlog. E is defined by

y2 − f(x) ,

where f(x) ∈ Fqn [x] is monic of degree 3. The conditions which have to be

satisfied are now more subtle but the algorithm is very simple:

3By a “proper subfield” we mean here a subfield of a field extension K|k which is not
equal to K.
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We choose λ ∈ Fqn uniformly at random and with α := x − λ we check

if the condition is satisfied. We repeat this until the condition is satisfied.

Note here that if f(x) = (x− λ1)(x− λ2)(x− λ3) (with λi ∈ Fq6n), then

the ramification points of ϕ = α ◦ x|E in P1(Fq) are λi− λ for i = 1, 2, 3. So

it is easy to check the condition.

Proposition 2.8 now follows from the following lemma. (Note that we

only apply the lemma in the case that q is odd.)

Lemma 2.10 There exists a constant C ∈ (0, 1) such that the following

holds:

Let q be a prime power and n a natural number such that (q, n) 6=

{(2, 2), (3, 2), (2, 3), (2, 4)}. Now let λ1, λ2, λ3 ∈ Fq, and let λ be a uniformly

distributed element in Fqn. Then with a probability ≥ C we have

(λ1 − λ)qi
/∈ {λ1 − λ, λ2 − λ, λ3 − λ}

for i = 1, . . . , n− 1.

Proof. Let ℓ = 1, 2, 3. We have (λ1 − λ)qi
= λℓ − λ if and only if λqi

− λ =

λqi

1 −λℓ. The map Fqn −→ Fqn , λ 7→ λqi
−λ is an Fq-linear map with kernel

Fqgcd(i,n) . There are thus either no or qgcd(i,n) such λ.

We obtain: In total there are at most 3
∑n−1

i=1 qgcd(i,n) elements λ for

which the condition in the lemma is not satisfied.

Now 3
∑n−1

i=1 qgcd(i,n) ≤ 3(n − 1) · qn/2, and therefore the probability in

question is

≥ 1−
3(n− 1)

qn/2
≥ 1−

3(n− 1)

2n/2
.

For n ≥ 10 this is ≥ 5
32 > 0.

One also easily sees that for n ≤ 9 and (q, n) 6= {(2, 2), (3, 2), (2, 3), (2, 4)}

the probability is positive. 2

2.3 The index calculus algorithm

Below we give an algorithm which leads to the following result.

Proposition 2.11 Let ǫ > 0. Then there exists a randomized algorithm

with the following specification: Given a prime power q, a natural number

n with (2 + ǫ) · n2 ≤ log2(q), an elliptic curve E over Fqn (in Weierstraß

form) and two points A, B ∈ E(Fqn) with B ∈ 〈A〉, it outputs the discrete

logarithm of B with respect to A. Moreover, the expected running time is

polynomially bounded in q.

This proposition implies the Theorem:

12



Let an instance consisting of a prime power q, a natural number n, an

elliptic curve E over Fqn and two points A, B ∈ E(Fqn) with B ∈ 〈A〉 be

given.

We then proceed with a case distinction:

If 3 · n2 ≤ log2(q), we apply an algorithm for Proposition 2.11. Thus for

these instances we obtain an expected running time which is polynomially

bounded in q = elog(q).

If on the other hand 3 ·n2 > log2(q), we set m := ⌈ 3·n2

log2(q)⌉. Note that 3 ·

n2 ≤ log2(q
m) and m ≤ 6·n2

log2(q) . We then apply an algorithm for Proposition

2.11 to the instance consisting of the prime power qm, the natural number

n, the elliptic curve EFqmn over Fqmn and A, B ∈ E(Fqmn). Thus for these

instances the expected running time is then polynomially bounded in qm ≤

q
6·n2

log2(q) = 26n2
∈ Poly(en2

).

In the Theorem, only qn but not q and n is part of the input. We can

then apply the algorithm just outlined for all possible extension degrees “in

parallel”. The claimed expected running time still holds. 2

We now outline an algorithm for Proposition 2.11. For any ǫ > 0, the

algorithm below computes the discrete logarithm in any expected time of

Poly(q) provided that n is large enough. Proposition 2.11 can then be

obtained by applying this algorithm “in parallel” with a brute force compu-

tation.

The algorithm

Input: A prime power q, a natural number n with (q, n) 6= (3, 2), an elliptic

curve E over Fqn in Weierstraß form, A, B ∈ E(Fqn) with B ∈ 〈A〉.

Output: The discrete logarithm of B with respect to A.

1. Compute N ←− #E(Fqn).

2. Compute the factorization of N .

3. Compute a generating system C1, C2 of E(Fqn).

4. Choose a covering ϕ : E −→ P1
Fqn

of degree 2 with ϕ◦[−1] = ϕ satisfying

Condition 2.7.

5. Construct the factor base F = {F1, F2, . . . , Fk}, that is, enumerate the

set {P ∈ E(Fqn) | ϕ(P ) ∈ P1(Fq)}.

6. Construct matrices R ∈ (Z/NZ)(k+3)×k and S ∈ (Z/NZ)(k+3)×2 as well

as vectors α, β ∈ (Z/NZ)k+3 as follows:

13



For i = 1, . . . , k + 3 do

Repeat

Choose uniformly and independently randomly α, β, s1, s2 ∈

Z/NZ and apply a decomposition algorithm to s1C1 + s2C2 +

αA + βB.

Until a decomposition is obtained. Choose such a decomposition and

let
∑

j

ri,jFj = si,1C1 + si,2C2 + αiA + βiB

be the relation generated.

7. Compute a lower row echelon form H of (R|S) (over Z/NZ); apply the

row transformations also to α, β; let α′, β′ be the resulting vectors.

8. If β′
1 ∈ (Z/NZ)∗, let ξ := −

α′
1

β′
1

, otherwise go back to Step 6.

9. Compute ord(A), using the factorization of N .

10. Output the unique non-negative number x ∈ {0, . . . , ord(A) − 1} with

[x]ord(A) = [ξ]ord(A) ∈ Z/ ord(A)Z.

For the correctness of the algorithm note that as (R|S) is a (k + 3) ×

(k + 2)-matrix, the first row of H is trivial. Therefore we have the relation

α′
1A + β′

1B = 0.

We now give some additional information on subroutines for the various

steps of the algorithm and their complexity.

Step 1 can be performed in polynomial time with Schoof’s algorithm

([Sch85]).

Step 2 can be performed in an expected time of

Poly(e(log(N)·log(log(N)))1/2
), for example with the algorithm by Lenstra and

Pomerance ([LP92]).

Step 3 can be performed in expected polynomially bounded time with

an algorithm by Miller ([Mil04]). Briefly, one chooses two points uniformly

at random and checks whether they form a generating system by computing

the Weil pairing of the two points. For the claimed expected running time,

one needs the factorization of N .

As already proven above, for (q, n) 6= (3, 2), Step 4 can be performed in

expected polynomially bounded time.

In Step 5, the factor base clearly has≤ 2(q+1) elements and can therefore

be constructed in an expected time of Poly(n · log(q)) · q.

14



Step 9 can be performed in polynomial time along the following lines:

As in the algorithm, let N =
∏v

i=1 ℓei
i with ei ∈ N and pairwise distinct

prime numbers ℓi. Now let Li := N
ℓ
ei
i

, and let oi := min{j ∈ 0, . . . , ei | ℓ
j
iLi ·

A = 0} for i = 1, . . . , v. Then
∏v

i=1 ℓoi
i is the order of A.

We now discuss steps 6, 7 and 8.

Step 6 – Relation generation

As stated, we choose α, β, s1, s2 ∈ {0, . . . ,#E(Fqn)−1} uniformly at random

and compute s1C1 + s2C2 + αA + βB. Then we apply the decomposition

algorithm as described in the previous subsection to this element and the

covering ϕ.

We repeat this procedure until the decomposition algorithm outputs at

least one decomposition of s1C1 + s2C2 + αA + βB. Then we choose such

a decomposition in such a way that the choice depends only on the element

s1C1+s2C2+αA+βB and not on the further internal state of the algorithm.

The time to compute s1C1+s2C2+αA+βB is polynomial in log(qn). By

Proposition 2.6, the expected running time of one iteration in the Repeat-

loop is then in Poly(en2
· log(q)). Note that for each iteration of the Repeat-

loop the element s1C1 + s2C2 + αA + βB is uniformly randomly distributed

(and independent of previous choices). Therefore by Proposition 2.9 for

instances with (2+ǫ) ·n2 ≤ log2(q) and n large enough the expected number

of iterations in the Repeat-loop is in O(q1/2).

We conclude that for instances with (2 + ǫ) · n2 ≤ log2(q) and n large

enough, the expected running time of Step 3 is in Poly(en2
· log(q)) ·O(q1/2) ·

O(q) ⊆ Poly(q).

Step 7 – Linear algebra

The computation of a lower row echelon form can be performed with an

easy modification of the usual Gaußian reduction algorithm with gcd com-

putations. Given a matrix of size m × n over Z/NZ, the computation can

be performed in a time which is polynomially bounded in m · n · log(N).

By the definition of the factor base, we have k + 2 ∈ O(q). We therefore

have a running time which is polynomially bounded in q · log(N).

Step 8 – Invertibility

We need to estimate the probability that β′
1 is invertible. The key result is:

Proposition 2.12 Conditionally to any outcome of Step 5 of the algorithm,

the random element β′
1 is uniformly randomly distributed in Z/NZ.
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For N −→ ∞, we have φ(N)
N ∈ Ω( 1

log log(N)) (cf. [RS62, Formula 3.41]).

Therefore, the expected number of iterations of steps 6,7,8 is inO(log log(N)) =

O(log log(q)).

Proof of Proposition 2.12. We fix any outcome of Step 5 of the algorithm.

Now for each i, βi is stochastically independent of αiA + βiB. Therefore βi

is stochastically independent of the ith row of (R|S). It follows that β is

independent of (R|S). Let U be the transformation matrix such that H =

U(R|S); this is also a random variable. Now U is stochastically independent

of β. Let u be the first row of U and note that [u]ℓ 6= 0 for all prime divisors

ℓ of N . Then β′
1 = uβ. Now the statement follows with the following well

known lemma. 2

Lemma 2.13 Let N be a natural number, and let u ∈ (Z/NZ)m with

[u]ℓ 6= 0 for all prime divisors ℓ of N . Furthermore, let v be a uniformly dis-

tributed random element in (Z/NZ)m. Then
∑

i uivi is uniformly distributed

in Z/NZ.

Proof. Let us first consider the case that N is a prime power. Then at least

one entry of u is invertible. This implies the statement. The general case

follows then easily with the Chinese Remainder Theorem. 2

The overall running time

Altogether we conclude:

We again restrict ourselves to instances with (2 + ǫ) · n2 ≤ log2(q). As

the factor base has a size of O(q), it is now clear that for n large enough the

expected running time of the whole algorithm is then polynomially bounded

in q.

3 The summation polynomials

In this section we prove Propositions 2.1 and 2.3 on the summation polyno-

mials. Let E be an elliptic curve over a field k, let m ∈ N, m ≥ 2, and let

ϕ : E −→ P1
k be a covering of degree 2 which satisfies ϕ ◦ [−1] = ϕ.

Now let Nm (or N) be the kernel of the addition map Em −→ E,

(P1, . . . , Pm) 7→ P1 + · · ·+Pm. (Here the Pi are Z-valued points for some k-

scheme Z.) Note that N is isomorphic to Em−1 via the projection

(P1, . . . , Pm) 7→ (P1, . . . , Pm−1).

We now consider the projection Em −→ (P1
k)

m induced by ϕ. Note that

[−1] operates on N , and the map N →֒ Em −→ (P1
k)

m factors through the

quotient N/[−1].
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Definition 3.1 Let Hϕ,m (or Hm or H) be the image of N in (P1
k)

m (with

the induced subscheme structure).

Proposition 3.2

a) The induced map N/[−1] −→ H is finite and birational.

b) H is a hypersurface in (P1
k)

m of multidegree (2m−2, . . . , 2m−2).

c) The projections H −→ Pm−1
K to any m− 1 of the m components are flat

coverings of degree 2m−2.

Proof. The maps N →֒ Em −→ (P1
k)

m and H →֒ (P1
k)

m are clearly finite. It

follows immediately that the induced map N −→ H is also finite. This in

turn implies that the induced map N/[−1] −→ H is finite too (by definition

of the geometric quotient).

Let us now consider the commutative diagram

N

{{vvvvvvvvv

� � //

��

Em

��uukkkkkkkkkkkkkkkkk

Em−1

��

H
� � //

{{xxxxxxxxx
(P1

k)
m ,

uullllllllllllll

(P1
k)

m−1

where the vertical maps are induced by the covering ϕ and the morphisms

Em −→ Em−1 and (P1
k)

m −→ (P1
k)

m−1 are the projections to the first m− 1

coordinates. Then the induced morphism N −→ Em−1 is an isomorphism,

and the morphism Em−1 −→ (P1
k)

m−1 is a generically separable flat covering

of degree 2m−1.

Below we show that the map N −→ H generically has degree 2, and the

map H −→ (P1
k)

m−1 generically has degree 2m−2. This statement implies

statements a) and b) in the lemma. Indeed, first as N −→ H generically

has degree 2, the induced map N/[−1] −→ H generically has degree 1,

that is, it is birational. Second, the fact that the map H −→ (P1
k)

m−1 is

quasi-finite and generically of degree 2m−2 implies that the last component

of the multidegree of H is 2m−2. “By symmetry” (or by a repetition of the

argument with projections to different components) then all components of

the multidegree are 2m−2.

Note first that we have already established that both maps are generi-

cally separable, and that the product of the two degrees is 2m−1. Therefore,

it suffices to show that the extension of function fields k(N)|k(H) has sep-

arability degree 2.
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We are going to apply the isomorphism Em−1 −→ N which is the inverse

of the projection N −→ Em−1 and consider the extension k(Em−1)|k(H).

Let Ω := k(Em−1), let pi : Em−1 −→ E be the projection to the ith

coordinate, and let Pi ∈ E(Ω) be the induced points. (That is, Pi is the

morphism Spec(Ω) −→ Spec(k(Em−1)) −→ Em−1 pi
−→ E, where the first

two morphisms are the canonical ones.) Let pm := −
∑m−1

i=1 pi and Pm :=

−
∑m−1

i=1 Pi.

Then the inverse of the projection N −→ Em−1 to the first m− 1 coor-

dinates is given by (p1, . . . , pm); the corresponding Ω-valued point of N is

given by (P1, . . . , Pm).

The points P1, . . . , Pm−1 are linearly independent, since the maps

p1, . . . , pm−1 are linearly independent, the map Mork(E
m−1, E) −→

E(k(Em−1)) is injective (in fact, it is an isomorphism), and the map

E(k(Em−1)) −→ Spec(Ω) is injective too.

Now let us consider the preimage of ϕ(P1, . . . , Pm) = (ϕ ◦ P1, . . . , ϕ ◦

Pm) ∈ H(Ω) in N(Ω). This set consists of all tuples (ǫ1P1, . . . , ǫmPm) ∈

Em(Ω) with ǫi = ±1 and
∑m

i=1 ǫiPi = O. Clearly, there are exactly two

such tuples: ±(P1, . . . , Pm).

We conclude: There are exactly two Ω-valued points of Em−1 which

induce the Ω-valued point (ϕ ◦P1, . . . , ϕ ◦Pm) ∈ H(Ω) under the projection

N −→ H. This means that there are exactly two extensions of the canonical

inclusion k(Em−1) −→ Ω to k(N). Therefore, the separability degree of the

extension k(Em−1)|k(H) is 2.

We come to c). We still (wlog.) only consider the projection p : H −→

(P1
k)

m−1 to the first m − 1 components. As the map is quasi-finite and

as H has multidegree (2m−2, . . . , 2m−2), each fiber has degree 2m−2. With

other words: The Hilbert polynomials of the fibers are equal to 2m−2. With

[Har77, Theorem 9.9] we conclude that p is flat.

Note that H is a projective over (P1)m−1
k , thus in particular proper.

Moreover, p is quasi-finite. These two properties together are equivalent to

being finite by [Gro61, Proposition 4.4.2]. 2

Now clearly, if S is any irreducible polynomial in k[X1, Y1, . . . , Xm, Ym]

which is multihomogeneous, then S satisfies the conditions of Proposition

2.1 if and only if H = V (S). This establishes Proposition 2.1.

Thus the mth summation polynomial (cf. Definition 2.2) with respect

to ϕ is the (up to a multiplicative constant unique) polynomial S with

V (S) = H.

Remark 3.3 Let α ∈ Aut(P1
k). Then Hα◦ϕ,m = α(Hϕ,m), with other words:

Hα−1◦ϕ,m = α−1(Hϕ,m). This implies that Sα−1◦ϕ,m = α∗(Sϕ,m).
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We now discuss how the summation polynomials for elliptic curves in

Weierstraß form can be given in an explicit and constructive way, following

[Sem04].

Lemma 3.4 Let E be an elliptic curve in P2
k in Weierstraß form:

E = V (Y 2Z + a1XY Z + a3Y Z2 − (X3 + a2X
2Z + a4XZ2 + a6Z

3))

with a1, a2, a3, a4, a6 ∈ k and O = [0 : 1 : 0]. Then the 3rd summation

polynomial of E with respect to x|E is

(

(x2
1x

2
2 + x2

2x
2
3 + x2

1x
2
3)− 2(x2

1x2x3 + x1x
2
2x3 + x1x2x

2
3)

−(a2
1 + 4a2)x1x2x3 − (a1a3 + 2a4) · (x1x2 + x2x3 + x1x3)

−(a2
3 + 4a6) · (x1 + x2 + x3)

−a2
1a6 + a1a3a4 − a2a

2
3 − 4a2a6 + a2

4

)

· Y 2
1 Y 2

2 Y 2
3 .

Sketch of a proof. Let S be the polynomial in the lemma. Using the inversion

and addition formulae for elliptic curves in Weierstraß form (cf. [Sil86]), one

can check (with a rather lengthy computation) that for all P1, P2 ∈ E(k),

S(x(P1), x(P2), x(P1 + P2)) = 0. This implies that S3 divides S. As both

polynomials have multidegree (2, 2, 2), it follows that they are equal. Let us

note here that one only has to check that S(x(P1), x(P2), x(P1 + P3)) = 0

for P1 6= ±P2 and P1, P2 6= O because then S vanishes on an open part of

H3 and thus also on all of H3. 2

Let us indicate how the polynomial S was found, following [Sem04]:

Let P1, P2 ∈ E(k) with P1, P2 6= O and P1 6= ±P2. Then clearly both

x(P1+P2) and x(P1−P2) satisfy the polynomial (x−x(P1+P2))(x−x(P1−

P2)). So we computed this polynomial over the field Q(a1, a2, a3, a4, a6)

and for “generic” P1, P2, using the computer algebra system MAGMA. The

polynomial S is then obtained by multiplication with the denominator and

homogenization.

Lemma 3.5 Let E still be an elliptic curve and ϕ : E −→ P1
k a covering of

degree 2 with ϕ ◦ [−1] = ϕ. Let s, t ∈ N with s, t ≥ 2. Then

Sϕ,s+t(X1, Y1, . . . , Xs+t, Ys+t) =

Res(X,Y )(Sϕ,s+1(X1, Y1, . . . , Xs, Ys, X, Y ),

Sϕ,t+1(Xs+1, Ys+1, . . . , Xs+t, Ys+t, X, Y )) .

Here by Res(X,Y ) we mean the usual Sylvester resultant for homogeneous

polynomials in X and Y of degrees 2s−1 and 2t−1.
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Proof. For (P1, . . . , Ps+t) ∈ (E(k))s+t we have P1 + · · · + Ps+t = O if

and only if there exists some P ∈ E(k) with P1 + · · · + Ps + P = O and

Ps+1 + · · ·+ Ps+t − P = O.

It follows that topologically the hypersurface Hs+t is the image of

V (Sϕ,s+1(X1, Y1, . . . , Xs, Ys, X, Y ), Sϕ,t+1(Xs+1, Ys+1, . . . , Xs+t−1, Ys+t, X, Y ))

in (P1
k)

n×Proj(k[X, Y ]) under the projection to (P1
k)

n. As Hs+t is irreducible

it follows that the resultant in the lemma is (up to a multiplicative constant)

a power of Sϕ,s+t.

In order to prove that the resultant is (up to a constant) equal to Sϕ,s+t,

we consider their multidegrees.

The generic Sylvester resultant for polynomials of degrees a and b has

degree b in the coefficients of the first polynomial and degree a in the coeffi-

cients of the second polynomial. We apply this with a = 2s−1 and b = 2t−1.

In our case we obtain a polynomial of degree 2s−1 · 2t−1 = 2s+t−2 in (Xi, Yi)

for all i = 1, . . . , s + t.

As Sϕ,s+t has multidegree (2s+t−2, . . . , 2s+t−2), the result follows. 2

The two preceding lemmata give rise to algorithmic constructions of the

summation polynomials over finite fields.

First, given an elliptic curve in Weierstraß form and a covering of degree

2 ϕ : E −→ P1
Fq

with ϕ ◦ [−1] = ϕ (which means that the automorphism

α ∈ Aut(P1
k) with ϕ = α ◦ x|E is given), one can easily determine Sϕ,3 via

Lemma 3.4 and Remark 3.3.

Further, one can compute Sϕ,m for m ≥ 3 from Sϕ,m−1 and Sϕ,3 by

applying the above lemma with s = m − 2 and t = 2. This computation

can be performed via interpolation provided that q ≥ 2m−2 (which means

that #P1(Fq) ≥ 2m−2 + 1). For completeness we give here the interpolation

result we apply.

Proposition 3.6 (Multihomogeneous interpolation)

a) Let d ∈ Nn, and let S := {1, . . . , d1 + 1} × · · · × {1, . . . ,

dn + 1}. Let k be a field, let (ai,j , bi,j) ∈ k2 − {0} for i = 1, . . . , n

and j = 1, . . . , di + 1 such that for each i, the elements (ai,1 : bi,1), . . . ,

(ai,di+1 : bi,di+1) ∈ P1(k) are pairwise distinct, and let cj ∈ k for j ∈ S.

Then there is exactly one multihomogeneous polynomial F ∈

k[X1, Y1, . . . , Xn, Yn] of multidegree d with F (a1,j1 , b1,j2 , . . . , an,jn , bn,jn) =

cj for all j ∈ S.

b) Given a prime power q and elements as above over k = Fq, the inter-

polating polynomial F can be computed in a time of Poly((d1 + 1) · · ·

(dn + 1) · log(q)).
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Proof. Let us first consider the classical 1-dimensional interpolation problem

in the context of homogeneous polynomials: Let d ∈ N and (aj , bj) ∈ k2−{0}

for j = 1, . . . , d + 1 such that the induced elements in P1(k) are pairwise

distinct. Moreover, let c1, . . . , cd+1 ∈ k. Then there is exactly one homoge-

neous polynomial F (X, Y ) ∈ k[X, Y ] of degree d with F (aj , bj) = cj for all

j = 1, . . . , d+1. Moreover, with Lj :=
∏

ℓ6=j
bℓX−aℓY
ajbℓ−aℓbj

we have F =
∑

j cjLj .

For the general case we proceed by induction on n.

Let us first prove the uniqueness. For this, let d, S, k, and (ai,j , b,j) ∈

k2 − {0} for i = 1, . . . , n and j = 1, . . . , di + 1 be as in the proposition,

and let F ∈ k[X1, Y1, . . . , Xn, Yn] be of multidegree d with

F (a1,j1 , b1,j2 , . . . , an,jn , bn,jn) = 0 for all j ∈ S.

Then be induction hypothesis, for each j = 1, . . . , dn + 1,

F (X1, Y1, . . . , Xn−1, Yn−1, an,j , bn,j) = 0 ∈ k[X1, Y1, . . . , Xn−1, Yn−1]. We

now regard F (X1, Y1, . . . , Xn, Yn) as a bivariate homogeneous polynomial

in the ring k(X1, Y1, . . . , Xn−1, Yn−1)[Xn, Yn]. Then by the uniqueness of

the solution of the 1-dimensional interpolation problem, we conclude that

F = 0.

We come to the existence. So let objects as in the proposition be given.

For each j = 1, . . . , dn + 1 there is by induction assumption exactly one

multihomogeneous polynomial Cj ∈ k[X1, Y1, . . . , Xn−1, Yn−1] of multide-

gree (d1, . . . , dn−1) with Cj(a1,j1 , b1,j2 , . . . , an−1,jn−1 , bn−1,jn−1) = cj for all

j ∈ S with jn = j. Let Lj :=
∏

ℓ6=j
bℓXn−aℓYn

ajbℓ−aℓbj
for j = 1, . . . , dn + 1. Then

the polynomial F :=
∑

j CjLj fulfills the requirements.

The computational result can easily be obtained via a linear algebra

algorithm. 2

This gives:

Proposition 3.7 Given a natural number m ≥ 3, a prime power q with

q ≥ 2m−2, an elliptic curve E over Fq in Weierstraß form and a covering

ϕ : E −→ P1
Fq

of degree 2 with ϕ ◦ [−1] = ϕ, one can compute the mth

summation polynomial of E with respect to ϕ in a time of Poly(em2
· log(q)).

By passing to field extensions if necessary, one obtains Proposition 2.3.

4 Geometric background on the algorithm and

analysis

The main purpose of this section is to prove Proposition 2.9. Additionally,

we give some background information on the definition of the factor base

from a geometric point of view.
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4.1 Weil restrictions

We make use of Weil restrictions of schemes. Here we briefly recall the defi-

nition and some basic properties of Weil restrictions. For further information

we refer to [BLR80, 7.6] and [Die01, Chapter 1].

Let S′ and S be locally noetherian schemes, and let a flat covering S′ −→

S (a finite and flat morphism) be fixed. (Note here that a flat covering is

locally free (see [Mat89, Theorem 7.10]).) Let X ′ be an S′-scheme such

that the fibers of X ′ over S′ are quasi-projective. Then one can show that

the functor from S-schemes to sets Z 7→ MorS′(ZS′ , X ′) is representable by

an S-scheme; the (up to unique isomorphism unique) representing object is

called the Weil restriction of X ′ with respect to S′ −→ S. We denote it by

ResS′

S (X ′).4

A reformulation of this definition is: The Weil restriction of X ′ with re-

spect to S′ −→ S is a an S-scheme ResS′

S (X ′) together with an S′-morphism

u : (ResS′

S (X ′))S′ −→ X ′ such that the following holds: Whenever Z is

an S-scheme, and α : Z ×S S′ = ZS′ −→ X ′ is an S′-morphism, there

is a unique S-morphism β : Z −→ ResS′

S (X ′) with α = u ◦ βS′ , where

βS′ := β ×S S′ = β ×S idS′ . We denote the morphism β by α⊚.

The assignment X 7→ ResS′

S (X ′) gives rise to a functor (which we call

scalar restriction functor) from the category of S′-schemes with quasi-pro-

jective fibers to the category of S-schemes. Moreover, if X ′ is an affine

S′-scheme, then ResS′

S (X ′) is an affine S-scheme.

We will use the following two lemmata. The proofs are rather easy and

therefore omitted.

Lemma 4.1 Let S′ −→ S be as above, and let X ′, Y ′, W ′ be S′-schemes

with S′-morphisms X ′ −→ W ′ and Y ′ −→ W ′. Then we have a Cartesian

diagram

ResS′

S (X ′ ×W ′ Y ′) //

��

ResS′

S (Y ′)

��

ResS′

S (X ′) // ResS′

S (W ′)

with the obvious canonical morphisms.

Lemma 4.2 Let S′ −→ S as above, let T be an S-scheme, and let T ′ :=

T ×S S′. Let X ′ be a T ′-scheme with structural morphism α : X ′ −→ T ′.

Let v : (ResT ′

T (X ′))T ′ −→ X ′ be the universal morphism; v is thus a

T ′-morphism. We have (ResT ′

T (X ′))×T T ′ ≃ (ResT ′

T (X ′))×S S′, and v is in

4The similarity between the notations for Weil restrictions and resultants is accidental.
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particular an S′-morphism. Thus by the universal property of ResS′

S (X ′) we

have an induced S-morphism v⊚ : ResT ′

T (X ′) −→ ResS′

S (X ′).

Now we have a Cartesian diagram

ResT ′

T (X ′)

��

// ResS′

S (X ′)

��

T // ResS′

S (T ′) ,

where the morphisms are defined as follows: The left morphism is the struc-

tural morphism, the right morphism is ResS′

S (α), the upper morphism is v⊚,

and the lower morphism is the morphism id⊚ : T −→ ResS′

S (T ′) correspond-

ing to the identity on T ′ under the defining functorial property of ResS′

S (T ′).

Let now K|k be a finite separable field extension. Then if X ′ is a quasi-

projective (resp. projective) scheme over K, ResK
k (X ′) is a quasi-projective

(resp. projective) scheme of dimension [K : k] ·dim(X ′) over k. Note that by

the defining functorial property of the Weil restriction we have in particular

a bijection

X ′(K) = MorK(Spec(K), X ′) −→ ResK
k (X ′)(k) = Mork(Spec(k), ResK

k (X ′)),

P 7→ P⊚ .

If X ′ is a group scheme over K, ResK
k (X ′) is in a natural way again a group

scheme, and if A′ is an abelian variety over K, then ResK
k (A′) is in a natural

way an abelian variety too.

Let K|k now be an extension of finite fields of degree n, and let σK|k be

the relative Frobenius automorphism of K|k. We denote the induced iso-

morphism Spec(k) −→ Spec(k) again by σK|k. Let X ′ be a quasi-projective

K-scheme. Then we have a canonical isomorphism

(ResK
k (X ′))K ≃

n−1
∏

i=0

σi
K|k(X

′)

of K-schemes under which the universal morphism u : (ResK
k (X ′))K −→ X ′

corresponds to the projection

u :
n−1
∏

i=0

σi
K|k(X

′) −→ X ′ .

Moreover, if Z is any k-scheme and α : ZK −→ X ′ is a morphism, then

(α⊚)K corresponds to

(α, σK|k(α), . . . , σn−1
K|k (α)) : ZK −→

n−1
∏

i=0

σi
K|k(X

′)
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and if ϕ : X ′ −→ Y ′ is a morphism of quasi-projective K-schemes, then

ResK
k (ϕ) corresponds to

ϕ× σK|k(ϕ)× · · · × σn−1
K|k (ϕ) :

n−1
∏

i=0

σi
K|k(X

′) −→
n−1
∏

i=0

σi
K|k(Y

′) .

4.2 Intersection theory in (P1
k)

n

The proof of Proposition 2.9 relies crucially on intersection theory in prod-

ucts of projective lines and on the theory of resultants for multihomogeneous

polynomials. In this subsection we state some results on intersection theory

and resultants in this specific situation.

Let for this subsection k be any field.

Notation 4.3 Let V be a fixed quasi-projective variety, and let X be a

closed subscheme of V . Then we denote the class of X in the Chow ring

of V by [X]. (We do not fix a notation for the cycle corresponding to a

closed subscheme as we never perform operations with cycles but only with

classes.)

We have the following explicit description of the Chow ring of (P1
k)

n:

Proposition 4.4 Let hi := [V (Xi)] ∈ CH((P1
k)

n) for i = 1, . . . , n. Then we

have an isomorphism Z[H1, . . . , Hn]/(H2
1 , . . . , H2

n) −→ CH((P1
k)

n) , [Hi] 7→

hi.

This proposition can easily be derived from a general result on the Chow

rings of toric varieties (cf. the proposition on page 106 of [Ful93, Section 5.2]).

We remark here that the book [Ful93] is concerned with toric varieties over

the complex numbers. However, analytic arguments play a minor role in the

exposition, and the few such arguments can rather easily be replaced with

algebraic arguments. In particular, the proposition just mentioned holds

over arbitrary fields.

Example 4.5 The class of an effective Cartier divisor on (P1
k)

n of multide-

gree (d1, . . . , dn) is d1h1 + · · ·+ dnhn.

Let us consider the pull-back and push-forward homomorphisms associ-

ated with the canonical projections between products of P1
k’s. The following

considerations follow immediately from the axioms of intersection theory in

[Har77, Appendix A].

For n1 > n2, let p : (P1
k)

n1 −→ (P1
k)

n2 be the projection to the first n2

components. Let us denote by hi for i = 1, . . . , n1 or i = 1, . . . , n2 the class

of V (Xi) in any of the two Chow rings.
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Then the pull-back p∗ : CH((P1
k)

n2) −→ CH((P1
k)

n1), which is a ring

homomorphism, is given by the homomorphism which corresponds to the

obvious inclusion under the isomorphism in Proposition 4.4. This means

that it is given by p∗(hi) = hi.

The push-forward p∗ : CH((P1
k)

n1) −→ CH((P1
k)

n2), which is a group

homomorphism, is given as follows:

Lemma 4.6 Let e ∈ {0, 1}n1. Then p∗(h
e1
1 · · ·h

en1
n1 ) = 1 if en2+1 = · · · =

en1 = 1 and p∗(h
e1
1 · · ·h

en1
n1 ) = 0 otherwise.

For completeness we mention the following lemma.

Lemma 4.7 Let F1, . . . , Fn be multihomogeneous polynomials. Let the mul-

tidegree of Fi be (di,1, . . . , di,n), and let D := (di,j)i,j.

a) The 0-cycle [V (F1)] · · · [V (Fn)] has degree Perm(D), the permanent of

D. In particular, if the multidegree of each Fi is (d, . . . , d) for a common

d ∈ N, then the cycle has degree n! · dn.

b) The degree 0 part of the class of V (F1, . . . , Fn) in the Chow ring has

degree ≤ Perm(D).

c) We have equality in b) if and only if V (F1, . . . , Fn) is zero-dimensional.

Sketch of a proof. Part a) follows immediately from Proposition 4.4.

Part b) can easily be obtained from Krull’s Hautidealsatz and Axiom A7

on intersection theory in [Har77, Appendix A].

For part c) see [Ful84, Proposition 8.2]. 2

Intersection theory and the theory of resultants are closely connected.

Let us recall the definition and basic properties in the situation under con-

sideration.

Note for the following that according to our convention N = {1, 2, . . .}.

Let us fix some n ∈ N. Let for d ∈ N Md be the set of monomials of

multidegree d in k[X1, Y1, . . . , Xn, Yn].

Let for each i = 1, . . . , n + 1 some d(i) ∈ Nn be given. We want to

define the generic resultant for multihomogeneous polynomials of multide-

grees d(1), . . . , d(n+1) over k. For this we consider a “universal coefficient

ring”, which is a multivariate polynomial ring over k which for each pair

(i, m) with m ∈ Md(i) has one indeterminate ci,m, that is, it is the ring

k[(ci,m)i=1,...,n+1,m∈M
d(i)

]. We define the generic system of n + 1 multiho-

mogeneous polynomials with multidegrees d(1), . . . , d(n+1) as G1, . . . , Gn+1 ∈

k[(ci,m)i,m][X1, Y1, . . . , Xn, Yn] with Gi =
∑

m∈M
d(i)

ci,m m.
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The generic resultant for multihomogeneous systems with the given de-

grees is then an element of k[(ci,m)i,m], and the resultant of a particular

system of multihomogeneous polynomials with the given degrees is obtained

by substituting the coefficients of the polynomials for the generic coefficients.

The key statements are summarized in the following proposition.

Proposition 4.8

a) There is an irreducible polynomial Res ∈ k[(ci,m)i=1,...,n+1,m∈M
d(i)

] which

for i = 1, . . . , n + 1 is homogeneous in the coefficients of the ith generic

polynomial and which has the following property: For all field extensions

K|k and all systems of multihomogeneous polynomials F1, . . . , Fn+1 ∈

K[X1, Y1, . . . , Xn, Yn], where Fi has multidegree d(i), we have

Res(F1, . . . , Fn+1) = 0 if and only if V (F1, . . . , Fn+1) is non-empty. Here

Res(F1, . . . , Fn+1) is obtained by substituting the coefficients of the poly-

nomials for the generic coefficients.

b) The polynomial Res with the above properties is unique up to multiplica-

tion by a non-trivial constant.

c) The polynomial Res is geometrically irreducible.

d) For each i = 1, . . . , n + 1, Res has degree Perm(Di) in the coefficients of

the ith generic polynomial, where Di is obtained from the matrix






d(1)

...

d(n+1)






by deleting the ith row.

This proposition follows from general results [GKZ94, subsection 3.3 A]

applied to multihomogeneous polynomials. Note that all results in [GKZ94]

are formulated over the complex numbers, but the proof of this result holds

over arbitrary fields as well.

4.3 Background on the factor base

As at the end of subsection 4.1, let K|k be an extension of finite fields

of degree n. Let E be an elliptic curve over K, and let us fix a covering

ϕ : E −→ P1
K of degree 2 with ϕ ◦ [−1] = ϕ.

Let ι = id⊚ : P1
k −→ ResK

k (P1
K) be the morphism corresponding to the

identity on P1
K . One can easily see (for example via base change to K) that

ι is a closed immersion.

Let V be the preimage of ι(P1
k) under ResK

k (ϕ) : ResK
k (E) −→ ResK

k (P1
K).
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This means by definition that we have a Cartesian diagram

V
� � //

��

ResK
k (E)

ResK
k (ϕ)

��
P1

k
� � ι // ResK

k (P1
k) .

(3)

Note that ResK
k (ϕ) : ResK

k (E) −→ ResK
k (P1

K) is a flat covering of degree

2n (as one sees after base change to K), and therefore V −→ P1
k is a flat

covering of degree 2n too.

Let us now explain the connection of these definitions to the definition

of the factor base in the algorithm: Let us consider a particular run of the

algorithm. Then under the bijection P1(K) ≃ ResK
k (P1

K)(k) the inclusion

P1(k) ⊆ P1(K) corresponds to ι(P1
k(k)) ⊆ ResK

k (P1
K))(k). Therefore the fac-

tor base F = (ϕ−1(P1
k)(k)) ⊆ E(K) corresponds to V (k) under the bijection

E(K) ≃ ResK
k (E)(k). One can therefore say that the factor base is defined

in a “geometric way” – something that is not immediately apparent from

the definition of the factor base in the algorithm.

The addition on the Weil restriction induces a morphism V n −→ ResK
k (E),

and – again under the bijection E(K) ≃ ResK
k (E)(k) – for P ∈ E(K) the

tuples (P1, . . . , Pn) ∈ E(K)n with ϕ(Pi) ∈ P1(k) and
∑

i Pi = P correspond

to the k-valued points of the fiber of V n −→ ResK
k (E) at P⊚, the k-rational

point of ResK
k (E) corresponding to P .

We now study V under Condition 2.7.

Proposition 4.9 Let Condition 2.7 be satisfied. Then V is geometrically

reduced and geometrically irreducible (and thus birational to a curve).

Proof. By (3) and Lemma 4.2 we have V ≃ Res
P1

K

P1
k

(E), with respect to the

covering ϕ : E −→ P1
k. This implies that

VK ≃ E ×P1
K

σK|k(E)×P1
K
· · · ×P1

K
σn−1

K|k (E) , (4)

where the morphisms are ϕ : E −→ P1
K , . . . , σn−1

K|k (ϕ) : σn−1
K|k (E) −→ P1

K .

Let us now fix an algebraic closure k(x) of k(x), and let again σ be the

relative Frobenius automorphism of k|k. Let us then prolong σ first to k(x)

via σ(x) := x, and let us fix any automorphism of k(x)|k(x) which restricts

to σ; let us denote this automorphism again by σ. Moreover, let us fix an

injection of k(E) into k(x) over k(x).

We now consider the total quotient ring of the scheme Vk, which is

isomorphic to

k(E)⊗k(x) σ(k(E))⊗k(x) · · · ⊗k(x) σn−1(k(E)) .
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By Condition 2.7 for i = 1, . . . , n − 1, the extension σi(k(E))|k(x) is

ramified at σi(R), but for any j = 0, . . . , i− 1, the extension σj(k(E))|k(x)

is unramified at σi(R), thus the extension k(E)σ(k(E)) · · ·σi−1(k(E))|k(x)

in k(x) is also unramified at σi(R). Thus σi(k(E)) is not contained in

k(E)σ(k(E)) · · ·σi−1(k(E)). It follows therefore by induction that the

extension k(E)σ(k(E)) · · ·σn−1(k(E))|k(x) in k(x) has degree 2n. Thus

the total quotient ring of Vk is isomorphic to the composite

k(E)σ(k(E)) · · ·σn−1(k(E)) in k(x) and therefore a field. We see that Vk is

reduced and irreducible, thus V is geometrically reduced and geometrically

irreducible. 2

Proposition 4.10 Let us still assume that Condition 2.7 is satisfied, let C

be the curve which is birational to V , and let π : C −→ V be a birational

morphism. Then

a) The genus of C is ≤ (2n− 1) · (2n − 1).

b) C(k) contains at most n · 2n+2 points which map to singular points under

the birational morphism π : C −→ V .

Proof. By a general result on elementary abelian extensions (see e.g. [KR89])

we have

g(C) =
∑

L

g(L) ,

where L runs over all subextensions of k(C)|k(x) of degree 2. We show below

that the genus of a function field L as in the sum is always ≤ 2n− 1. This

implies that g(C) ≤ (2n− 1) · (2n − 1).

To show the claim on the subfields L we proceed with a case distinction.

Let q be even. By Artin-Schreier theory every subfield L of k(x)|k(x) of

degree 2 corresponds to a 1-dimensional subspace of the F2-vector space

k(x)/P(k(x)), where P is the Artin-Schreier operator.

If now k(E) corresponds to 〈f〉, where f is the residue class of some

f ∈ k(x), then each field L as in the sum corresponds to 〈a0f + a1σ(f) +

· · ·+ an−1σn−1(f)〉 for a uniquely defined tuple (a0, . . . , an−1) ∈ Fn
2 − {0}.

Let first j(E) = 0. In this case the extension k(E)|k(x) is ramified at one

place, and k(E) corresponds to some space 〈f〉, where f is either a polyno-

mial of degree 3 or of the form g
(x−λ)3

for λ ∈ k and deg(g) = 3.

Using [Sti93, Proposition III.7.8] one sees: If L is any field as in the sum,

then L|k(x) is ramified at at most n places (this is also immediately obvious),

and the corresponding discriminant exponents are all 4. This implies that

the genus of L is ≤ 2n− 1.

Let now j(E) 6= 0. In this case k(E)|k(x) is ramified at 2 places, and k(E)

corresponds to 〈f〉, where f is the sum of two distinct polynomials f1, f2
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such that each of these polynomials is either x or 1
x−a for some a ∈ k. Now

each subfield L as in the sum is ramified over at most 2n places and the

different exponents are all 2. Again the genus of L is ≤ 2n− 1.

Let q be odd. In this case k(E)|k(x) is (tamely) ramified at 4 places. If thus

L is as in the sum, L|k(x) is ramified at at most 4n places. Thus the genus

of L is ≤ 2n− 1.

We come to b). Let S be the set of points of P1(k) over which one of

the coverings σi(E) −→ P1
k

is ramified. Using the fact that a morphism

obtained from an étale morphism via base change is étale we obtain: The

canonical morphism V −→ P1
k is étale outside S. This implies that V is

smooth outside the preimage of S, and the birational morphism π : C −→ V

is an isomorphism outside the preimage of S. With other words: All points

in C(k) which map to singular points of V are contained in the preimage of

S.

As the covering C −→ P1
k has degree 2n, the preimage of the set S has

at most #S · 2n ≤ 4n · 2n elements. 2

Proposition 4.11 Let k = Fq, and let n ≥ 2 and log2(q) ≥ 7n. Then

under Condition 2.7,

#{P ∈ E(K) | ϕ(P ) ∈ P1(k)} = #V (k) ≥
1

2
· (q + 1) .

Proof. By the above propositions and the Hasse-Weil bound we have

#V (k) ≥ q+1−2·(2n−1)·(2n−1)·q
1
2−n·2n+2+1 ≥ q+1−n·2n+2 ·(q

1
2 +1) .

Now, q
1
2 + 1 ≤ 2 · q+1

q
1
2

and thus

n·2n+2·(q
1
2 +1) ≤ 2

n
2 ·

2n+3

q
1
2

·(q+1) =
2

3
2
n+4

q
1
2

·
q + 1

2
≤

2
7
2
n

q
1
2

·
q + 1

2
=

(27n

q

) 1
2 ·

q + 1

2
.

By assumption this is ≤ q+1
2 and thus #V (k) ≥ q+1

2 . 2

4.4 The role of the summation polynomials

Let the hypersurface H = Hn+1 of (P1
k)

n+1 be defined as in Section 3.

By applying the scalar restriction functor, we obtain:

ResK
k (H) −→ ResK

k ((P1
K)n+1) ≃ (ResK

k (P1
K))n+1 .

Via base change to K one sees immediately that we have a closed immersion.
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Let X be the scheme-theoretic preimage of ResK
k (H) in (P1

k)
n×ResK

k (P1
K)

under the closed immersion ι × ι × · · · × ι × id : (P1
k)

n × ResK
k (P1

K) −→

ResK
k ((P1))n+1. This means by definition that we have a Cartesian diagram

X� _

��

� � // ResK
k (H)

� _

��
(P1

k)
n × ResK

k (P1
K)

� � // (ResK
k (P1

K))n+1 .

(5)

Note that – again under the obvious bijections – the elements of X(k) cor-

respond to the tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) with

(Q1, . . . , Qn, Q) ∈ H(K). The latter condition means of course that there

are P1, . . . , Pn, P ∈ E(K) with ϕ(Pi) = Qi, ϕ(P ) = Q and
∑

i Pi = P .

Notation 4.12 Let p1 : (P1
k)

n × ResK
k (P1

K) −→ (P1
k)

n and p2 : (P1
k)

n ×

ResK
k (P1

K) −→ ResK
k (P1

K) be the two projections.

Lemma 4.13 (p1)|X : X −→ (P1
k)

n is a flat covering of degree 2(n−1)·n.

Proof. By Proposition 3.2 c) the projection to the first n components

H −→ (P1
K)n is a flat covering of degree 2n−1. Therefore the induced map

ResK
k (H) −→ ResK

k ((P1
K)n) ≃ (ResK

k (P1
K))n is a flat covering of degree

2(n−1)·n. The map (p1)|X : X −→ (P1
k)

n is obtained from this map via base

change with ι× · · · × ι : (P1
k)

n −→ (ResK
k (P1

K))n. 2

Notation 4.14 Let G be the graph of −an : V n −→ ResK
k (E), where an is

the restriction of the addition morphism to V n. (Note the minus sign!)

As in Section 3 let for m ∈ N Nm be the kernel of the addition morphism

Em −→ E. One easily sees that ResK
k (Nm) is (as a subscheme of ResK

k (Em))

the kernel of the addition homomorphism on ResK
k (Em). Let now N :=

Nn+1. By considering Z-valued points for any k-scheme Z, one obtains

immediately:

Lemma 4.15 G is the scheme-theoretic intersection of V n ×ResK
k (E) and

ResK
k (N) in ResK

k (En+1) ≃ (ResK
k (E))n+1.

Proposition 4.16 There is a canonical surjective morphism G −→ X.

Moreover, if Condition 2.7 is satisfied, then X is geometrically irreducible.
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Proof. Let us consider the commutative diagram

G
� � //
� _

��

ResK
k (N)

� _

��

((RRRRRRRRRRRRR

X
� � //

� _

��

ResK
k (H)

� _

��

V n × ResK
k (E)

))RRRRRRRRRRRRRR

� � // (ResK
k (E))n+1

((RRRRRRRRRRRRR

(P1
k)

n × ResK
k (P1

K)
� � // (ResK

k (P1
K))n+1

with the obvious canonical morphisms. As by definition of X the right-lower

subdiagram (i.e. diagram (5)) is Cartesian, we have an induced morphism

G −→ X.

It suffices to prove the surjectivity on k-valued points. So let Q ∈ X(k).

As the map N −→ H is surjective, so is ResK
k (N) −→ ResK

k (H). Let

us consider Q as a point in ResK
k (H)(k), and let us fix a preimage P ∈

ResK
k (N)(k).

We claim that P lies in G(k), or with other words that the image of P

in (ResK
k (E))n+1(k) lies in (V n × ResK

k (E))(k). For this we have to check

that the image of P in ResK
k (P1

K))(k) lies in ((P1)n × ResK
k (P1

K))(k). But

this is obvious as the image is nothing but the point Q we started with.

Let now Condition 2.7 be satisfied. By Proposition 4.9 V is then ge-

ometrically reduced and geometrically irreducible, thus so is V n, which is

isomorphic to the graph G. As the map G −→ X is surjective, X is then

also geometrically irreducible. 2

Let us now fix some Q ∈ P1(K). Following our notation, let Q⊚ be the

corresponding k-rational point of ResK
k (P1

K). Let XQ⊚
be the fiber of X at

Q⊚, that is, we have the Cartesian diagram

XQ⊚

� � //
� _

��

X� _

��
(P1

k)
n � � //

��

(P1
k)

n × ResK
k (P1

K)

��
Spec(k) � � Q⊚ // ResK

k (P1
K) .

Then we have the following connection with the decomposition problem:
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Proposition 4.17 As a subscheme of (P1
k)

n, XQ⊚
is

V (S(1), . . . , S(n)), where the polynomials S(j) ∈ k[X1, Y1, . . . , Xn, Yn] are de-

fined as in Equation (2).

We show first:

Lemma 4.18 Let HQ ⊂ (P1
K)n be the restriction of H to (P1

K)n via the

closed immersion id× · · ·×id×Q : (P1
K)n ≃ (P1

K)n×KSpec(K) −→ (P1
K)n+1.

Then we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� _

��
(P1

k)
n � � // (ResK

k (P1
K))n ,

where the lower arrow is given by ι× · · · × ι.

Proof. We have ResK
k (Spec(K)) = Spec(k) and ResK

k (Q) = Q⊚. By Lemma

4.1 the defining Cartesian diagram

HQ
� � //

� _

��

H� _

��
(P1

K)n � � // (P1)n+1

gives rise to the Cartesian diagram

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(ResK

k (P1
K))n � � // (ResK

k (P1
K))n+1 ,

where the lower arrow is given by id× · · · × id×Q⊚ : (ResK
k (P1

K))n ≃

(ResK
k (P1

K))n ×k Spec(k) −→ (ResK
k (P1

K))n+1.

Now XQ⊚
is the pull-back of ResK

k (H) to (P1
k)

n under the map ι× · · · ×

ι × Q⊚ : (P1
k)

n ≃ (P1
k)

n ×k Spec(k) −→ (ResK
k (P1

K))n+1. This implies that

we have a Cartesian diagram

XQ⊚

� � //
� _

��

ResK
k (HQ)

� � //
� _

��

ResK
k (H)

� _

��
(P1)n

k
� � // (ResK

k (P1
K))n � � // (ResK

k (P1
K))n+1 .

2
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We come to the proof of Proposition 4.17.

By Lemma 4.18 and Lemma 4.2 we have a commutative diagram

XQ⊚ � q

""EE
EE

EE
EE

EE

∼ // Res
(P1

K)n

(P1
k)n (HQ)

xxrrrrrrrrrr

(P1
k)

n ,

where the arrow to the left is the structural morphism, which of course is

then also a closed immersion.

To establish the result we thus have to show that as a closed subscheme

of (P1
k)

n, Res
(P1

K)n

(P1
k)n (HQ) is equal to V (S(1), . . . , S(n)).

Let now Sϕ,n+1 be the same summation polynomial as in subsection 2.1

(recall that the (n + 1)th summation polynomial with respect to ϕ is only

unique up to multiplication by a non-trivial constant). Also, let b1, . . . , bn

be the fixed k-basis of K from subsection 2.1. Note that b1, . . . , bn is then

also a basis of the free k[x1, . . . , xn]-module K[x1, . . . , xn]. Moreover, let

S′ := Sϕ,n+1(X1, Y1, . . . , Xn, Yn, Q) be the polynomial obtained by inserting

the same coordinates of Q = ϕ(P ) into the summation polynomial as in 2.1

(again these are only unique up to multiplication by a non-trivial constant).

We now prove the result by restriction to affine parts of (P1
k)

n.

Let for the moment Xi,1 := Xi and Xi,2 := Yi. Moreover, let for some

multihomogeneous polynomial F ∈ k[X1, Y1, . . . , Xn, Yn] UF := (P1
k)

n −

V (F ) be the corresponding open subscheme.

One can now show that for any a ∈ {1, 2}n, the restrictions of both

schemes to UX1,a1
∩UX2,a2

∩ · · · ∩UXn,an
are equal; and this implies that the

schemes are equal. For notational convenience we consider in the following

the case of a = (2, . . . , 2) (“dehomogenization with respect to Y1, . . . , Yn”);

the other cases can be established in exactly the same way.

Let s(x1, . . . , xn) := S′(x1, 1, x2, 1, . . . , xn, 1) ∈ K[x1, . . . , xn]. Then

HQ ∩ An
k ⊆ An

k = Spec(k[x1, . . . , xn]) corresponds to the quotient ring

k[x1, . . . , xn]/(s) of k[x1, . . . , xn].

As the formation of the Weil restriction commutes with base-change

on the base, we have (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k = Res
An

K
An

k
(HQ ∩ An

K) as closed

subschemes of An
k . A defining system of polynomials for Res

An
K

An
k

(HQ ∩ An
K)

can be derived via the well-known method to obtain defining equations for

Weil restrictions of affine schemes over rings (see example [Die01, Chapter

1] or the proof of [BLR80, §7.6., Theorem 4]):

Let s(1), . . . , s(n) ∈ k[x1, . . . , xn] be defined by the equation
∑

j

bj s(j) = s .
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Then Res
An

K
An

k
(HQ ∩ An

K) = Spec(k[x1, . . . , xn]/(s(1), . . . , s(n))) =

V (s(1), . . . , s(n)) ⊂ An
k . But the s(j) are exactly the dehomogenizations

of the polynomials S(j), and thus (XQ⊚
) ∩ An

k = (Res
(P1

K)n

(P1
k)n (HQ)) ∩ An

k =

Res
An

K
An

k
(HQ∩An

K) = V (s(1), . . . , s(n)) = V (S(1), . . . , S(n))∩An
k as subschemes

of An
k . 2

4.5 Determination of non-zero-dimensional fibers

For the analysis of the algorithm we are interested in the number of points

Q ∈ P1(K) for which the fiber XQ⊚
= p−1

2 (Q⊚) is not zero-dimensional.

For this we first consider a base change to K, such that XK is a closed

subscheme of (P1
K)n × (P1

K)n, and we perform explicit computations in the

Chow ring of (P1
K)n×(P1

K)n. We identify for notational reasons (P1)n×(P1)n

componentwise with
∏n

i=1 Proj(Z[X1,i, Y1,i]) ×
∏n

i=1 Proj(Z[X2,i, Y2,i]), and

let hℓ,i be the class of Xℓ,i in the Chow ring of (P1
K)n × (P1

K)n.

Lemma 4.19 The class of XK in CH((P1
K)n×(P1

K)n) is 2(n−1)·n
∏n

i=1(h1,1+

· · ·+ h1,n + h2,i).

Proof. XK is defined inside (P1
K)n × (P1

K)n by the polynomials

Fj := Sϕ,n+1(X1,1, Y1,1, . . . , X1,n, Y1,n, X2,j , Y2,j)

for j = 1, . . . , n. One can easily see with this explicit description that for all

ℓ = 2, . . . , n V (F1, . . . , Fℓ−1) meets V (Fℓ) properly.

Indeed, let C be an irreducibility component of V (F1, . . . , Fℓ−1). Then

C = C ′× (P1
K)n−ℓ+1 for some C ′ ⊆ (P1

K)n× (P1
K)ℓ−1. Let (Q1, Q2) ∈ C ′(K),

where Q1 ∈ (P1)n(K) and Q2 ∈ (P1)ℓ−1(K). Now there are at most 2n−1

points in Q3 ∈ P1(K) with Fℓ(Q1, Q3) = 0. Choose some Q3 ∈ P1(K) which

is distinct from these points, and choose Q4 ∈ (P1)n−ℓ(K) arbitrarily. Then

(Q1, Q2, Q3, Q4) is a K-valued point of C which does not lie in V (Fℓ)(K).

By Axiom A7 on intersection theory in [Har77, Appendix A] we conclude

that [XK ] = [V (F1)] · · · [V (Fn)] in the Chow ring of (P1
K)n × (P1

K)n. More-

over, [V (Fj)] = 2n−1(h1,1 + · · ·+ h1,n + h2,j). This gives the statement. 2

Lemma 4.20 The map (p2)|X is surjective.

Proof. There are two possible ways to prove this statement:

First, by the previous lemma and Lemma 4.6 we have ((p2)K)∗([XK ]) =

n! · 2(n−1)·n, thus (p2)K(XK) is equal to the ambient space
∏n

i=1 Proj(K[X2,i, Y2,i]).

Second, Let Q = (Q1, . . . , Qn) ∈
∏n

i=1 Proj(K[X2,i, Y2,i])(K). Then the

geometric fiber XQ is the subscheme of
∏n

i=1 Proj(K[X1,i, Y1,i]) defined by
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Fi(X1,1, Y1,n, . . . , X1,n, Y1,n, Qi) for i = 1, . . . , n. We see in particular that

the fiber is never empty. More precisely, if it is zero-dimensional then its

degree is n! · 2(n−1)·n. 2

Remark 4.21 From the fact that (p2)|X is surjective one can easily deduce

that the map an : V n −→ ResK
k (E) is also surjective.

Let now qi :
∏n

i=1(Proj(K[X1,i, Y1,i])) −→ Proj(K[X1,i, Y1,i]) be the pro-

jection to the ith component.

For some Q ∈
∏n

i=1(Proj(K[X2,i, Y2,i]))(K) the geometric fiber XQ (which

is contained in
∏n

i=1 Proj(K[X1,i, Y1,i])) is zero-dimensional if and only if for

no i = 1, . . . , n the image of XQ under qi is equal to

Proj(K[X1,i, Y1,i]).

Let Ri ∈ K[X1,i, Y1,i, X2,1, Y2,1, . . . , X2,n, Y2,n] be the multigraded re-

sultant of F1, . . . , Fn with respect to the variables X1,1, Y1,1, . . . , X1,i−1,

Y1,i−1, X1,i+1, Y1,i+1, . . . , X1,n, Y1,n. Let Q = (Q1, . . . , Qn) ∈
∏n

i=1 Proj(K[X2,i, Y2,i])(K). Then qi(XQ) = Proj(K[X1,i, Y1,i]) if and only

if Ri(Xi, Yi, Q1, . . . , Qn) = 0. Thus the geometric fiber XQ is zero-dimensional

if and only if for all i = 1, . . . , n Ri(Xi, Yi, Q1, . . . , Qn) is non-trivial.

Note now that not all fibers are non-zero-dimensional because X has

dimension n (see Lemma 4.13) and (P1
K)n has dimension n too. Thus the

polynomials R1, . . . , Rn are all non-trivial.

Lemma 4.22 Each polynomial Ri has multidegree (n! · 2(n−1)·n, (n − 1)! ·

2(n−1)·n, . . . , (n− 1)! · 2(n−1)·n).

Proof. The polynomials F1, . . . , Fn have multidegree (2n−1, . . . , 2n−1) ∈

Nn−1 with respect to the variables under consideration. By Lemma 4.7

the corresponding generic resultant is homogeneous in the coefficients of

each of the polynomials of degree (n− 1)! · 2(n−1)2 . Now for j = 1, . . . , n, Fj

has degree 2n−1 with respect to X2,j , Y2,j , and these variables do not occur

in Fℓ for ℓ 6= j. This implies that the degree of Ri with respect to X2,j , Y2,j

is (n − 1)! · 2(n−1)2 · 2n−1 = (n − 1)! · 2(n−1)·n. Moreover, each polynomial

Fℓ has degree 2n−1 with respect to X1,i, Y1,i and therefore the degree of Ri

with respect to X1,i, Y1,i is (n− 1)! · 2(n−1)2 · n · 2n−1 = n! · 2(n−1)·n. 2

Let us now for every i = 1, . . . , n fix some non-trivial coefficient Ci of

Ri regarded as a polynomial in K[X2,n, Y2,n, . . . , X2,n, Y2,n][X1,i, Y1,i]. Then

clearly the points Q ∈
∏n

i=1

∏

Proj(K[X2,i, Y2,i]) for which the fiber XQ is

not zero-dimensional are contained in

n
⋃

i=1

V (Ci) ⊆ (P1
K)n .

35



Let us fix some i = 1, . . . , n. Then V (Ci) is an effective Cartier divisor of

multidegree ((n−1)!·2(n−1)·n, . . . , (n−1)!·2(n−1)·n) in
∏n

i=1 Proj(K[X2,i, Y2,i]),

and (p2)
−1
K (V (Ci)) is an effective Cartier divisor of multidegree

(0, . . . , 0, (n− 1)! · 2(n−1)·n, . . . , (n− 1)! · 2(n−1)·n) in (P1
K)n × (P1

K)n.

It follows that

[XK ] · [(p2)
−1
K (V (Ci))] =

(n− 1)! · 22(n−1)·n · (

n
∏

i=1

(h1,1 + · · ·+ h1,n + h2,i)) · (h2,1 + · · ·+ h2,n)

in CH((P1
K)n × (P1

K)n). With Lemma 4.6 this implies that

((p1)K)∗([XK ] · [(p2)
−1
K (V (Ci))])

= (n− 1)! · 22(n−1)·n · n · (h1,1 + · · ·+ h1,n)

= n! · 22(n−1)·n · (h1,1 + · · ·+ h1,n) .

(6)

Assumption 4.23 Let us from now on assume that Condition 2.7 is satis-

fied.

Notation 4.24 Let k = Fq (such that K = Fqn).

Recall that X is now geometrically irreducible (Proposition 4.16). Clearly

XK is not contained in (p2)
−1
K (V (Ci)) (because otherwise (p2)K(XK) would

be contained in V (Ci), contradicting the surjectivity of p2). Thus we have

[XK ] · [(p2)
−1
K (V (Ci))] = [XK ∩ (p2)

−1
K (V (Ci))] by Axiom A7 on intersection

theory in [Har77, Appendix A]. As the map (p1)K : XK −→
∏n

i=1 Proj([X1,i, Y1,i])

is finite and flat (cf. Lemma 4.13), the dimension of (p1)K(XK ∩Ci) is equal

to the dimension of XK ∩ Ci. With (6) we conclude:

Lemma 4.25 (p1)K(XK ∩Ci) (with the induced reduced scheme structure)

is a reduced effective Cartier divisor of
∏n

i=1 Proj([X1,i, Y1,i]) whose multi-

degree is componentwise ≤ (n! · 22(n−1)·n, . . . , n! · 22(n−1)·n).

The subscheme
n
⋃

i=1

n−1
⋃

j=0

σj((p1)K(XK ∩ Ci))

of
∏n

i=1 Proj([X1,i, Y1,i]) is Gal(K|k)-invariant. It thus descends to a sub-

scheme of (P1
k)

n; let B be this scheme.

Lemma 4.26

a) B is a reduced effective Cartier divisor whose multidegree is component-

wise ≤ (n2 · n! · 22(n−1)·n, . . . , n2 · n! · 22(n−1)·n).
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b) Let Q ∈ (P1(k))n − B(k), and let Q′ be any preimage of Q under p1.

Then the fiber Xp2(Q′) is zero-dimensional.

c) There are at most n3 · n! · 22(n−1)·n · (q + 1)n−1 points in B(k).

Proof. Let Ai be a multihomogeneous polynomial defining (p1)K(XK ∩Ci).

Then B is V (
∏n−1

j=0 σj(A1 · · ·An))red. The polynomial in question has a

multidegree which is componentwise ≤ (n2 ·n!·22(n−1)·n, . . . , n2 ·n!·22(n−1)·n).

Statement b) follows immediately from the definition of B.

Statement c) follows from a) and the following lemma. 2

Lemma 4.27 Let H be an effective Cartier divisor of multidegree d in

(P1
k)

n. Then

#H(k) ≤ (
n

∑

i=1

di) · (q + 1)n−1 .

Proof. It clearly suffices to show the result under the condition that all

entries of the multidegree are positive.

We proceed with induction by n. For n = 1 the claim is that #H(k) ≤

d1, and this is surely correct.

Now let H be defined by the polynomial F (X1, Y1, . . . , Xn, Yn) ∈

k[X1, Y1, . . . , Xn, Yn]. Let us consider the projection to the first n−1 compo-

nents (P1
k)

n −→ (P1
k)

n−1 and the induced morphism H −→ (P1
k)

n−1. Now for

every point P = (P1, . . . , Pn−1) ∈ (P1
k)

n−1(k) for which

F (P1, . . . , Pn−1, Xn, Yn) does not vanish, the fiber has degree dn, thus in par-

ticular it contains at most dn k-rational points. Let now C be a non-trivial

coefficient of F regarded as a polynomial in k[X1, Y1, . . . , Xn−1, Yn−1][Xn, Yn].

Then all points P ∈ (P1
k)

n−1(k) for which F (P1, . . . , Pn−1, Xn, Yn) vanishes

are contained in V (C). Now C has multidegree (d1, . . . , dn−1), and thus

#V (C)(k) ≤ (
∑n−1

i=1 di) · (q + 1)n−2 by induction. We conclude:

#H(k) ≤ dn · (q + 1)n−1 + #V (C)(k) · (q + 1)

≤ dn · (q + 1)n−1 + (
∑n−1

i=1 di) · (q + 1)n−1

= (
∑n

i=1 di) · (q + 1)n−1

2

Given an element P ∈ E(K), there is a ϕ-isolated decomposition of

P if and only if the fiber Xϕ(P )⊚
contains an isolated k-rational point

(Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈ E(K) with ϕ(Pi) = Qi

and
∑

i Pi = P . This is in particular the case if the fiber is 0-dimensional

and contains such a k-rational point.
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We want to derive a lower bound on the number of such elements

P ∈ E(K).

In [Die09], among other things we study the complexity of the elliptic

curve discrete logarithm problem restricted to curves over extension fields

with a fixed extension degree n. In preparation for this, we now proceed a

bit more generally:

Given any subset M of { (P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i =

1, . . . , n }, we want to derive a lower bound on the number of elements

P ∈ E(K) such that the fiber Xϕ(P )⊚
is zero-dimensional and contains a

k-rational point (Q1, . . . , Qn) such that there exist P1, . . . , Pn ∈ E(K) with

ϕ(Pi) = Qi and
∑

i Pi = P .

Let us for this consider the commutative diagram of sets of k-valued

points

G(k)
ρ // X(k)

(p1)|X
��

V n(k)

γ

OO

τ //
∏n

i=1 Proj(k[X1,i, Y1,i])(k) ,

where the map γ : V (k) −→ G(k) is induced by the graph morphism,

that is, it is explicitly given by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−
∑

i Pi), the

map ρ : G(k) −→ X(k) is induced by the morphism G −→ X defined in

Proposition 4.16, and the map τ : V n(k) −→
∏n

i=1 Proj(k[X1,i, Y1,i])(k) is

induced componentwise by the canonical morphism in diagram (3).

Note that under the scalar restriction functor and in the context of the

index calculus algorithm for the Theorem, V (k) corresponds to the factor

base F = {P ∈ E(K) | ϕ(P ) ∈ P1(k)}, G(k) corresponds to the set of tuples

(P1, . . . , Pn, P ) with ϕ(Pi) ∈ P1(k) and P = −
∑

i Pi, and X(k) corresponds

to the set of tuples (Q1, . . . , Qn, Q) with Qi ∈ P1(k) and Q ∈ P1(K) and

Sn+1(Q1, . . . , Qn, Q) = 0. The map γ corresponds then to the map which is

again given by (P1, . . . , Pn) 7→ (P1, . . . , Pn,−
∑

i Pi), and the maps ρ and τ

correspond to the componentwise application of ϕ.

Let M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n},

and let M⊚ be the corresponding subset of V n(k). Then every element

P ∈ E(K) such that ϕ(P )⊚ ∈ ResK
k (P1

K)(k) is the image under p2 of an

element in (ρ◦γ)(M⊚)−p−1
1 (B(k)) is an element as desired. (Indeed, if P is

such an element, first the fiber Xϕ(P )⊚
is zero-dimensional by Lemma 4.26

b), and second there exist P1, . . . , Pn ∈ M with ϕ(P1 + · · · + Pn) = ϕ(P ),

thus P1 + · · ·+ Pn = ±P .)

We are thus interested in the cardinality of the set

p2

(

(ρ ◦ γ)(M⊚)− p−1
1 (B(k))

)

.
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For this we first derive a lower bound on

(ρ ◦ γ)(M⊚)− p−1
1 (B(k)) .

The image of this set in
∏n

i=1 Proj(k[X1,i, Y1,i])(k) is contained in

τ(M⊚)−B(k) .

As τ corresponds to the componentwise application of ϕ, we have #τ(M⊚) ≥
1
2n #M⊚ = 1

2n #M .

With Lemma 4.26 c) we obtain:

#((ρ ◦ γ)(M⊚)− p−1
1 (B(k)))

≥ #(τ(M⊚)−B(k))

≥ #M
2n − n3 · n! · 22(n−1)·n · (q + 1)n−1 .

(7)

Now if an element Q in the set p2((ρ◦γ)(V n(k))−p−1
1 (B(k))) is given, the

fiber of p2(Q) under p2 is zero-dimensional, and thus its degree is n! ·2(n−1)·n

(see the proof of Lemma 4.20). We therefore have the following proposition.

Proposition 4.28 Let

M ⊆ {(P1, . . . , Pn) ∈ E(K)n | ϕ(Pi) ∈ P1(k) for all i = 1, . . . , n} .

Then the number of elements P ∈ E(K) such that there exists a ϕ-isolated

decomposition (P1, . . . , Pn) of ±P with P1, . . . , Pn ∈M is

≥
#M − n3 · 22n2−n · (q + 1)n−1

n! · 2n2 .

We now apply this proposition with M⊚ = V (k). By Proposition 4.11

for log2(q) ≥ 7n and n ≥ 2 we have #V (k) ≥ q+1
2 , thus #V n(k) ≥ (q+1)n

2n .

With Proposition 4.28 we obtain that the number of elements P ∈ E(K)

such that there exist P1, . . . , Pn ∈ E(K) with ϕ(Pi) ∈ P1(k) and
∑

i Pi = P

is

≥
(q + 1)n−1

n! · 2n·(n+1)
· (q + 1− n3 · 22n2

) .

Let now ǫ > 0. Then for n large enough this is

≥
qn−1

n! · 2n·(n+1)
· (q −

1

2
· 2(2+ǫ)·n2

) .

Then for log2(q) ≥ (2 + ǫ) · n2 this is

≥
qn

n! · 2n·(n+1)+1
.
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Again for n large enough and log2(q) ≥ (2 + ǫ) · n2 this is

≥ 2 · qn− 1
2 .

We therefore have:

Proposition 4.29 Let ǫ > 0. Then for n large enough and (2 + ǫ) · n2 ≤

log2(q) there are at least 2 · qn− 1
2 elements in E(K) which have ϕ-isolated

decompositions.

And this implies Proposition 2.9, the main result for the analysis of the

decomposition algorithm in subsection 2.1.
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Partie. Publication Mathématiques, 11, 1961.
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