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Abstract

We continue our study on the elliptic curve discrete logarithm prob-
lem over finite extension fields. We show, among others, the following
results:

For sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N

with ni −→ ∞ and ni

log(qi)2
−→ 0 for i −→ ∞, the discrete logarithm

problem in the groups of rational points of elliptic curves over the fields
Fq

ni
i

can be solved in subexponential expected time (qni
i )o(1).

Let a, b > 0 be fixed. Then the problem over fields Fqn , where q is a
prime power and n a natural number with a · log(q)1/3 ≤ n ≤ b · log(q),
can be solved in an expected time of eO(log(qn)3/4).

1 Introduction

In our previous work [Die11b] we have shown that there exist sequences of

finite fields over which the elliptic curve discrete logarithm problem can be

solved in subexponential expected time in the bit-length of the input.

In this work, we strengthen the results from [Die11b]. We show that for

larger classes of ground fields the problem can still be solved in subexpo-

nential expected time.

Recall that the main result from [Die11b] is as follows.

Theorem 1 The discrete logarithm problem in the groups of rational points

of elliptic curves over finite fields Fqn can be solved in an expected time of

eO(max(log(q), n2)) .

Here and in the following, q is always a prime power and n a natural number.

It follows from this theorem that for any two sequences (qi)i∈N and

(ni)i∈N of prime powers and natural numbers with ni −→∞ and ni
log(qi)

−→ 0

for i −→∞, the discrete logarithm problem in the groups of rational points
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of elliptic curves over the fields Fq
ni
i

can be solved in an expected time of

(qni
i )o(1).

The main result of this work is the following stronger theorem.

Theorem 2 The discrete logarithm problem in the groups of rational points

of elliptic curves over finite fields Fqn can be solved in an expected time of

eO(max(log(q), n·log(q)1/2, n3/2)) .

Note here that

max(log(q), n · (log(q))1/2, n3/2) =











log(q) for n ≤ log(q)1/2

n · (log(q))1/2 for log(q)1/2 ≤ n ≤ log(q)

n3/2 for log(q) ≤ n .

Theorem 2 gives the following results.

1. Let sequences of prime powers (qi)i∈N and natural numbers (ni)i∈N with

qi −→ ∞ and ni
log(qi)2

−→ 0 for i −→ ∞ be given. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

the fields Fq
ni
i

can be solved in an expected time of

(qni
i )o(1) .

2. Let β ∈ [12 , 1] and a, b > 0 be fixed. Let

α :=
1

2β + 1
and γ := 1− 1

2

1

β + 1
=
β + 1

2

β + 1
.

Then the discrete logarithm problem in the groups of rational points of

elliptic curves over finite fields Fqn with

a · log(q)α ≤ n ≤ b · log(q)β (1)

can be solved in an expected time of

eO(log(qn)γ) .

Note that α ≤ 1
2 (with equality if β = 1

2), and γ is maximal if α = β = 1
2 ,

and then it is equal to 2
3 .

As a special case we obtain that for a, b > 0 the discrete logarithm prob-

lem in the groups of rational points of elliptic curves over finite fields Fqn

with

a · log(q)1/3 ≤ n ≤ b · log(q)
can be solved in an expected time of eO(log(qn)3/4).
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3. Let β ∈ [1, 2) and a, b > 0 be fixed. Let

α :=
2− β
3β

and γ :=
3

2
· β

1 + β
.

Then the discrete logarithm problem in the groups of rational points of

elliptic curves over finite fields Fqn with

a · log(q)α ≤ n ≤ b · log(q)β

can be solved in an expected time of

eO(log(qn)γ) .

The first statement follows immediately from Theorem 2.

The derivation of the second statement from Theorem 2 is as follows:

We have β =
γ− 1

2
1−γ and α = 1

γ − 1.

The first inequality in (1) is equivalent to n ≥ a · log(q)
1
γ
−1

, and this is

equivalent to 1
aγ · (n log(q))γ ≥ log(q).

The second inequality is equivalent to b1−γ · log(q)γ− 1
2 ≥ n1−γ , and this

is equivalent to b1−γ · (n log(q))γ ≥ n · log(q)1/2.
Additionally, except if q = 2, we have log(q) ≥ log(q)β ≥ 1

b · n and thus

n · log(q)1/2 ≥ 1
b · n3/2.

The results now follow with Theorem 2.

We now show how the third statement follows from Theorem 2. We have

β = 2γ
3−2γ and – as above – α = 1

γ − 1.

For the range a · log(q)α ≤ n ≤ log(q), the result follows from the second

point, so we consider the range log(q) ≤ n ≤ b · log(q)β . We have n ≤
b · log(q)

2γ
3−2γ , that is, n

3
2
−γ ≤ b

3
2
−γ · log(q)γ . With other words: n

3
2 ≤

b
3
2
−γ · (n · log(q))γ .

As an application of Theorem 2 we now consider the discrete logarithm

problem in the groups of rational points of elliptic curves over finite fields

of a fixed characteristic p. We first remark that Theorem 2 does not give

a non-trivial result if q is set to p and n is set to the absolute extension

degree of the ground field. We therefore consider a factorization of the

absolute extension degree in the form mn, that is, we write the cardinality

of the ground field in the form pmn. We can then regard both m and n

as the extension degree. One sees that it is advantageous to regard n as

the extension degree provided that n ≤ m and m as the extension degree

otherwise. In this way one obtains:
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Theorem 3 Let p be a fixed prime number. Then the discrete logarithm

problem in the groups of rational points of elliptic curves over finite fields

Fpmn can be solved in an expected time of

eO(max(m,n,min(m·n1/2, n·m1/2))) .

Here we have

max(m, n, min(m · n1/2, n ·m1/2)) =



















m for n ≤ m1/2

n ·m1/2 for m1/2 ≤ n ≤ m
m · n1/2 for n1/2 ≤ m ≤ n

n for m ≤ n1/2 .

For any fixed prime number p, Theorem 3 gives the following results:

4. Let (mi)i∈N and (ni)i∈N withmi, ni −→∞ for i −→∞. Then the discrete

logarithm problem in the groups of rational points of elliptic curves over

the finite fields Fpmini can be solved in an expected time of

(pmini)o(1) .

5. Let α ≥ 3 and a, b > 0. Then the discrete logarithm problem in the

groups of rational points of elliptic curves over finite fields Fpmn with

m ≤ a · nα and n ≤ b ·mα

can be solved in an expected time of

eO(log(pmn)
1− 1

1+α ) .

Just as Statement 1 above, Statement 4 is again immediate.

So we consider the last statement. Let α ≥ 3. Note first that 1− 1
1+α =

α
1+α = 1

1+ 1
α

. We have m1+ 1
α ≤ a1/α ·mn and therefore m ≤ a

1
1+α · (mn)

α
1+α .

Similarly, n ≤ a
1

1+α · (mn)
α

1+α . Moreover, 1 − 1
1+α ≥ 3

4 . Thus if n ≤ m,

then n ·m1/2 ≤ (mn)3/4 ≤ (mn)
α

1+α . Analogously, if m ≤ n, then m ·n1/2 ≤
(mn)

α
1+α .

Some more information on the results

We give here some more information on the precise meaning of the state-

ments above and similar statements throughout this article.

First, we choose some concrete representation of the “abstract input

instances” (elliptic curves E over finite fields K and elements a, b ∈ E(K)
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with a ∈ 〈b〉) by bit-strings. Every “abstract instance” is then given by

at least one and finitely many bit-strings. Concretely, we represent elliptic

curves by Weierstraß equations, as usual. We also choose some (uniform)

randomized model of computation with an appropriate complexity measure,

for example a usual randomized RAM model with logarithmic cost function

or a randomized Turing model.

For a function f from some infinite countable set S to R>0, we define the

sets O(f), Õ, o(f) and Poly(f) as usual (for the latter see also [Die11b]).

We note here that it makes no difference if S is a subset of N or not.

The assertion in Theorem 1 is then as follows: There exists a machine in

the given model and a constant C > 0 such that, if the machine is applied to

an instance of the elliptic curve discrete logarithm problem over a field Fqn ,

the expected running time is bounded by eC·max(log(q),n2). The assertions in

Theorem 2 and Theorem 3 are analogous. We stress that the expected value

concerns only the internal choices of the computation; there is no averaging

over input classes.

Statement 1 means the following: Let (qi)i∈N and (ni)i∈N be given as

indicated. Then there exists a randomized machine and a sequence (ǫi)i∈N
with ǫi −→ 0 for i −→ ∞ such that the expected running time of the

machine if applied to an instance over Fq
ni
i

is bounded by (qni
i )ǫi . Statement

4 is again analogous.

As usual, throughout this article we use the word “algorithm” instead of

“machine”. Also as usual, we use the word “algorithm” in an informal way

when we outline a computation.

Outline

Just as the algorithm in [Die11b], the algorithm for Theorem 2 is based on

the usual index calculus or relation generation and linear method. Again we

use multivariate polynomial systems over Fq to obtain relations. The main

conceptual difference between the new algorithm and the previous algorithm

is that we enlarge the factor base. This enlargement causes some difficulties

in the analysis of the algorithm, and in order to complete the analysis we

further modify the definition of the factor base. We also employ a new

algorithm to find decompositions. Otherwise the index calculus algorithm

in [Die11b] is not changed.

Below we outline a preliminary algorithm, and on the basis of this al-

gorithm, we discuss under various heuristic assumptions why one should be

able to obtain an expected running time of eO(max(log(q),n·log(q)1/2)). In the

course of this work, we will change the algorithm in various ways. Unfortu-

nately, even with a modified algorithm we cannot prove that one can obtain

the expected running time one might expect by heuristic considerations.
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Indeed, in odd characteristic we can only complete the analysis under the

condition that cn ≤ q for a suitable constant c > 0. In even characteristic

the situation is more fortunate and we can complete the analysis if nc ≤ q

for a suitable constant c > 0. This does however not lead to an improvement

over the result in Theorem 3 applied to fields of even characteristic.

The index calculus algorithm we employ has the same overall structure

as the one in [Die11b] (see subsection 2.3 of that work). The changes we

perform concern the definition of the factor base (Steps 4 and 5 of that

algorithm) and the relation generation (Step 6), where a new decomposition

algorithm is employed. Because the overall structure of the algorithm stays

the same, we will focus on the parts of the index algorithm which need to

be changed.

In the next section, we give the new algorithm for the constructions

leading to the definition of the factor base. In Section 3 we formulate a

decomposition problem adapted to the new situation and give an algorithm

to solve the problem. In the fourth and last section, we prove that under

suitable conditions on n and q the probability that a uniformly randomly

distributed point P ∈ E(Fqn) leads to a relation between P and factor base

elements is large enough. In the last part of this section, we indicate how

Theorem 2 can be obtained. Additionally, in an appendix we correct two

misprints in our previous work [Die11b].

Throughout the article we use the same notation as in our previous work,

with the exception that we now denote an affine defining polynomial for the

elliptic curve by f(x, y).

The application of the scalar restriction functor, that is, the formation

of Weil restrictions, is crucial in this work. Furthermore, many arguments

in this work are based on the consideration of tangent spaces. Background

information on these topics is given at the end of this section. The reader

should also be familiar with the first two sections of [Die11b]. Additionally,

we assume some familiarity with toric geometry and its application to solving

polynomial systems as given in [Ful93], [CLO05] and in particular in [Roj99].

A preliminary algorithm

The algorithm follows the usual “index calculus” strategy: After some pre-

liminary computations to determine the group structure, we fix a so-called

factor base, generate relations and finally solve the discrete logarithm prob-

lem via linear algebra.

Just as in [Die11b], the factor base is defined in an algebraic way, and

the relations are obtained by solving systems of multivariate polynomial

equations over Fq.

Let some instance of the problem with a prime power q, a natural number
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n ≥ 2 and an elliptic curve E/Fqn be given, where E is (as usual) given by

an affine Weierstraß equation in x and y with neutral element the point at

infinity.

The definition of the factor base and the relation generation are as fol-

lows:

Let m be some natural number at most n, which will be optimized later,

and let d := ⌈ nm⌉ and δ := dm− n.
We choose some d-dimensional vector subspace U of the Fq-vector space

Fqn and define the factor base by

F := {P ∈ E(Fqn) | x(P ) ∈ U} .

Furthermore, if n is not divisible by m (that is, δ 6= 0), we choose a (d− 1)-

dimensional vector subspace U ′ of U and set

F ′ := {P ∈ E(Fqn) | x(P ) ∈ U ′} .

Given some element P ∈ E(Fqn), we want to find a relation

P1 + · · ·+ Pm = P

with Pi ∈ F ′ for i = 1, . . . , δ and Pi ∈ F for i = δ+1, . . . ,m. The key idea is

again to find such relations by solving systems of polynomial equations over

Fq. One possibility to obtain such a system is via summation polynomials.

Recall that the (m + 1)th summation polynomial with respect to the

covering x|E : E −→ P1
Fqn

is an irreducible multihomogeneous polynomial

Sm+1 ∈ Fqn [X1, Y1, . . . , Xm+1, Ym+1] such that for P1, . . . , Pm+1 ∈ E(Fq),

P1 + · · · + Pm+1 = 0 if and only if sm+1(x|E(P1), . . . , x|E(Pm+1)) = 0; see

Proposition 2.1 and Section 3 of [Die11b]. The (m + 1)th affine summa-

tion polynomial with respect to x|E is the dehomogenization of this polyno-

mial with respect to Y1, . . . , Ym. This is a polynomial sm+1(x1, . . . , xm+1) ∈
Fqn [x1, . . . , xm+1].

We expand the variables (or coordinates) x1, . . . , xm over Fq with respect

to the basis. Then for i = 1, . . . , δ and i = δ + 1, . . . ,m we restrict the

resulting systems of coordinates to U ′ and U , respectively. In this way the

polynomial sm+1(x1, . . . , xm, x(P )) gives rise to a system of n polynomials

in n variables. The polynomial sm+1(x1, . . . , xm, x(P )) has degree 2m−1 in

each variable and therefore total degree at most m · 2m−1. Therefore each

polynomial in the system has degree at most m ·2m−1. It follows that “with

multiplicities” the system has at most (m · 2m−1)n = mn · 2(m−1)·n isolated

solutions over Fq. Here by an isolated solution we mean an isolated point of

the scheme defined by the system. (This can be seen by intersection theory

in Pn
Fq
, similarly to statement a) in Proposition 2.5 of [Die11b].)
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Now, with an algorithm by M. Rojas ([Roj99]), one can compute a list

of solutions of the system over Fq containing all isolated solutions over Fq

in an expected time of Poly(mn · 2n·(m−1) · log(q)) = Poly(emn · log(q)).
Let us assume that for varying P , most solutions over Fq of these systems

are indeed isolated. It is reasonable to estimate the size of F as roughly qd

and the size of F ′ as roughly qd−1. This indicates that the expected value

of relations obtained per try is in O( 1
m!).

Disregarding the possibility that some of the relations generated might be

linearly dependent, we need roughly qd relations. This indicates an expected

running time of

Poly(m! · enm+log(q)·d) = Poly(enm+log(q)· n
m ) .

for the relation generation part.

The expected running time for the linear algebra part is merely

Poly(elog(q)·d).
Now for m := min(⌈

√

log(q)⌉, n), we obtain, again on the basis of the

above heuristic arguments, a total expected running time of

Poly(emax(log(q),n·
√

log(q))) .

We stress again that we have used various heuristic assumptions. The

goal of the rest of this work is to modify the algorithm in such a way that we

can indeed prove the claimed expected running time for large input classes.

As already stated, we are however not able to establish the desired expected

running time for all instances of the problem.

Weil restrictions and the scalar restriction functor

Let us recall the definition of the scalar restriction functor with respect to

a finite field extension.

Let K|k be a finite field extension. Now let X be a quasi-projective

K-scheme of finite type. Then a representing object of the contravariant

functor Z 7→ HomK(Z ×k K,X) from the category of k-schemes to the

category of sets is called the Weil restriction of X with respect to K|k.
We denote the representing k-scheme by Reskk(X); as usual we also fix a

corresponding natural transformation. A reformulation of the definition

is: The Weil restriction of X with respect to K|k is a k-scheme ResKk (X)

together with a morphism u : ResKk (X)K = ResKk (X)×kK −→ X satisfying

the following universal property: For any k-scheme and any K-morphism

α : ZK = Z ×k K −→ X there exists a unique k-morphism β : Z −→
ResKk (X) with α = u ◦ βK . We denote β by α⊚. Now, the formation of the
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Weil restriction defines a functor from the category of quasi-projective K-

schemes to the category of quasi-projective k-schemes; this functor is called

the scalar restriction functor. Furthermore, if X a group scheme, so is the

Weil restriction in an obvious way.

In this work, we very often use Weil restrictions of the affine line A1
K =

Spec(K[x]). Note here that ResKk (A1
K)(k) ≃ A1(K) = K. One sees easily

the following: Let b1, . . . , bn be a k-basis ofK. Then An
k = Spec(k[x1, . . . , xn])

together with the universal morphism An
K −→ A1

K , given on Z-valued points

for any K-scheme Z by P 7→ x1(P )b1 + · · ·+ xn(P )bn, is a Weil restriction

of A1
k with respect to K|k (as a group variety). The choice of a k-basis of

K of course corresponds to choosing a k-homomorphism K ≈ kn.
We would like to have an explicit and canonical description of the Weil

restriction of A1
k which does not depend on the choice of a basis. For this, let

us define for any finite dimensional k-vector space V the polynomial algebra

k[V ] in the usual way:

k[V ] :=
∞
⊕

i=0

V

⊗ i
sym

For some finite dimensional k-vector space V , let

Ak[V ] := Spec(k[V ∨]) ,

where V ∨ is the dual space of V . Now for any k-algebra A, we have

Ak[V ](A) ≃ Homk(V
∨, A) ≃ A ⊗k V in a natural way. Now, A ⊗k V is

a k-vector space and therefore in particular an abelian group. We obtain in

this way a commutative group structure on Ak[V ]. Clearly, Ak[V ](k) is iso-

morphic to (V,+) itself. The association V 7→ Ak[V ] gives rise to a covariant

functor from the category of finite dimensional vector spaces over k to the

category of affine group varieties over k. Here, an injective homomorphism

U −→ V gives a closed embedding Ak[U ] −→ Ak[V ], and in particular for a

vector subspace U of V , Ak[U ] is a group subvariety of Ak[V ].

As a special case of the preceding we have natural isomorphisms

Ak[K](A) ≃ A⊗kK for any k-algebra A. Therefore Ak[K] is in a natural way

a Weil restriction of A1
K with respect to K|k. We remark that the universal

morphism u : Ak[K] ×k K −→ A1
K is given as follows: Ak[K] ×k K is the

affine scheme defined by the K-algebra k[K∨]⊗kK ≃
⊕∞

i=0(K
∨)⊗symi⊗kK,

and the universal morphism corresponds to a homogeneous element of de-

gree 1 in the algebra, that is, to an element of K∨ ⊗k K. This vector space

is naturally isomorphic to the vector space of endomorphisms of K as a

vector space over k. The universal morphism is the element of K∨ ⊗k K

corresponding to the identity in this space.

We also use Weil restrictions with respect to flat coverings, that is, fi-

nite and flat morphisms. For this and also for other aspects of the scalar

restriction functor we refer to subsection 4.1 of [Die11b].
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Tangent spaces and ramification

We make frequent use of homomorphisms between tangent spaces to address

whether morphisms of schemes over fields are unramified at rational points.

For the convenience of the reader and because we could not find a suitable

reference, we make some general remarks here.

Let k be a field.

Let X be a k-scheme of finite type and P a k-rational point of X. De-

noting by κ(P ) the residue field at P , we have a canonical isomorphism

k ≃ κ(P ). We use the latter notation if we regard k as an OX,P -algebra.

The k-vector spaces ΩX,P⊗OX,P
κ(P ) andmP /m

2
P are canonically isomor-

phic; see [Har77, II, Proposition 8.7]. Either one of these spaces is called the

cotangent space at P . The Zariski tangent space or simply tangent space of

P in X is TP (X) := Homk(mP /m
2
P , k). The formation of the tangent spaces

behaves well under base change via a field extension over k. Let us note

here that it is important that P is a k-rational point. A special case which

is of importance in this work is: For any finite dimensional k-vector space V

we have a canonical isomorphism T0(Ak[V ]) ≃ V ; we identify these spaces.

Let now X be a smooth k-scheme. Then the tangent sheaf of X is

TX := Ω∨
X = HomOX

(ΩX ,OX). The canonical homomorphism

TX,P ≃ HomOX,P
(ΩX,P ,OX,P ) −→ HomOX,P

(ΩX,P , κ(P ))

≃ Homk(ΩX,P ⊗OX,P
κ(P ), k) ≃ TP (X)

induces a homomorphism of k-vector spaces

TX,P ⊗OX,P
κ(P ) −→ TP (X) .

As ΩX,P is (by assumption) a free OX,P -module, this homomorphism is an

isomorphism. We denote the image of t ∈ TX,P in TP (X) by t(P ).

Now letX and Y be arbitrary k-schemes of finite type, let f : X −→ Y be

a morphism of k-schemes and let P ∈ X. Then the local ring of P in its fiber

over f(P ) is OX,P /f
#(mY,f(P ))OX,P , and f is said to be unramified at P if

this local ring is a finite and separable κ(f(P ))-algebra. If f is unramified

at P then it is in particular quasi-finite at P , that is, P is isolated in its

fiber.

Let now P be a k-rational point of X. Then f is unramified at P if and

only if f#(mY,f(P )) generates the maximal ideal of OX,P . By Nakayama’s

lemma, this is the case if and only if the induced homomorphism between

cotangent spaces f∗ : mf(P )/m
2
f(P ) −→ mP /m

2
P is surjective. Therefore, f is

unramified at P if and only if the induced homomorphism between tangent

spaces f∗ : TP (X) −→ Tf(P )(Y ) is injective.
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2 The factor base

2.1 Some general thoughts

In [Die11b] we first described the algorithm, which is rather elementary, and

later presented the geometric background, involving in particular the role of

the Weil restriction of the elliptic curve with respect to Fqn |Fq.

This approach would also be possible here. However, we now present the

geometric background together with the description of the algorithm. The

main reason for this is that the conditions required for the definition of the

factor base are quite involved but closely related to geometric considerations.

We first make some remarks on the definition of the factor base in

[Die11b].

Let an instance with a non-trivial extension of finite fields Fqn |Fq and

an elliptic curve E over Fqn be given, where an affine part of E is given

by a Weierstraß equation in x and y with degree 2 in x. Let k := Fq and

K := Fqn .

Then in [Die11b], the factor base is defined as follows:

We fix a covering ϕ : E −→ P1
K of degree 2 with ϕ ◦ [−1] = ϕ satisfying

a certain condition (Condition 2.7 in [Die11b]). Then the factor base F is

the set

{P ∈ E(K) | ϕ(P ) ∈ P1(k)} . (2)

Now there exists a unique automorphism α of P1
k with ϕ = α ◦ x|E . The

factor base is then equal to

{P ∈ E(K) | x|E(P ) ∈ α−1(P1(k))} . (3)

A geometric description of the definition of the factor base in (2) is as follows:

Let ι = id⊚ : P1
k −→ ResKk (P1

k) be the morphism corresponding to the

identity on P1
K under the universal property of the Weil restriction. This

morphism is a closed immersion, it might be called the canonical immersion.

We define V by the diagram

V
� � //

��

ResKk (E)

ResKk (ϕ)
��

P1
k

� � ι // ResKk (P1
k)

(4)
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being Cartesian; cf. subsection 4.3 of [Die11b]. Then under the canonical

isomorphism E(K) ≃ ResKk (E)(k), the factor base F corresponds to V (k).

Recall here that as the morphism ϕ : E −→ P1
K is a flat covering of de-

gree 2, the morphism ResKk (ϕ) : ResKk (E) −→ ResKk (P1
K) and the induced

morphism V −→ P1
k are flat coverings of degree 2n.

From a geometric point of view, the equivalence of the two descriptions

of the factor base via (2) and (3) follows from the commutativity of the

diagram

V
� � //

��

ResKk (E)

ResKk (x|E)

��
ResKk (ϕ)

uu

P1
k

� � (α−1)⊚ //� s

ι
&&M

M

M

M

M

M

M

M

M

M

M

M

ResKk (P1
K)

ResKk (α)
��

ResKk (P1
K) .

Note here that by the universal property of the Weil restriction of P1
K with

respect to K|k, the immersions P1
k →֒ ResKk (P1

K) correspond exactly to the

automorphisms of P1
K (via α 7→ α⊚). Thus instead of varying the covering

ϕ : E −→ P 1
K in the construction of the factor base, we could also have

varied the immersion of P1
k into ResKk (P1

K).

2.2 The preliminary definition of the factor base

We now give some geometric background on the definition of the factor base

in the preliminary algorithm outlined in the introduction. We conclude this

subsection with a wish list on the geometric objects related to the definition

of the factor base. This then leads to a modification of the construction of

the factor base which is described in the next subsection.

Let Ea be the “affine part” of E, that is, Ea := x−1
|E (A1

K). Furthermore,

as already mentioned above, let m be some natural number at most n and

let d := ⌈ nm⌉ and δ := dm− n.
In the preliminary algorithm in the introduction we defined the factor

base as follows: We fix a d-dimensional k-vector subspace U of K, and we

set

F := {P ∈ Ea(K) | x(P ) ∈ U} .

We now give a geometric description. As mentioned in the introduction,

the inclusion U →֒ K gives rise to a closed immersion Ak[U ] −→ Ak[K],

and thus Ak[U ] is a group subvariety of Ak[K] = ResKk (A1
K). Defining
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Va ⊆ ResKk (E) by the diagram

Va
� � //

��

ResKk (Ea)

��
ResKk (x|Ea )

��
Ak[U ] �

� // Ak[K] ,

(5)

being Cartesian, the factor base corresponds to Va(k).

In the preliminary algorithm, we also have a (d−1)-dimensional k-vector

subspace U ′ of U , defining a subset F ′ of F . We define V ′
a analogously to Va

with Ak[U ] being substituted by Ak[U
′]. Then F ′ corresponds to V ′

a(k). As

the maps Va −→ A and V ′
a −→ A′ are finite flat, every irreducible component

of Va has dimension m and every irreducible component of V ′
a has dimension

m− 1; see [Har77, III, Corollary 9.6].

Now, we would like that the following conditions on Va and V ′
a are sat-

isfied:

1. The addition morphism (ResKk (E))m −→ ResKk (E) induces a dominant

morphism from every irreducible component of (V ′
a)

δ×V m−δ
a to ResKk (E).

2. There exists an (absolute) constant c > 0 such that Va(k) contains at

least c · qd points and V ′
a(k) contains at least c · qd−1 points.

Note that dim((V ′
a)

δ × V m−δ
a ) = n and therefore the statement in the first

item implies that the morphism (V ′
a)

δ × V m−δ
a −→ ResKk (E) is generically

finite.

With a randomized algorithm it is straightforward to construct in an

efficient way U and U ′ such that the second item is satisfied.

For d = 1, the morphism (V ′
a)

δ × V m−δ
a −→ ResKk (E) is surjective and

therefore if V ′
a and Va are irreducible, the first item is satisfied; see [Die11b,

Remark 4.21]. However, for d > 1, we cannot even give an example for which

we can prove that the first condition holds. For this reason, we modify the

definition of the factor base.

2.3 The essential modification

We now discuss the modification of the construction of the factor base.

We impose the following condition.

Condition 2.1 The point 0 ∈ P1
K is not a branch point of x|E : E −→ P1

K

and its preimage in E consists of two K-rational points.

Note that for qn ≥ 16, there exist at least 5 K-rational points on E,

so there exists a point in E(K) which is not a ramification point. In the

13



algorithm for the definition of the factor base, we first pass to a projectively

equivalent elliptic curve, also given in Weierstraß form with the point at

infinity being the neutral element, such that the condition is satisfied. We

then fix k-vector subspaces Ui of K of dimension d− 1 for i = 1, . . . , δ and

of dimension d for i = δ + 1, . . . ,m such that we have a decomposition

K =
m
⊕

i=1

Ui (6)

and such that some further conditions are satisfied; cf. subsection 2.5 below.

With

Fi := {P ∈ Ea(K) | x(P ) ∈ Ui − {0}} , (7)

we define the factor base as

F :=
m
⋃

i=1

Fi . (8)

Later, for P ∈ E(K), we search for a relation of the form

P1 + · · ·+ Pm = P

with Pi ∈ Fi.

We now apply the geometric considerations of the previous subsection

here. Decomposition (6) gives rise to a decomposition

Ak[K] =
m
⊕

i=1

Ak[Ui] (9)

in the category of commutative k-group varieties. Decomposition (6) is then

obtained from (9) by taking k-valued points.

Similarly to above, we define Vi ⊆ ResKk (Ea) via the diagram

Vi
� � //

��

ResKk (Ea)

��
Ak[Ui]

� � // Ak[K]

being Cartesian. Note that the morphism ResKk (Ea) −→ Ak[K] is a flat

covering of degree 2n which is unramified at 0 ∈ Ak[K]. As flatness and

unramifiedness are stable under base change, the morphism Vi −→ Ak[Ui]

is a flat covering of degree 2n which is unramified at 0 ∈ Ak[Ui] too. In

particular, Vi has the same dimension as the vector space Ui.

Let

am : ResKk (E)m −→ ResKk (E) (10)

14



be the m-fold addition morphism and

a′m : V1 × · · · × Vm −→ ResKk (E) (11)

be the restriction of am to V1× · · · ×Vm. Let P0 be one of the two points of

E(K) which are mapped to 0 by x|E .

Note that ResKk ((P0)⊚) = 0. In particular, (P0)⊚ is a k-rational point of

all Vi.

Proposition 2.2 The morphism a′m is unramified at ((P0)⊚, . . . , (P0)⊚).

Remark 2.3 As unramifiedness is an open property, we obtain: a′m is un-

ramified in an open neighborhood of ((P0)⊚, . . . , (P0)⊚). Every irreducible

component of V1 × · · · × Vm has dimension n (because we have a flat cov-

ering of V1 × · · · × Vm to Ak[K]). Thus the morphism a′m is dominant. If

furthermore V1, . . . , Vm are irreducible, a′m is generically unramified.

Proof of Proposition 2.2. We wish to show that

(a′m)∗ : T((P0)⊚,...,(P0)⊚)(V1 × · · · × Vm) −→ Tm·(P0)⊚(Res
K
k (E))

is an isomorphism.

As the morphism ResKk (x|E) is unramified at (P0)⊚, it induces an iso-

morphism of tangent spaces

T(P0)⊚(Res
K
k (Ea))

∼−→ T0(Ak[K]) . (12)

Decomposition (9) induces a decomposition of tangent spaces T0(Ak[K]) =
⊕m

i=1 T0(Ak[Ui]) which is nothing but the original decomposition of vector

spaces K =
⊕m

i=1 Ui. Under isomorphism (12), T(P0)⊚(Vi) corresponds to

T0(Ak[Ui]). Therefore, we have the decomposition

T(P0)⊚(Res
K
k (Ea)) =

m
⊕

i=1

T(P0)⊚(Vi) . (13)

By the next lemma, we have the commutative diagram whose vertical

maps are isomorphisms

T((P0)⊚,...,(P0)⊚)(Res
K
k (E) m)

((p1)∗,...,(pm)∗)
��

(am)∗ // Tm(P0)⊚(Res
K
k (E))

(T(P0)⊚(Res
K
k (E)))m

∑

// T(P0)⊚(Res
K
k (E)) .

(τ(m−1)·(P0)⊚
)∗

OO

Here pi : ResKk (E)m −→ ResKk (E) is the projection to the ith coordinate

and the map
∑

: T(P0)⊚(Res
K
k (E)) −→ T(P0)⊚(Res

K
k (E)) is the addition of

the k-vector space T(P0)⊚(Res
K
k (E)).
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By restriction of the horizontal maps we obtain the commutative diagram

T((P0)⊚,...,(P0)⊚)(V1 × · · · × Vm)
(am)∗ //

��

Tm(P0)⊚(Res
K
k (E))

T(P0)⊚(V1)× · · · × T(P0)⊚(Vm)
∑

// T(P0)⊚(Res
K
k (E)) .

(τ(m−1)·(P0)⊚
)∗

OO

Now because of decomposition (13), under the addition,

T(P0)⊚(V1)×· · ·×T(P0)⊚(Vm) is mapped bijectively to T(P0)⊚(Res
K
k (E)). This

gives the desired statement. 2

In the following lemma, we use this notation: Let U, V,W be k-vector

spaces. If then ϕ : U −→ W and ψ : V −→ W are k-linear maps, we

denote the induced map U × V −→ W by ( ϕ ψ ). If ϕ : W −→ U and

ψ : W −→ V are k-linear maps, we denote the induced map W −→ U × V
by

( ϕ
ψ

)

.

Lemma 2.4 Let k be a field.

a) Let X1, X2 be two k-schemes, and let P1 ∈ X1(k),

P2 ∈ X2(k). Let us assume that X1 is smooth at P1 and X2 is smooth

at P2. The points Pi give rise to closed immersions ιi : Xi −→ X1 ×
X2. Let pi : X1 × X2 −→ Xi be the canonical projections. Then the

maps ( (ι1)∗ (ι2)∗ ) : TP1(X1) × TP2(X2) −→ T(P1,P2)(X1 × X2) and

(
(p1)∗
(p2)∗

) : T(P1,P2)(X1 × X2) −→ TP1(X1) × TP2(X2) are isomorphisms

of k-vector spaces which are inverse with respect to each other.

b) Let A be an abelian variety over k with addition morphism a : A×A −→ A

and neutral element O. Let ιi : A −→ A × A be the two canonical

immersions. Then the map a∗ ◦ ( (ι1)∗ (ι2)∗ ) : TO(A) × TO(A) −→
TO(A) is the addition on the k-vector space TO(A).

c) Let A be an abelian variety over k and P ∈ A(k). Then we have a

commutative diagram

TP (A×A)
a∗ //

( (p1)∗
(p2)∗

)

��

T2P (A)

TP (A)× TP (A)
∑

// TP (A) ,

(τP )∗

OO

where the lower map
∑

: TP (A) × TP (A) −→ TP (A) is the addition

morphism on the k-vector space TP (A).
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Proof. a) The k-linear map

TP1
(X1)× TP2

(X2)
( (ι1)∗ (ι2)∗ )

// T(P1,P2)(X1 ×X2)

( (p1)∗
(p2)∗

)

// TP1
(X1)× TP2

(X2)

is obviously the identity. As the dimensions of these k-vector spaces are the

same, the two maps in a) are both isomorphisms.

b) We only have to check that the k-linear map a∗ ◦ ( (ι1)∗ (ι2)∗ ) :

TO(A)× TO(A) −→ TO(A) agrees with the addition (which is also k-linear)

on the first and second factor. But restricted to factor i, a∗ ◦ ( (ι1)∗ (ι2)∗ )

becomes a∗◦(ιi)∗, which is the identity, just as is the addition when restricted

to one of the factors.

c) Let us consider A as an abelian variety with P as neutral element,

and let aP be the addition law. Then aP = τ−P ◦ a. The commutativity of

the diagram then follows from b). 2

2.4 Irreducibility

If the characteristic is odd, in order to complete the analysis of the relation

generation procedure, we need that the Vi are irreducible. In this subsection,

we give some theoretical background for the algorithmic construction of the

Vi such that they are indeed irreducible.

All the statements in this subsection are valid except in the case that the

characteristic is 2 and the j-invariant of E is 0, or, in other words, except if

E is a supersingular elliptic curve in characteristic 2. So let us assume that

it does not hold that the characteristic is 2 and j = 0.

Lemma 2.5 Let U be a vector subspace of K, and let Va be defined as in

(5). If Ak[U ] contains an irreducible scheme containing 0 whose preimage

in Va is irreducible, then Va is irreducible. Likewise, if Ak[U ] contains a

geometrically irreducible scheme containing 0 whose preimage in Va is geo-

metrically irreducible, then Va is geometrically irreducible.

Proof. Assume that Va is not irreducible, and let V
(1)
a and V

(2)
a be two irre-

ducible components of Va. Let A ⊆ Ak[U ] be the étale locus of the flat cover-

ing Va −→ Ak[U ] and Va its preimage on Va. By Condition 2.1 the covering

Ea −→ A1
K is unramified at 0. Thus so is the covering ResKk (Ea) −→ Ak[K]

and the induced covering Va −→ Ak[U ]. Thus 0 is contained in A. In

particular, A is non-empty and thus a non-empty open part of Ak[U ].

For i = 1, 2, the map V
(i)
a −→ Ak[U ] is surjective. (As the map V

(i)
a −→

Ak[U ] is flat and finite, by [Har77, Chapter III, Corollary 9.6], V
(i)
a has the

same dimension as Ak[U ]. The dimension of V
(i)
a is equal to the dimension

of its image. Thus the dimension of the image is equal to Ak[U ]. Therefore
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the map is dominant. As the map is finite, it is in particular closed, and

therefore the image is equal to Ak[U ].) Therefore V
(i)
a contains a preimage

of 0. Let V(i)a be the preimage of A in V
(i)
a . Then V(i)a is a non-empty open

part of V
(i)
a which contains a preimage of 0.

As Ak[U ] is smooth so is A, and as furthermore V −→ A is étale, V is

also smooth. It follows that V(1)a and V(2)a are disjoint.

Let now S be an irreducible subscheme of Ak[U ] as in the first claim of

the lemma. As Va −→ Ak[U ] is unramified at 0 and 0 ∈ S by assumption,

S ∩A is a non-empty open part of S. It follows that the preimage of S ∩A
is a non-empty open part of the preimage of S and thus also irreducible.

Therefore it is contained in either V(1)a or V(2)a . On the other hand, as it

contains all preimages of 0, it has non-trivial intersection with both V(1)a

and V(2)a , a contradiction.

The second claim follows via base change to k. 2

In the algorithm, we first search for 1-dimensional k-vector subspaces

Ti of K such that the preimages of Ak[Ti] in ResKk (Ea) with respect to

ResKk (x|Ea
) are geometrically irreducible. Then we search for suitable k-

vector subspaces Ui of K containing Ti. The preimages Vi of the corre-

sponding group subvarieties Ak[Ui] of Ak[K] then contain Ak[Ti] and are

therefore geometrically irreducible.

To choose the spaces Ti we employ ideas from the first subsection of this

section and of our previous work.

Let µ ∈ K∗, and let us consider the vector subspace µ−1 · k of K and

the associated group subvariety A[µ−1 · k] of Ak[K]. Furthermore, let Wa

be the preimage of A[µ−1 · k] in ResKk (Ea).

Clearly, the group subvariety A[µ−1 · k] is the image under the closed

immersion A1
k −→ Ak[K] induced by the injective homomorphism of vector

spaces k −→ K , a 7→ µ−1a. This morphism can also be given as follows:

Let αa := µx : A1
k −→ A1

k. Then the morphism A1
k −→ Ak[K] is equal to

(α−1
a )⊚.

We now essentially apply the considerations of subsection 2.1 here, re-

stricting ourselves to the “affine parts”. We set ϕa := αa ◦ x|Ea
. Now Wa is

the preimage of ι(A1
k) in ResKk (Ea) with respect to the covering ResKk (ϕa).

This is very closely related to the situation studied in [Die11b, Section 2.2]

– the only difference is that here we use automorphisms of the group variety

A1
K instead of automorphisms of P1

K and we restrict ourselves to the “affine

parts”.

Lemma 2.6 There are more than qn−3(n−1) · qn/2 elements µ ∈ K∗ such

that, with Wa as defined as above, Wa is geometrically irreducible.

Proof. By assumption on k and E, the covering x|E : Ek −→ P1
k
has two or
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four branch points, one of which is at infinity. Thus there are exactly one

or three branch points not equal to infinity.

Let λ1, . . . , λs ∈ Fq6n − {0} with s ∈ {1, 3} be the branch points of

x|Ea
: (Ea)k −→ A1

k
. Let µ ∈ K∗ and let α := µx. Then the branch points

of α ◦ x|Ea
: (Ea)k −→ A1

k
are µλ1, . . . , µλs. Therefore Condition 2.7 from

[Die11b] is equivalent to the following condition.

Condition 2.7 There exists an i = 1, . . . , s such that for j = 1, . . . , n− 1,

(µλi)
qj /∈ {µλ1, . . . , µλs}.

As shown in [Die11b, Proposition 4.9], if this condition is satisfied, Wa is

geometrically irreducible.

We are interested in the probability that for j = 1, . . . , n− 1, (µλ1)
qj /∈

{µλ1, . . . , µλs}.
For j = 1, . . . , n − 1 and ℓ = 1, . . . , s, the condition (µλ1)

qj = µλℓ is

equivalent to µq
j−1 = λℓ

λqj

1

. As the cardinality of the kernel of the map

K∗ −→ k
∗
, a 7→ aq

j−1 is qgcd(j,n) − 1 (see next lemma), there are either no

or exactly qgcd(j,n) − 1 such elements µ.

The situation is now very similar to the situation in [Die11b, Lemma

2.10]: In total there are at most s ·∑n−1
j=1 (q

gcd(j,n)− 1) elements µ for which

the condition in the lemma is not satisfied.

Now a crude estimate is that s ·∑n−1
j=1 q

gcd(j,n)−1 < s · (n− 1) · qn/2. 2

Lemma 2.8 Let q be a prime power and m,n ∈ N. Then qm − 1 | qn − 1 if

and only if m | n. Moreover gcd(qm − 1, qn − 1) = qgcd(m,n) − 1.

Proof. If m | n then clearly qm − 1 | qn − 1. So assume that qm − 1 | qn − 1.

For a ∈ F∗
qm we have aq

m−1 = 1 and by assumption also aq
n−1 = 1. But this

means that a ∈ F∗
qn . Thus Fqm is a subfield of Fqn and thus m|n.

For the second statement, consider the set G := {a ∈ Fqn | aq
m−1

=

1}. On the one hand, as G is a subgroup of the cyclic group F∗
qm , it has

gcd(qm − 1, qn − 1) elements. On the other hand, G ∪ {0} is a subfield of

Fqn , and therefore there exists some a|n with #G = qa− 1 . The result now

follows with the first statement. 2

2.5 The algorithm for the factor base

Let a field extension K|k as above, an elliptic curve E/K, two points A,B ∈
E(K) with B ∈ 〈A〉 as well as m ∈ N with 2 ≤ m ≤ n be given, where

#K ≥ 16. As always, let d := ⌈ nm⌉ and δ := dm− n.
We first choose – with a randomized algorithm – some point P0 ∈ Ea(K)

which is not a ramification point of x|E and pass from E to its image un-
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der the automorphism of P2
K given by P = (X(P ) : Y (P ) : Z(P )) 7→

(X(P ) − x(P0)Z(P ) : Y (P ) : Z(P )). Let Ẽ be the resulting curve. This is

again a curve in Weierstraß form, x|Ẽ is unramified above 0 and the preim-

age of 0 consists of two K-rational points. Clearly, this computation can be

performed in an expected time which is polynomially bounded in log(qn).

So let us now assume that there exists a K-rational point of E which is

unramified under x|E and mapped to 0.

Given an instance as described, we wish to compute a decomposition

K =
⊕m

i=1 Ui with dim(Ui) = d − 1 for i = 1, . . . , δ and dim(Ui) = d for

i = δ + 1, . . . ,m such that

• #{P ∈ Ea(K) | x(P ) ∈ Ui − {0}} ≥ 1
4q

dim(Ui);

• if char(k) is odd: V1, . . . , Vm are irreducible.

The factor base is then defined as described in Equations (7) and (8)

above.

We now give an algorithm for the task just mentioned under the con-

dition that m ≤ n
2 and q ≥ 4. This is sufficient for the algorithm for

Theorem 2.

Algorithm to compute a suitable decomposition of K

Input: A field extension Fqn |Fq with q ≥ 4, an elliptic curve E/Fqn in

Weierstraß form with respect to x and y such that there is a K-rational point

of E which is unramified under x|E and mapped to 0, two points

A,B ∈ E(Fqn) with B ∈ 〈A〉 and a natural number m with 2 ≤ m ≤ n
2 .

Output: A decomposition Fqn =
⊕m

i=1 Ui with dim(Ui) = d− 1 for

i = 1, . . . , δ and dim(Ui) = d for i = δ + 1, . . . ,m such that the conditions

mentioned above are satisfied.

1. If q is not a power of 2

For i = 1, . . . ,m do

Repeat

Choose µi ∈ F∗
qn uniformly at random.

Until µi is not contained in 〈T1, . . . , Ti−1〉 and µi satisfies
Condition 2.7.

Let Ti ←− µ−1
i · Fq < Fqn .

If q is a power of 2, let Ti ←− {0} for i = 1, . . . ,m.
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2. Let d←− ⌈ nm⌉ and δ ←− dm− n.
For i = 1, . . . ,m do

If i ≤ δ, let e←− d− 1, otherwise let e←− d.
Repeat

Compute an Fq-vector subspace Ui of Fqn which is uniformly

randomly chosen from the set of e-dimensional Fq-vector

subspaces of Fqn containing Ti with intersection {0} with
U1 + · · ·+ Ui−1 + Ti+1 + · · ·+ Tm.

Until {Ea(Fqn) | x(P ) ∈ Ui − {0}} contains at least 1
4 · qe elements.

3. Output U1, . . . , Um.

Remark 2.9 We represent Fq-vector subspaces of Fqn by bases over Fq.

Therefore the definition of Ti is computationally void; we inserted it only to

be able to reason about Ti later.

Note here that at the end of each iteration of the For-loop in Step 2,

we have a direct sum U1 ⊕ · · · ⊕ Ui ⊕ Ti+1 ⊕ · · · ⊕ Tm inside K, where for

j = 1, . . . , i, Uj contains Tj , dim(Uj) = d − 1 if j ≤ δ and dim(Uj) = d if

j > δ. The vector space Ti corresponds to a 1-dimensional group subscheme

of Ak[K] whose preimage in ResKk (E) is geometrically irreducible by the

arguments in Lemma 2.6. By Lemma 2.5, Vi is then also geometrically

irreducible. Therefore an output of the algorithm defines a decomposition

K =
⊕m

i=1 Ui which satisfies the conditions given above.

We remark here that the algorithm itself is much more elementary than

the geometric arguments.

The main result of this section is the following proposition.

Proposition 2.10 For 2 ≤ m ≤ n
2 and q ≥ 4, following the above algo-

rithm, one can compute a decomposition of K with the desired properties in

an expected time of Poly(n · qd) = Poly(n · q n
m ).

Proof. We only have to consider the expected running time. For this, we

discuss the steps of the algorithm.

Step 1 Let q be odd. We consider, for a particular iteration of the For-loop,

the expected value of iterations of the Repeat-loop.

As i ≤ m, the space 〈T1, . . . , Ti−1〉 contains at most qm−1 ≤ qn/2 el-

ements. By Lemma 2.6, there are at least qn − 3(n − 1) · qn/2 − qn/2 ≥
qn − 3n · qn/2 elements µ ∈ K∗ which do not lie in 〈T1, . . . , Ti−1〉 and which

satisfy Condition 2.7. The probability that this is satisfied is therefore at

least 1 − 3n · 1
qn/2 . For n ≥ 4 and q ≥ 4, which is the case by assumption,

this is at least 1 − 3n
2n ≥ 1 − 12

16 = 1
4 . The expected value of iterations of
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the Repeat-loop is therefore at most 4. We can obtain an expected running

time which is polynomially bounded in n · log(q).

Step 2 We always have e ≥ 2. In the Repeat loop, the space Ui can be

computed in an expected time which is polynomially bounded in n · log(q)
by the next lemma. The counting of the set {Ea(Fqn) | x(P ) ∈ Ui−{0}} can
be performed in a time which is polynomially bounded in qd. The expected

number of repetitions of the loop is at most 14 by Lemma 2.12 below. The

expected running time of Step 2 is then polynomially bounded in qd. 2

Lemma 2.11 Let S and T be two Fq-vector subspaces of F
n
q with S∩T = {0}

and S + T ( Fn
q , and let e ∈ N with dim(T ) ≤ e ≤ n − dim(S) be given.

Then in an expected time which is polynomially bounded in n · log(q) one can

compute an Fq-vector subspace U of Fn
q which is uniformly randomly chosen

from the set of e-dimensional Fq-vector subspaces U of Fq with T ⊆ U and

S ∩ U = {0}.

Proof. Consider the following algorithm:

Input: Two Fq-vector subspaces S and T of Fn
q with S ∩ T = {0}, and e ∈ N

with dim(T ) ≤ e ≤ n− dim(S).

Output: An Fq-vector subspace U satisfying the conditions given in the lemma.

Let v1, . . . , vdim(T ) be the basis of T given with the input.

For i = dim(T ) + 1, . . . , e do

Repeat

Choose vi ∈ Fn
q uniformly at random.

Until vi /∈ 〈v1, . . . , vi−1〉+ S.

Output 〈v1, . . . , ve〉.

Obviously the space 〈v1, . . . , ve〉 is uniformly randomly distributed in the

set of e-dimensional subspaces U of Fn
q with T ⊆ U and S ∩ U = {0}.

The claimed expected running time follows easily from the fact that the

probability that vi is in the (i− 1+ dim(S))-dimensional vector subspace is

q(i−1)+dim(S)−n ≤ 1
q . 2

Lemma 2.12 For q ≥ 4 and n ≥ 4, elliptic curves E/Fqn in Weierstraß

form, proper Fq-vector subspaces S and T of Fqn with dim(S) ≤ n − 2,

S ∩ T = {0} and S + T ( Fn
q and a natural number e with dim(T ) < e ≤

n− dim(S), the following holds:

Let U be a uniformly randomly distributed vector subspace of Fn
q of di-

mension e with T ⊆ U and S ∩U = {0}. Then with a probability of at least
1
14 , #{P ∈ Ea(Fqn) | x(P ) ∈ U − {0}} ≥ 1

4 · qe.
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Proof. Let first U be a uniformly randomly distributed e-dimensional

Fq-vector subspace of Fqn . Then as each point of Fqn − {0} has the same

probability of appearing in U , each point of Fqn − {0} has a probability of

qe − 1

qn − 1

to appear in U .

Likewise, if S, T and e are as in the lemma and U is a uniformly randomly

distributed e-dimensional vector subspace of Fqn with T ⊆ U and U ∩ S =

{0}, each point of Fqn − (S ∩ T ) has a probability of

qe − qdim(T )

qn − qdim(S)
≥ 1

2
· qe−n

to appear in U .

Let

S := {P ∈ Ea(Fqn) | x(P ) ∈ S} ,

T := {P ∈ Ea(Fqn) | x(P ) ∈ T − {0}} ,

N := #{P ∈ Ea(Fqn) | x(P ) ∈ U − {0}} .

The expected value of N , E[N ], can be expressed as follows:

E[N ] = #(Ea(Fqn)− (S ∪ T )) · q
e − qdim(T )

qn − qdim(S)
+#T

≥ (#Ea(Fqn)−#S) · q
e − qdim(T )

qn − qdim(S)

≥ (qn − 2 · qn/2 − 2 · qdim(S)) · 1
2
· qe−n ,

the last inequality by the Hasse-Weil bound.

As q ≥ 4 and n ≥ 4, 2 · qn/2 ≤ 1
8 · qn. As q ≥ 4 and dim(S) ≤ n − 2,

2 · qdim(S) ≤ 2 · qn−2 ≤ 1
8 · qn. We obtain:

E[N ] ≥ 3

8
· qe

On the other hand, N ≤ 2 · qe. The claimed bound on the probability that

N ≥ 1
4 · qe now follows by the following elementary probability theoretic

argument. We have

3

8
· qe ≤ E[N ] ≤ P[N <

1

4
· qe] · 1

4
· qe + P[N ≥ 1

4
· qe] · 2 · qe

23



and thus

3

8
≤ (1− P[N ≥ 1

4
· qe]) · 1

4
+ P[N ≥ 1

4
· qe] · 2 =

1

4
+

7

4
· P[N ≥ 1

4
· qe] .

In other words:

P[N ≥ 1

4
· qe] ≥ 1

14
2

After suitable k-vector subspaces Ui of K have been computed, the sets

Fi := {P ∈ Ea(Fqn) | x(P ) ∈ Ui − {0}} are enumerated and sorted for

the elements in Fi (such that given an element of Fi one can easily find its

number). The factor base is then F :=
⋃m

i=1Fi.

The total expected running time for all these computations is polynomi-

ally bounded in n · qd.

3 The new decomposition algorithm

Just as in the predecessor [Die11b] to this work, the relation generation

relies on an algorithm to compute “decompositions”, and this algorithm is

again based on solving systems of multivariate polynomials over Fq. The

definition of a “decomposition” is however different in this work from the

previous one. Moreover, we do not use summation polynomials anymore,

and more generally, we do not use the projection to a product of projective

lines. The reason for this is that by avoiding the projection to projective

lines, we can significantly improve the lower bound on the success probability

of the relation generation algorithm. This improvement is crucial for the

derivation of Theorem 2.

We start with some definitions.

As in the previous section, let q be a prime power, n a natural number

at least 2, and let us set k := Fq and K := Fqn . Let E be an elliptic curve

in Weierstraß form in x and y over K (with zero point at infinity), and let

f(x, y) ∈ K[x, y] be the defining polynomial of the affine part Ea. (The

notation for the defining polynomial is different from the one in [Die11b].)

Let us fix a direct sum decomposition K =
⊕m

i=1 Ui with m ≥ 2 into k-

vector subspaces. (In this whole section, we do not impose any conditions

on x|E or the direct sum decomposition of K, except that the decomposition

be non-trivial.) Let Fi be defined as above. Finally, let P ∈ E(K).

Definition 3.1 A tuple (P1, . . . , Pm) ∈ F1×· · ·×Fm with P1+· · ·+Pm = P

is called a decomposition of P with respect to the direct sum decomposition

of K.
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Let now Vi be defined as in the previous section. Then under the iso-

morphism E(K) ≃ ResKk (E)(k), the set of decompositions of P corresponds

to the set of tuples (P1, . . . , Pm) ∈ V1(k) × · · · × Vm(k) with
∑

i Pi = P⊚

and ResKk (x)(Pi) 6= 0. This is nothing but the set of k-rational points

(P1, . . . , Pm) of the fiber at P⊚ of the morphism

V1 × · · · × Vm −→ ResKk (E)

induced by the addition morphism on ResKk (E) with ResKk (x)(Pi) 6= 0 for

all i.

This leads to the next definition.

Definition 3.2 A decomposition (P1, . . . , Pm) of P is called isolated if it

corresponds to an isolated (k-rational) point of the fiber (V1 × · · · × Vm)P⊚

just considered.

The “new decomposition problem” is now the computational problem

with the following specification: The input consists of a prime power q, a

natural number n, an elliptic curve E ⊆ P2
Fqn

in Weierstraß form with respect

to x and y and point at infinity as zero point, a direct sum decomposition

Fqn =
⊕m

i=1 Ui of Fqn into Fq-vector subspaces with m ≥ 2 and a point P ∈
E(Fqn). The output consists of a list of decompositions of P with respect to

the direct sum decomposition of Fqn , containing all isolated decompositions.

For the relation generation, the first crucial result is the following propo-

sition. Furthermore, we need a non-trivial lower bound on the probability

that a uniformly randomly distributed point in E(Fqn) has an isolated de-

composition with respect to the chosen decomposition of K, given that cer-

tain conditions are satisfied. Such bounds are established in the next section.

Proposition 3.3

a) There exists an absolute constant C > 0 such that the number of isolated

decompositions of some point P ∈ E(Fqn) is at most eC·mn.

b) The “new decomposition problem” can be solved in an expected running

time which is polynomially bounded in emn · log(q).

The rest of this section is devoted to the proof of this proposition.

We now give some background information on the idea of the algorithm

and address claim a). Computational aspects will be discussed later.

Let us fix an instance as specified in b), and as above, let K|k be the

extension of finite fields under consideration.

We first make the following assumption:

x(P ) /∈
m
⋃

i=1

Ui
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At the end of the section we will discuss an easy modification of the following

arguments and the algorithm for the case that x(P ) ∈ ⋃m
i=1 Ui.

The main idea is to use the isomorphism E(K) ≃ Cl0(E). Let us use

the following notation (cf. [Sil86]): For P ∈ E(K), the prime divisor defined

by P is denoted by (P ).

For points P1, . . . , Pm ∈ E(K), we have
∑

i Pi = P if and only if there

exists a function g ∈ K(E)∗ with (g) = (P1)+· · ·+(Pm)+(−P )−(m+1)·(O).

Moreover, g is uniquely determined “up to a constant” by the points.

Let us assume that P 6= O. (For the case P = O, the following con-

siderations can easily be modified.) Let p1 := 1, p2i = xi, p2i+1 := xi−1y

for i ∈ N. Note that for ℓ ∈ N, (p1)|E , . . . , (pℓ)|E is a basis of L(ℓO). Let

Lℓ := 〈p1, . . . , pℓ〉 ∩ {f ∈ k[x, y] | f(−P ) = 0}, and let g1, . . . , gm be a basis

of Lm+1 such that g1, . . . gm−1 is a basis of Lm. Then (g1)|E , . . . , (gm)|E is

a basis of L((m + 1) · (O) − (−P )) and (gm)|E /∈ L(m · O − (−P )). Now

(P1, . . . , Pm) is a decomposition of P if and only if there exists a tuple

(α1, . . . , αm−1) ∈ Km−1 with

(gm+αm−1gm−1+· · ·+α1g1) = (P1)+· · ·+(Pm)+(−P )−(m+1)·(O) . (14)

Furthermore, there exists at most one such tuple (α1, . . . , αm−1) in k
m−1

.

The set of decompositions of P is thus in canonical bijection to the set of

tuples (α1, . . . , αm−1, P1, . . . , Pm) ∈ Km−1 × Em
a (K) with x(Pi) ∈ Ui − {0}

such that (14) holds. Note that in any such tuple the points P1, . . . , Pm, P

are distinct. (Recall that x(P ) /∈ ⋃m
i=1 Ui by assumption).

Let us recall that the defining polynomial of Ea is denoted by f . Let

now

f(i) := f(xi, yi) ∈ K[x1, y1, . . . , xm, ym]

for all i = 1, . . . ,m; the scheme V (f(1), . . . , f(m)) is therefore equal to E
m
a in

Spec(K[x1, y1, . . . , xm, ym]).

Let

h := gm + am−1gm−1 + · · · a1g1 ∈ K[x, y, a1, . . . , am−1]

and let

h(i) := gm(xi, yi) + am−1gm−1(xi, yi) + · · ·+ a1g1(xi, yi)

∈ K[a1, . . . , am−1, x1, y1 . . . , xm, ym]

for all i = 1, . . . ,m.

The set of decompositions of P is then in canonical bijection to the set of

K-rational points (α1, . . . , αm−1, P1, . . . , Pm) of the scheme

V (f(1), . . . , f(m), h(1), . . . , h(m)) in Spec(K[a1, . . . , am−1, x1, y1, . . . , xm, ym])

with x(Pi) ∈ Ui − {0} for all i. Note that we have the canonical projection

V (f(1), . . . , f(m), h(1), . . . , h(m)) −→ V (f(1), . . . , f(m)) = Em
a ,
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given on Z-valued points for any k-scheme Z by

(α1, . . . , αm−1, P1, . . . , Pm) 7→ (P1, . . . , Pm) .

It is natural to pass to theWeil restriction of V (f(1), . . . , f(m), h(1), . . . , h(m))

here. Let us first fix some notations: Let W be defined by the diagram

W
� � //

��

ResKk (V (f(1), . . . , f(m), h(1), . . . , h(m)))

��
V1 × · · · × Vm //� � //

��

(ResKk (Ea))
m

��
Ak[U1]× · · · × Ak[Um] �

� // Ak[K]

being Cartesian. Now the k-rational points of W correspond exactly to the

K-rational points (α1, . . . , αm−1, P1, . . . , Pm) of V (f(1), . . . , f(m), h(1), . . . , h(m))

with Pi ∈ Ui.

We now give an explicit description of W via a polynomial system. This

description will serve as a basis for the algorithm.

Let b1, . . . , bn be a k-basis of K. (In the algorithm, such a basis is given

with the input.) With this basis, we now identify K with kn and also Ak[K]

with An
k . Moreover, for i = 1, . . . ,m, let bi,1, . . . , bi,dim(Ui) be a basis of Ui.

The scheme W ⊆ ResKk (V (f(1), . . . , f(m), h(1), . . . , h(m))) can be described

explicitly as follows: Let the polynomials h(i),j and f(i),j for i = 1, . . . ,m, j =

1, . . . , n in k[(aℓ,j′)ℓ=1,...,m−1,j′=1,...,n, ((xi′,j′)j′=1,...,dim(Ui), (yi′,j′)j′=1,...,n)i′=1,...,m]

be defined by

h(i)((
n
∑

j′=1

aℓ,j′bj′)ℓ=1,...,m−1 ,

dim(Ui)
∑

j′=1

xi,j′bj′ ,
n
∑

j′=1

yi,j′bj′) =
n
∑

j=1

h(i),jbj

and

f(i)(

dim(Ui)
∑

j′=1

xi,j′bi,j′ ,
n
∑

j′=1

yi,j′bj′) =
n
∑

j′=1

f(i),jbj .

We have isomorphisms

Vi ≃ V ((f(i),j)j=1,...,n) ⊆ Spec(k[xi,1, . . . , xi,dim(Ui), yi,1, . . . , yi,n])

and

W ≃ V ((f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n)

(which are canonical for the chosen basis).

The k-rational points of V ((f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n)

correspond in an obvious way to theK-rational points (a1, . . . , am−1, P1, . . . , Pm)
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of V (f(1), . . . , f(m), h(1), . . . , h(m)) with x(Pi) ∈ Ui. Such points with x(Pi) ∈
Ui − {0} then correspond to the decompositions of P .

We have a polynomial system in 2mn variables and 2mn equations.

We want to obtain a suitable polytope which contains the exponents in

the support of the system.

Let us first consider the total degrees of h(i),j and f(i),j with respect to

the three systems of variables (aℓ,j′)ℓ,j′ , (xi′,j′)i′,j′ and (yi,j′)i,j′ . Concerning

the h(i),j we have: the total degree with respect to the aℓ,j′ is at most 1, the

total degree with respect to the xi′,j′ is at most ⌊m2 ⌋, the total degree with

respect to the yi′,j′ is at most 1. Concerning the f(i),j we have: The total

degree with respect to the xi′,j′ is at most 3, the total degree with respect

to the yi′,j′ is at most 2.

We now consider the aℓ,j′ and the yi′,j′ as one system of variables and

the xi′,j′ as another system of variables. So we have 2 ·(m−1) ·n variables in

the first system and the total degrees of all polynomials under consideration

with respect to this system are at most 2. Furthermore, we have n variables

in the second system and the total degrees with respect to this system are

at most max(3, ⌊m2 ⌋).
Let ∆ℓ := {x ∈ Rℓ

≥0 |
∑

i xi ≤ 1}. With a suitable numeration, the

exponents are contained in the polytope

P := 2 ·∆(2m−1)·n ×max(3, ⌊m
2
⌋) ·∆n .

The toric variety T (P ) defined by this polytope is P
(2m−1)·n
k × Pn

k . The

volume of the polytope is 2(2m−1)·n · 1
((2m−1)·n)! · max(3, ⌊m2 ⌋)n · 1

n! . The

system of equations defines a system of sections of a line bundle on T (P ),

and the degree of the 0-cycle in the Chow ring of T (P ) defined by this

system is (2mn)! times the volume of the polytope, that is,

2(2m−1)·n ·max(3, ⌊m
2
⌋)n ·

(

2mn

n

)

< 2(2m−1)·n ·max(3, ⌊m2 ⌋)n · 22mn < 24mn ·max(3,
m

2
)n .

Therefore the scheme defined by the sections on T (P ) associated to the

equations has at most 24mn·max(3, m2 )
n isolated k-rational points. We have a

natural embedding of A2mn
k into T (P ), and the sections restrict to the equa-

tions under this embedding. Thus the scheme V ((f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n)

has at most 24mn ·max(3, m2 )
n ∈ eO(mn) isolated k-rational points.

Let us now turn to algorithmic aspects: It is straightforward to compute

a system (f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n as above. We then use

Rojas’ algorithm ([Roj99]) for sparse polynomial systems to determine all

isolated k-rational solutions. The input and output structure as well as the
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running time of the algorithm are given in [Roj99, Main Theorem 2.1]; all

the following statements on the algorithm refer to this theorem.

We apply the algorithm with the system of equations and the polytope

P defined above. The output of the algorithm is a system of univariate

polynomials h, h1, . . . , h2mn the degrees of which are all bounded by the

degree of the 0-cycle defined by the given system of sections in the Chow

ring of T (P ) and thus by 24mn ·max(3, m2 )
n. By factoring h and applying

the system h1, . . . , h2mn to the rational roots, we obtain a list of points in

k2mn. This list consists of solutions to the system and contains all isolated

k-rational solutions of the system on A2mn
k .

The running time of Rojas’ algorithm is polynomially bounded in em·n ·
log(q), and in an expected time which is also polynomially bounded in em·n ·
log(q) we can factor the univariate polynomial h. Explicitly, the running

time of Rojas’ algorithm depends on mixed volumes of various systems of

polytopes all of which are contained in the polytope P . Therefore these

mixed volumes are also bounded by 24mn ·max(3, m2 )
n.

We obtain the following intermediate result:

Lemma 3.4

a) A system (f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n as above has eO(mn)

isolated k-rational solutions.

b) Given an instance of the “new decomposition problem”, one can compute

a system (f(i),j)i=1,...,m,j=1,...,n, (h(i),j)i=1,...,m,j=1,...,n as above and a list

of k-rational solutions, containing all isolated k-rational solutions, in an

expected time which is polynomially bounded in emn · log(q).

This is however not yet the statement we want to prove. Indeed, we still

have to show that in this way we can obtain a list of decompositions of P

which contains all isolated decompositions.

Let P ∈ Ea(K).

We first study the geometric fibers of the morphism

V (f(1), . . . , f(m), h(1), . . . , h(m)) −→ V (f(1), . . . , f(m)) = Em
a .

Let (P1, . . . , Pm) ∈ Em
a (k) such that the points P1, . . . , Pm, P⊚ are distinct.

Then there is at most one tuple (α1, . . . , αm−1) ∈ k
m

such that (14) holds,

depending on whether
∑

i Pi = P⊚ or not.

Let now D be the closed subscheme of Em
a given on Z-valued points for

any k-scheme Z by

D(Z) = {(P1, . . . , Pm) ∈ Em
a (Z) | ∃i 6= i′ : Pi = Pi′ or ∃i : Pi = P} .
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Let T := Em
a −D and let S be the preimage of T in V (f(1), . . . , f(m), h(1), . . . , h(m)).

Now the morphism S −→ T induces an injection on the sets of geometric

points and its image consists of those points (P1, . . . , Pm) ∈ Em
a (k) with

∑

i Pi = P⊚.

We consider the restriction of the m-fold addition morphism Em −→ E

to T . Following the usual notation, let TP be the fiber of this morphism at

P . This is an open subscheme of a scheme isomorphic to Em−1.

The morphism S −→ T induces a bijection S(k) −→ TP (k). As TP is

reduced, we have an induced morphism S −→ TP .

We now pass to Weil restrictions. Note first that we again have the

addition ResKk (E)m −→ ResKk (E) and the fiber (ResKk (E)m)P⊚
.

We have a canonical open embedding

ResKk (T ) ⊆ ResKk (Em
a ) ≃ (ResKk (Ea))

m .

Note that under the canonical isomorphism ResKk (Ea)
m(k) ≃ Em

a (K), the

points of ResKk (T )(k) correspond to the points (P1, . . . , Pm) ∈ Em(K) which

are contained in T (K), that is, to points (P1, . . . , Pm) ∈ Em(K) such that

the points P1, . . . , Pm, P are distinct.

Let

V ∗ := (V1 × · · · × Vm) ∩ ResKk (T ) ⊆ (ResKk (Ea))
m

and let V ∗
P⊚

be the fiber of P⊚ under the restriction of the addition morphism

ResKk (E)m −→ ResKk (E) to V ∗. We have

V ∗
P⊚

= V ∗ ∩ (ResKk (Ea)
m)P⊚

= V ∗ ∩ Res(T )P⊚
. (15)

Let now P /∈ ⋃m
i=1 Ui. The set of k-rational points of V ∗ contains

all k-rational points of ResKk (Ea)
m corresponding to decompositions of P .

(There might be more points in V ∗(k) because there might be k-rational

points (P1, . . . , Pm) of V ∗ with xi(P ) = 0 for some i ∈ {1, . . . ,m}.) As

ResKk (T ) is open in ResKk (Ea)
m, a k-rational point of V ∗

1 ×· · ·×V ∗
m is open in

V ∗
1 × · · · ×V ∗

m if and only if it is open in V1× · · · ×Vm. Therefore, the set of

isolated k-rational points of V ∗ contains all k-rational points of ResKk (Ea)
m

corresponding to isolated decompositions of P .

Let W ∗ be the preimage of V ∗ in ResKk (V (f(1), . . . , f(m), h(1), . . . , h(m))).

Our goal is to show that the preimages of the isolated k-rational points of

V ∗ are isolated k-rational points of W ∗.

We have the Cartesian diagram

ResKk (S)

��

� � // ResKk (V (f(1), . . . , f(m), h(1), . . . , h(m)))

��
ResKk (T )

� � // ResKk (Em
a ) ≃ ResKk (Ea)

m .
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Moreover, as the morphism S −→ T factors through the fiber TP ,

by functoriality, the morphism ResKk (S) −→ Reskk(T ) factors through the

fiber ResKk (T )P⊚
. We claim that we have an induced bijection between

ResKk (S)(k) and ResKk (T )P⊚
(k). For this, we can (obviously) apply the base

change to k|k. But over k, the two Weil restrictions become products of

Galois twists of S and T , and we have already shown the claim for the

factors of the product. The claim thus follows. By considering the Galois

operation, we obtain that for every algebraic field extension λ|k we have a

bijection between ResKk (S)(λ) and (Reskk(T ))P⊚
(λ). We are going to use this

for λ = k.

As V ∗ is contained in ResKk (T ), W ∗ is contained in ResKk (S), and we

have a Cartesian diagram

W ∗

��

� � // ResKk (S)

��

V ∗ � � // ResKk (T ) .

The composition W ∗ −→ ResKk (T ) (obviously) factors through V ∗ and

– as we have just seen – it factors through (ResKk (T ))P⊚
. By (15) it factors

through V ∗
P⊚

. The morphism

W ∗ −→ V ∗
P⊚

again induces a bijection

W ∗(k) −→ V ∗
P⊚

(k) .

Let now (P1, . . . , Pm) be an isolated k-rational point of V ∗. This is a

k-rational point of V ∗ which is open in V ∗. Then the fiber over (P1, . . . , Pm)

in W ∗ is open in W ∗, and it is a k-rational point. Therefore it is an isolated

k-rational point of W ∗ and also of W .

We note again that for any isolated decomposition of P the corresponding

point in (V1 × · · · × Vm)(k) lies in V ∗(k) and is isolated. Therefore every

isolated decomposition of P defines an isolated k-rational point of W .

This finishes the proof of Proposition 3.3 under the assumption that

x(P ) /∈ ⋃m
i=1 Ui.

Modification for x(P ) ∈
⋃

m

i=1
Ui

We now discuss the modification for the case that x(P ) ∈ ⋃m
i=1 Ui. Except

for finitely many instances, there exists a point R ∈ Ea(K) with x(R) /∈
⋃m

i=1 Ui and x(P −R) /∈
⋃m

i=1 Ui.
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Let us fix such a point R and let S := P − R. Let L̃ℓ := 〈p1, . . . , pℓ〉 ∩
{f ∈ k[x, y] | f(−R) = 0 , f(−S) = 0}. Let g̃1, . . . , g̃m be a basis of L̃m+2

such that g̃1, . . . , g̃m−1 is a basis of Lm+1. Now a tuple (P1, . . . , Pm) ∈
F1 × · · · × Fm is a decomposition of P if and only if there exists a tuple

(α1, . . . , αm−1) ∈ Km−1 with

(g̃m+αm−1g̃m−1+· · ·+α1g̃1) = (P1)+· · ·+(Pm)+(−R)+(−S)−(m+1)·(O) .

Moreover, if such a tuple exists, it is unique. With this modifications,

we obtain again the desired bound on the number of isolated decomposi-

tions. Moreover, by choosing a point R ∈ Ea(K) uniformly randomly, we

also obtain the algorithmic result. Note here that if P is in the factor base,

we immediately have a relation, so we do not need to apply the decompo-

sition algorithm. The bound on the number of isolated decompositions will

however be used later.

4 Analysis and the final result

Let K|k and E/K be as above and m ∈ N with 2 ≤ m ≤ n
2 . We assume that

Condition 2.1 is satisfied. Furthermore, let a decomposition K =
⊕m

i=1 Ui

be given which satisfies the conditions in subsection 2.5. Moreover, let Fi

and Vi be as above.

As in subsection 2.3, let P0 ∈ E(K) be one of the two points in E(K)

lying over 0.

We want to obtain a lower bound on the number of points P ∈ E(K)

which have isolated decompositions. For this goal, we first want to derive an

upper bound on the number of tuples (P1, . . . , Pm) ∈ F1 × · · · × Fm which

define non-isolated decompositions.

Let am : ResKk (A) −→ ResKk (E) be the m-fold addition morphism and

a′m : V1 × · · · × Vm −→ ResKk (E) the restriction of am to V1 × · · · × Vm.

We now consider a point (P1, . . . , Pm) ∈ Em(K) with x(Pi) ∈ Ui and let

P :=
∑m

i=1 Pi.

The morphism a′m : V1 × · · · × Vm −→ ResKk (E) is unramified at

((P1)⊚, . . . , (Pm)⊚) if and only if ((P1)⊚, . . . , (Pm)⊚) is an isolated reduced

point of the fiber at P⊚. We ask ourselves for which tuples (P1, . . . , Pm) as

above the morphism is ramified at ((P1)⊚, . . . , (Pm)⊚). As already pointed

out in the proof of Proposition 2.2 the morphism a′m : V1 × · · · × Vm −→
ResKk (E) is unramified at ((P1)⊚, . . . , (Pm)⊚) if and only if the induced map

on tangent spaces

(a′m)∗ : T((P1)⊚,...,(Pm)⊚)(V1 × · · · × Vm) −→ TP⊚
(V1 × · · · × Vm)

is injective.
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We now consider points (P1, . . . , Pm) ∈ E(K)m with x(Pi) ∈ Ui for all i

which satisfy the following condition.

Condition 4.1 The flat covering x|E is unramified at P1, . . . , Pm.

This condition is equivalent to the condition that for every i, the flat

covering ResKk (Ea) −→ ResKk (A1
k) is unramified at (Pi)⊚. By base change,

this implies that for every i, Vi −→ Ak[Ui] is unramified (and thus étale)

at (Pi)⊚. Therefore, Vi is smooth at (Pi)⊚ and we have an isomorphism of

tangent spaces T(Pi)⊚(Vi) −→ T(x(Pi))⊚(Ak[Ui]).

Let such a point (P1, . . . , Pm) be given and let again P :=
∑m

i=1 Pi. By

Lemma 2.4 we have a commutative diagram

T((P1)⊚,...,(Pm)⊚)(V1 × · · · × Vm)
(a′m)∗ //

(τ(P0−P1)⊚,...,(P0−Pm)⊚
)∗

��

TP⊚
(ResKk (E))

(τm·(P0−P )⊚
)∗

��
T((P0)⊚,...,(P0)⊚)(V1 × · · · × Vm)

(a′m)∗ //

��

Tm(P0)⊚(Res
k
k(E))

T(P0)⊚(V1)× · · · × T(P0)⊚(Vm) // T(P0)⊚(Res
k
k(E))

(τ(m−1)·(P0)⊚
)∗

OO

where the lower map is the addition on tangent spaces. Moreover, by

the proof of Proposition 2.2, the two lower vertical homomorphisms are

isomorphisms. Under the isomorphism T(P1)⊚(V1) × · · · × T(Pm)⊚(Vm) ≃
T((P1)⊚,...,(Pm)⊚)(V1 × · · · × Vm), the horizontal map on the left hand side is

(τ(P0−P1)⊚)∗ × · · · × (τ(P0−Pm)⊚)∗ : T(P1)⊚(V1)× · · · × T(Pm)⊚(Vm) −→

T(P0)⊚(V1)× · · · × T(P0)⊚(Vm) .

So the morphism (a′m)∗ is unramified at ((P1)⊚, . . . , (Pm)⊚) if and only

if we have a direct sum decomposition

T(P0)⊚(Res
K
k (E)) =

m
⊕

i=1

(τ(P0−Pi)⊚)∗(T(Pi)⊚(Vi)) . (16)

We want to derive a condition under which we do have such a decom-

position. For this, we distinguish between three cases: q odd; q even and

j 6= 0; and q even and j = 0.

The case that q is odd

We need some facts on tangent vectors of the projective line and the elliptic

curve E. Here and in the following we assume that the defining polynomial

f of Ea is of the form y2 − v(x) (with v monic of degree 3).
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Following our usual notation, let P1
K := Proj(K[X,Y ]). We set xP1 :=

X
Y ∈ K(P1) (such that K(P1) = K(xP1)).

On P1
K , we have the meromorphic cotangent vector field dxP1 with divisor

−2∞. Under duality, this corresponds to a tangent vector field which we

denote by tP1 ∈ Γ(P1
k, TP1

k
) and which has divisor 2∞.

Let R be the ramification divisor of the covering x|E . Then the mero-

morphic cotangent vector field dx|E has divisor −4(O) + R, and we have

the holomorphic cotangent vector field
dx|E

y|E
. This field is invariant under

translation, that is, for every translation τ of E we have τ∗(
dx|E

y|E
) =

dx|E

y|E
.

Again under duality, dx|E corresponds to a meromorphic tangent vec-

tor field; we denote this by tE . It has divisor 4(O) − R. So we have the

holomorphic tangent vector field yE tE , which corresponds to
dx|E

y|E
under

duality. Moreover, the field yE tE is also invariant under translation, that

is, for every translation τ of E, τ∗(y|E tE) = y|E tE .

Following the notation fixed in the introduction, for some point P ∈
E(K), we denote the tangent vector in TP (E) induced by tE by tE(P ).

Let two K-rational points P0 and P1 of E which are not ramification

points under x|E be given and let us consider the homomorphism (τP0−P1)∗ :

TP1(E) −→ TP0(E). This homomorphism is given by y(P1) tE(P1) 7→
y(P0) tE(P0), that is,

tE(P1) 7→
y(P0)

y(P1)
tE(P0) . (17)

As in the previous section, Let us fix a basis (bj)j of K over k and

bases (bi,j)j of the Ui. Let us denote the corresponding dual bases by

(xj)j and (xi,j)j . The bases (bj)j and (bi,j)j define bases of the spaces

Γ(Ak[K], T ) and Γ(Ak[Ui], T ). We denote these bases by (tj)j=1,...,n for

Ak[K] and (ti,j)j=1,...,dim(Ui) for Ak[Ui].

Let P ∈ E(K) such that x|E is unramified at P . Then ResKk (x|Ea
) defines

an isomorphism of tangent spaces (ResKk (x|Ea
))∗ : TP⊚

(ResKk (x|Ea
)) −→

Tx(P )⊚(A[K]). Now for t ∈ Γ(A[K], T ), we define t(P⊚) :=

((ResKk (x|Ea
))∗)

−1(t(x(P )⊚)). The isomorphism of tangent vector spaces re-

stricts to an isomorphism of tangent vector spaces TP⊚
(Vi) −→ Tx(P )⊚(A[Ui]).

Thus t(P⊚) is in TP⊚
(Vi) if and only if t(x(P )⊚) is in Tx(P )⊚(A[Ui]).

Just as the bases (tj(x(P )⊚))j and (d(xj)(x(P )⊚))j are dual to each

other, so are the bases (tj(P⊚))j and (d(xj)|ResKk (Ea)
(P⊚))j .

Let Ai be the coordinate matrix of (bi,j)j with respect to (bj)j . Then

this is also the coordinate matrix of (ti,j)j with respect to (tj)j , and for

any P ∈ E(K) as above, it is also the coordinate matrix of (ti,j(P⊚))j with

respect to (tj(P⊚))j . For the following, it is important that the matrix does

not depend on P .
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Let now (P1, . . . , Pm) ∈ Em(K) with x(Pi) ∈ Ui for all i satisfy Con-

dition 4.1. Then for each i = 1, . . . ,m, the system (ti,j((Pi)⊚))j is a basis

of the k-vector space T(Pi)⊚(Vi). We have a direct sum decomposition of

T(P0)⊚(Res
K
k (E)) as in (16) if and only if the elements (t(P0−Pi)⊚)∗(ti,j((Pi)⊚))

for i = 1, . . . ,m, j = 1, . . . , dim(Ui) form a k-basis of TP⊚
(ResKk (E)).

Let for j = 0, . . . , n − 1 fj ∈ k[x1, . . . , xn, y1, . . . , yn] be defined by

f =
∑n

j=1 bj · fj . Let u : (ResKk (Ea))K −→ Ea be the universal morphism.

We have the isomorphism

(u, σ(u), . . . , σn−1(u)) : (ResKk (Ea))K−̃→
n−1
∏

s=0

σsK|k(Ea) (18)

corresponding to the isomorphism of K-algebras

n−1
⊗

s=0

K[x(s), y(s)]/(σsK|k(f)(x
(s), y(s)))−̃→K[x1, . . . , xn, y1, . . . , yn]/(f1, . . . , fn) ,

x(s) 7→
n
∑

j=1

σsK|k(bj) · xj , y(s) 7→
n
∑

j=1

σsK|k(bj) · yj .

Note that for P ∈ E(K), under isomorphism (18) the point P⊚ ∈ Reskk(E)(k) ⊆
ResKk (E)(K) corresponds to the point (σs(P ))s=0,...,n−1 ∈

∏n−1
s=0 σ

s
K|k(Ea)(K).

We have an induced isomorphism Γ(ResKk (Ea)K ,Ω) ≃
⊕n−1

s=0 Γ(σ
s(Ea),Ω)

under which d(x(s))|σs(Ea) corresponds to
∑n

j=1 σ
s
K|k(bj) · d(xj)|ResKk (Ea)

.

This isomorphism induces an isomorphism between the cotangent spaces

at P⊚ and (σs(P ))s=0,...,n−1. Let again x|E be unramified at P . If we then

apply the duality between cotangent and tangent spaces, we obtain that

tj(P⊚) corresponds to
(

σsK|k(bj) · tσs(Ea)(σ
s(P ))

)

s=0,...,n−1
under the induced

isomorphism of tangent spaces at P⊚ and (σs(P ))s=0,...,n−1.

On each of the factors of the product
∏n−1

s=0 σ
s
K|k(Ea), we can apply the

considerations above. We obtain that (τ(P0−Pi)⊚)∗(tj((Pi)⊚)) corresponds to

(

(τ(σ(P0)−σ(Pi)))∗(σ
s
K|k(bj) · tσs(Ea)(σ

s(P0)))
)

s=0,...,n−1

=
(

σsK|k(bj) ·
y(s)(σ(P0))

y(s)(σ(Pi))
· tσs(Ea)(σ

s(P0))
)

s=0,...,n−1

=
(

σsK|k(bj) ·
∑n

ℓ=1 σ
s
K|k(bℓ) · yℓ((P0)⊚)

∑n
ℓ=1 σ

s
K|k(bℓ) · yℓ((Pi)⊚)

· tσs(Ea)(σ
s(P0))

)

s=0,...,n−1
.

This vector is of course invariant under the Galois operation of K|k. Let
C be the inverse of the matrix ((σs(bj)))s=0,...,n−1,j=1,...,n; this is a matrix of

the form
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((σs(cu)))u=1,...,n,s=0,...,n−1. Going back, we have

(τ(P0−Pi)⊚)∗(tj((Pi)⊚))

=
n−1
∑

s=0

σsK|k(bj) ·
∑n

ℓ=1 σ
s
K|k(bℓ) · yℓ((P0)⊚)

∑s
ℓ=1 σ

s
K|k(bℓ) · yℓ((Pi)⊚)

· (
n
∑

u=1

σs(cu)(tu((P0)⊚)))

=
n
∑

u=1

n−1
∑

s=0

σsK|k

(

bj ·
∑n

ℓ=1 bℓ · yℓ((P0)⊚)
∑s

ℓ=1 bℓ · yℓ((Pi)⊚)
· cu

)

· (tu(P0)⊚) .

Let cj,u := bjcu ·(
∑n

ℓ=1 bℓ ·yℓ(P0)⊚) ∈ K. (Note here that these constants

are independent of P1, . . . , Pm.) Then

(τ(P0−Pi)⊚)∗(tj((Pi)⊚))

=

n
∑

u=1

n−1
∑

s=0

σsK|k

( cj,u
∑n

ℓ=1 bℓ · yℓ((Pi)⊚)

)

· tu((P0)⊚) .

Let ιi : Vi →֒ ResKk (E) be the immersions. It follows that there are

constants ci,j,u ∈ K (again independent of P1, . . . , Pm) with

(

(τ(P0−Pi)⊚)∗ ◦ (ιi)∗
)

ti,j((Pi)⊚)

=
n
∑

u=1

n−1
∑

s=0

σsK|k

( ci,j,u
∑n

ℓ=1 bℓ · yi,ℓ((Pi)⊚)

)

· tu((P0)⊚)

=
n
∑

u=1

n−1
∑

s=0

(

σsK|k(ci,j,u)
∑n

ℓ=1 σ
s
K|k(bℓ) · yi,ℓ((Pi)⊚)

)

· tu((P0)⊚) .

Let

M0 :=
((

n−1
∑

s=0

σsK|k(ci,j,u)
∑n

ℓ=1 σ
s
K|k(bℓ) · yi,ℓ

))

u=1,...,n , (i=1,...,m,j=1,...,dim(Ui))

∈ k((yi′,j′)i′=1,...,m,j′=1,...,n)
{1,...,n}×(

⋃m
i=1

⋃dim(Ui)
j=1 {(i,j)}) .

Note here that as indicated M0 is a matrix over k((yi′,j′)i′=1,...,m,j′=1,...,n

because the entries are invariant under the Galois operation. The matrix

has the size n×n. It is however more convenient to use the indicated indices

for the columns. Note further that for no (P1, . . . , Pm) ∈ Em(K) with

x(Pi) ∈ Ui for all i satisfying Condition 4.1 and for no i, s,
∑n

ℓ=1 σ
s(bℓ) · yi,ℓ

vanishes at ((P1)⊚, . . . , (Pn)⊚).

We have a direct sum decomposition of T0(Res
K
k (E)) as in (16) if and

only if the matrix M0((P1)⊚, . . . , (Pn)⊚) is non-singular.
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By Proposition 2.2 we know that this matrix is non-singular for

(P1, . . . , Pn) = (P0, . . . , P0). In particular, the matrix M0 itself is non-

singular.

We now multiply the columns ofM by polynomials such that the entries

of the resulting matrix are polynomials. Concretely, we multiply all columns

with column index (i, j) with the polynomial
∏n−1

t=0 (
∑n

ℓ=1 σ
t
K|k(bℓ)·yi,ℓ). The

resulting matrix is

M =

((

n−1
∑

s=0

σsK|k(ci,j,u) ·
n−1
∏

t = 0
t 6= s

(

n
∑

ℓ=1

σtK|k(bℓ) · yi,ℓ
)))

u=1,...,n , (i=1,...,m,j=1,...,dim(Ui))

∈ k[(yi′,j′)i′=1,...,m,j′=1,...,n] .

Let d := det(M) ∈ k[(yi′,j′)i′,j′ ]. Again for (P1, . . . , Pm) as above, d

vanishes at ((P1)⊚, . . . , (Pm)⊚) if and only if the homomorphism a′m is un-

ramified at ((P1)⊚, . . . , (Pm)⊚). Furthermore d does not vanish identically

on V1,× · · · × Vm because it does not vanish at ((P0)⊚, . . . , (P0)⊚).

We want to study the vanishing locus of d on

V1×· · ·×Vm and derive an upper bound on the number of k-rational points

in the locus.

An entry of M with column index (i, j) is a homogeneous polynomial in

the variables yi,1, . . . , yi,n of degree n− 1. Therefore d is multihomogeneous

with respect to the sets of variables (yi,1, . . . , yi,n)i=1,...,m of multidegree

(dim(U1) · (n − 1), . . . , dim(Um) · (n − 1)). The total degree is therefore

n2 − n. We want to prove:

Proposition 4.2 The number of k-rational points in the locus of d on

V1 × · · · × Vm is at most n5 · 4n · qn−1.

Proof. Let us first mention the following general fact.

Lemma 4.3 Let f be a non-trivial polynomial in Fq[x1, . . . , xn] of total de-

gree d. Then V (f) contains at most d · qn−1 Fq-rational points.

Proof. As Fq[x1, . . . , xn] is factorial, we are immediately reduced to the case

that f is irreducible. If now f = xn − a for some a ∈ Fq, we are done. Let

us assume that this is not the case and let a ∈ Fq. Now f is not divisible

by xn − a. This means that not every coefficient of f as a polynomial in

Fq[xn][x1, . . . , xn−1] is divisible by xn − a, in other words, the polynomial

f(x1, . . . , xn−1, a) is non-trivial. The result now follows by induction on n. 2
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We will use resultants to eliminate the “y-variables”. Let us consider the

polynomials f , fj and f(i),j as polynomials in the “y-variables”. Now let

F := Z2 · f(x, Y
Z
) ∈ K[x][Y, Z] ,

Fj := Z2 · fj(x1, . . . , xn,
Y1
Z
, . . . ,

Yn
Z

) ∈ k[x1, . . . , xn][Y1, . . . , Yn, Z] ,

F(i),j := Z2 · f(i),j(xi,1, . . . , xi,dim(Ui),
Yi,1
Z
, . . . ,

Yi,n
Z

)

∈ k[xi,1, . . . , xi,dim(Ui)][Yi,1, . . . , Yi,n, Z]

be the homogeneous polynomials of degree 2 obtained by “homogenizing

with respect to the y-variables to a homogeneous degree 2 polynomial”.

Let us consider k[x][Y, Z], k[x1, . . . xn][Y1, . . . , Yn, Z] and

k[xi,1, . . . , xi,dim(Ui)][Yi,1, . . . , Yi,n, Z] as graded rings in the second set of vari-

ables. Let V i be the scheme defined by (F(i),j)j=1,...,n in

Proj(k[xi,1, . . . , xi,dim(Ui)][Yi,1, . . . , Yi,n, Z]) ≃ A
dim(Ui)
k ×Pn

k . We have a com-

mutative diagram of canonical embeddings

Vi
� � //

� _

��

V i� _

��
ResKk (E) = V (f1, . . . , fn)

� � // V (F1, . . . , Fn) .

Lemma 4.4 For each i, the embedding Vi →֒ V i is an isomorphism.

Proof. We have to show that V i has no points “at infinity”, that is, the

intersection V (Z) ∩ V i is trivial. We show in fact the stronger statement

that V (Z) ∩ V (F1, . . . , Fn) is trivial.

Let f (s) := σsK|k(f)(x
(s), y(s)) and let F (s) := F (x(s), Y (s), Z) for s =

0, . . . , n− 1.

Let us consider the isomorphism of graded K-algebras

K[x1, . . . , xn][Y1, . . . , Yn, Z] −→ K[x(1), . . . , x(n)][Y (1), . . . , Y (n), Z]

x(s) 7→
n
∑

j=1

σsK|k(bj) · xj , Y (s) 7→
n
∑

j=1

σsK|k(bj) · Yj , Z 7→ Z .
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We have the following commutative diagram over K:

Spec(K[x1, . . . , xn])
×

Spec(K[y1, . . . , yn])

//
Spec(K[x(1), . . . , x(n)])

×
Spec(K[y(1), . . . , y(n)])

ResKk (E) = V (f1, . . . , fn)K
?�

OO

//
� _

��

V (f (1), . . . , f (n)) =
∏n−1

s=0 σ
s
K|k(Ea)

?�

OO

� _

��
V (F1, . . . , Fn)K //

� _

��

V (F (1), . . . , F (n))
� _

��

Spec(K[x1, . . . , xn])
×

Proj(K[Y1, . . . , Yn, Z])

//
Spec(K[x(1), . . . , x(n)])

×
Proj(K[Y (1), . . . , Y (n), Z])

Here the horizontal maps are induced by the isomorphism mentioned

above. They are clearly isomorphisms. One can easily see that the mid-

dle morphism on the right is an isomorphism: We have F (x(s), Y (s), 0) =

(Y (s))2, and the scheme V ((Y (1))2, . . . , (Y (n))2, Z) is trivial. Therefore the

middle morphism on the left is an isomorphism too. 2

Let us fix the following notation: For b ∈ N0, (P0)
b
⊚

is the point

((P0)⊚, . . . , (P0)⊚) with b entries. Let now for ℓ = 0, . . . ,m the k-scheme Vℓ
be the following subscheme of V1 × · · · × Vm:

Vℓ := V1 × · · · × Vℓ × (P0)
m−ℓ
⊚ .

Furthermore, let dℓ ∈ k[(yi′,j′)i′=1,...,ℓ,j′=1,...,n] be the polynomial ob-

tained from d by evaluating yi′,j′ for i
′ = ℓ + 1, . . . ,m and j′ = 1, . . . , n at

(P0)⊚. Note that dℓ does not vanish identically on Vℓ because it does not

vanish at (P0)
ℓ
⊚
.

We want to show by induction on ℓ:

#(Vℓ ∩ V (d))(k) ≤ ℓ · n4 · 2n · (2q)(
∑ℓ

i=1 dim(Ui))−1

Recall here that dim(Ui) = dim(Vi).

The induction base is ℓ = 0. As d does not vanish at (P0)
ℓ
⊚
, the set

V0 ∩ V (d) is empty. Therefore the claim holds.

So let ℓ ≤ m be given and let us assume that the claim holds for ℓ− 1.

The set (Vℓ ∩ V (d))(k) can be divided into two disjoint parts: The first

part consists of the points (P1, . . . , Pℓ) with dℓ−1(P1, . . . , Pℓ−1) = 0. The

second part consists of the points (P1, . . . , Pℓ) with dℓ−1(P1, . . . , Pℓ−1) 6= 0.
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We first consider points in the first part. As over each point of A1(K)

there lie at most 2 points of Ea(K), over each point An(k) lie at most two

points of ResKk (Ea)(k). In particular, over each point of Ak[Uℓ](k) lie at most

2 points of Vℓ(k). Because of this and because of the induction hypothesis,

there are

≤ (2q)dim(Uℓ) · (ℓ− 1) · n4 · 2n · (2q)(
∑ℓ−1

i=1 dim(Ui))−1

= (ℓ− 1) · n4 · 2n · (2q)(
∑ℓ

i=1 dim(Ui))−1

points in the first part.

We now consider points in the second part.

Let (P1, . . . , Pℓ−1) ∈ V1(k) × · · · × Vℓ−1(k) with dℓ−1(P1, . . . , Pℓ−1) 6= 0,

that is, dℓ(P1, . . . , Pℓ−1, (P0)⊚) 6= 0.

The polynomial

dℓ(P1, . . . , Pℓ−1) ∈ k[yℓ,1, . . . , yℓ,n] ⊆ k[xℓ,1, . . . , xℓ,dim(Uℓ), yℓ,1, . . . , yℓ,n]

is now non-trivial on Vℓ. As – by the conditions we have imposed – Vℓ is

irreducible, Vℓ ∩ V (dℓ(P1, . . . , Pℓ−1)) is of codimension 1 in Vℓ by Krull’s

Hauptidealsatz, with other words, it is of dimension dim(Uℓ)− 1.

The polynomial dℓ(P1, . . . , Pℓ−1) is already homogeneous with respect to

yℓ,1, . . . , yℓ,n; let d ∈ k[Yℓ,1, . . . , Yℓ,n, Z] ⊆ k[xℓ,1, . . . , xℓ,dim(Uℓ)][Yℓ,1, . . . , Yℓ,n, Z]

be the polynomial obtained by substituting Yℓ,n for yℓ,n. This is a homoge-

neous polynomial of degree dim(Uℓ) · (n−1) with respect to Yℓ,1, . . . , Yℓ,n, Z.

As Vℓ = V ℓ (Lemma 4.4), we have

Vℓ ∩ V (dℓ(P1, . . . , Pℓ−1)) = V ℓ ∩ V (d) =

V (F(ℓ),1, . . . , F(ℓ),n,d) ⊆ Spec(k[xℓ,1, . . . , xℓ,dim(Uℓ)])× Proj(k[Yℓ,1, . . . , Yℓ,n, Z]) .

Let Res = Res(G1, . . . , Gn+1) be the dense multivariate resultant for n+1

homogeneous variables and polynomials of (homogeneous) degrees 2, . . . , 2,

dim(Ui) · (n − 1). Here, the G1, . . . , Gn+1 are independent generic polyno-

mials, that is, polynomials with algebraically independent coefficients. (As

in [Die11b], the similarity between the notation for the Weil restriction and

the resultant is accidental.)

By taking the resultant of the system F(ℓ),1, . . . , F(ℓ),n,d with respect

to Yℓ,1, . . . , Yℓ,n, Z, we obtain Res(F(ℓ),1, . . . , F(ℓ),n,d), which is a non-trivial

polynomial in k[xℓ,1, . . . , xℓ,dim(Uℓ)]. For some point Q ∈ An(k), the resultant

Res(F(ℓ),1, . . . , F(ℓ),n,d) vanishes at Q if and only if there is a k-rational point

in V ℓ ∩ V (d) = Vℓ ∩ V (dℓ(P1, . . . , Pℓ−1)) over Q.

We want to determine the multidegree of this polynomial. First we

consider the degrees of Res as a polynomial on the coefficients of the Gj . By
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[GKZ94, subsection 3.3 A] we have: For j = 1, . . . , n, Res is a homogeneous

polynomial of degree dim(Uj) · (n − 1) · 2n−1 < n2 · 2n−2 in the coefficients

of the Gj . The inequality is obtained as follows: As m ≥ 2, dim(Uj) ≤
⌈n2 ⌉ ≤ n+1

2 . Furthermore, Res is a homogeneous polynomial of degree 2n

in the coefficients of Gn+1. Moreover, F(ℓ),j has degree at most 3 in the

xℓ,j′ (j
′ = 1, . . . , dim(Ui)) and d obviously has degree 0 in the xℓ,j′ .

Therefore, Res(Fℓ,1, . . . , Fℓ,n,d) has degree at most n · 3 · n2 · 2n−2 in

each of the variables xℓ,j′ . Its total degree is thus at most 3n4 · 2n−2. By

Lemma 4.3, the locus the resultant contains at most 3n4 ·2n−2 ·qdim(Uℓ)−1 k-

rational points. As over each of these points lie at most two k-rational points

of Vℓ ∩ V (d(P1, . . . , Pℓ−1)), this set contains at most 6n4 · 2n−2 · qdim(Uℓ)−1

points. We now let P1, . . . , Pℓ−1 vary, and we obtain that there are at

most 6n4 · 2n−2 · qdim(Uℓ)−1 · (2q)
∑ℓ−1

i=1 dim(Ui) = 6n4 · 2n−1 · 2
∑ℓ−1

i=1 dim(Ui)−1 ·
q
∑ℓ

i=1 dim(Ui)−1 < n4 ·2n · (2q)(
∑ℓ

i=1 dim(Ui))−1 points in the second part of the

set (Va ∩ V (d))(k). (We use that dim(Uℓ) ≥ 2 as m ≤ n
2 .)

Altogether, there are less than ℓ · n4 · 2n · (2q)(
∑ℓ

i=1 dim(Ui))−1 points in

(Vℓ ∩ V (d))(k).

This concludes the proof of Proposition 4.2. 2

There are at most 3 K-rational ramification points in Ea under x|Ea
.

Therefore, there are at most 3 ·2m−1 ·qn−1 < 2n ·qn−1 tuples in F1×· · ·×Fm

which do not satisfy Condition 4.1. Proposition 4.2 gives therefore:

Proposition 4.5 The number of tuples in F1×· · ·×Fm which do not define

isolated decompositions is at most (n5 · 4n + 2n) · qn−1.

The case that q is even and j 6= 0

Let a ∈ K be the ramification point of Ea over A1
K . Then

dx|E

x|E−a is a

holomorphic differential on E.

Proceeding just as above, we obtain a non-trivial polynomial

d ∈ k[(xi,j)i=1,...,m,j=1,...,dim(Ui)] of total degree n
2 − n such that for points

(P1, . . . , Pm) ∈ E(K)m with x(Pi) ∈ Ui satisfying Condition 4.1,

((P1)⊚, . . . , (Pm)⊚) is an isolated reduced point in its fiber if and only if

d((P1)⊚, . . . , (Pm)⊚) = 0.

There are at most (n2−n)·qn−1 points in the locus of d on An
k . Moreover,

over each point of A1(K) are at most two points of E(K). The number of

points (P1, . . . , Pm) ∈ V1(k)×· · ·×Vm(k) satisfying Condition 4.1 which are

not isolated reduced points in their fiber is therefore at most 2m · (n2 − n) ·
qn−1. Therefore:

Proposition 4.6 The number of tuples in F1×· · ·×Fm which do not define

isolated decompositions is at most 2m · n2 · qn−1.
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The case that q is even and j = 0

In this case, dx|E itself is a holomorphic differential on E. It follows that

(τ(P0−Pi)⊚)∗(ti,j((Pi)⊚)) = (ti,j((P0)⊚)) for any P ∈ Ea(K). Therefore, the

morphism a′m : V1×· · ·×Vm −→ ResKk (E) is unramified everywhere and we

obtain:

Proposition 4.7 Every decomposition is isolated.

The final result of the analysis

All in all, we have:

Proposition 4.8 For

• 25n ≤ q
or

• q even, n3 ≤ q and m ≤ ⌈
√

log2(q)⌉

the following holds: The probability that a uniformly randomly distributed

point of E(K) has an isolated decomposition is in

1

eO(mn)
=

( 1

emn

)Ω(1)
.

We remark here that the condition m ≤ ⌈
√

log2(q)⌉ is satisfied for m in the

preliminary algorithm presented in the introduction.

Proof. Let first q be odd and the first condition satisfied. By the condi-

tions in subsection 2.5, we have #Fi ≥ 1
4 · qdim(Ui) for all i and therefore

#(F1 × · · · × Fm) ≥ 1
4m · qn ≥ 1

4n · qn. By Proposition 4.5, at most

(n5 · 4n + 2n) · qn−1 of these tuples do not define isolated decompositions.

So if n5 · 4n + 2n ≤ 1
2 · 1

4n · q, we have at least 1
2 · 1

4n · qn tuples which do

define isolated decompositions. This is for example the case if 25n ≤ q and

n is large enough, and for every fixed n it holds if q is large enough. By

Proposition 3.3 a) the image of the set of tuples in F1×· · ·×Fm which define

isolated decompositions has a size of 1
eO(mn) · qn. The probability that a uni-

formly randomly distributed point in E(Fqn) has an isolated decomposition

is therefore in 1
eO(mn) .

We now consider the case that q is even. The proof is similar to the pre-

vious one, only that we now apply propositions 4.6 and 4.7. We now want

that the condition 2m ·n2 ≤ 1
2 · 1

4m ·q is satisfied, that is, 2 ·23m ·n2 ≤ q. This
is always satisfied under the first condition, that is, 25n ≤ q. Furthermore,

under the condition that m ≤ ⌈
√

log2(q)⌉ the desired condition is in par-

ticular satisfied if 2n2 ≤ 2log2(q)−3⌈
√

log2(q)⌉. This condition is for example
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satisfied if n3 ≤ q and n is large enough, and it holds for every fixed n if q

is large enough. 2

Derivation of Theorem 2

Finally, we show how Theorem 2 follows. In addition we show that in

characteristic 2 one can obtain a result which on first sight seems to be

an improvement over Theorem 2 but is in fact further improved upon by

Theorem 3 which relies solely on Theorem 2.

As already mentioned in the outline in the introduction, the basic struc-

ture of the index calculus algorithm is the same as that in [Die11b]. So we

only discuss the constructions surrounding the definition of the factor base

and briefly the relation generation and the linear algebra part, using the

results proved above. For an overview over the complete algorithm, we refer

to subsection 2.3 of our previous work.

The input to the index calculus algorithm consists of a field extension

Fqn |Fq, an elliptic curve E/Fqn and points A,B ∈ E(Fqn) and B ∈ 〈A〉 such
that 25n ≤ q or q is even and n3 ≤ q. The following considerations hold for

q and n large enough. An algorithm for all instances under consideration

running in the claimed expected time can be obtained by running the index

calculus algorithm “in parallel” with a brute force computation.

Similarly to the “preliminary algorithm”, we setm := min{⌈
√

log2(q)⌉, ⌊n2 ⌋}.
(We need m ≤ n

2 in order to be able to apply the algorithm for the con-

struction of a decomposition of K in subsection 2.5.) So d = ⌈ nm⌉ ≤
max( n√

log2(q)
+ 1, 3) and thus Poly(qd) ⊆ eO(max(log(q),n·

√
log(q))).

The expected running time of the construction of the decomposition ofK

and the definition of the factor base is in Poly(n·qd) ⊆ eO(max(log(q),n·
√

log(q)))

(see Proposition 2.10). We have an algorithm for the “new decomposition

problem” with an expected running time of Poly(emn ·log(q)) ⊆ eO(n·
√

log(q))

and a success probability of 1
eO(mn) (see propositions 3.3 and 4.8). Therefore

the expected running time of the relation generation part is in Poly(en·
√

log(q)·
m · qd) ⊆ eO(max(log(q),n·

√
log(q))). The linear algebra part has an expected

running time of Poly(m · qd) ⊆ eO(max(log(q),n·
√

log(q))).

In total, we obtain an expected running time of

eO(max(log(q),n·
√

log(q))) .

We recall again that we only considered instances with 25n ≤ q or q even
and n3 ≤ q so far. The derivation of Theorem 2 is now analogous to the

derivation of Theorem 1 from [Die11b, Proposition 2.11].
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We make the following case distinction: If 25n ≤ q, we apply the index

calculus algorithm directly. If 25n > q, we set a := ⌈ 5n
log2(q)

⌉ and apply the

index calculus algorithm to the curve EFqan
, the field extension Fqan |Fqa and

A,B. Now 25n ≤ qa, thus we can conclude that the index calculus algorithm

runs in an expected running time of eO(max(log(qa),n·
√

log(qa))) = eO(n3/2).

This gives Theorem 2 except that in the theorem the field extension

Fqn |Fq is not given with the input data. As already pointed out in [Die11b],

one can apply the above algorithm with all possible field extensions “in

parallel” to obtain the desired result.

In addition to the derivation of Theorem 2 we now consider only instances

in characteristic 2. Under this condition, we can proceed as follows: For

n3 ≤ q we apply the index calculus algorithm directly. For n3 > q, we set

a := ⌈3 log2(n)log2(q)
⌉ and proceed as above. We obtain an expected running time

of eO(n·
√

log(n)). In total, we obtain an expected running time of

eO(max(log(q), n·log(q)1/2, n·log(n)1/2)) ; (19)

with q = 2m this is

eO(max(m,n·m1/2, n·log(n)1/2)) . (20)

We note however that for the derivation of Theorem 3 we only apply

Theorem 2 under the condition that n ≤ m. Under this condition, we do

not have an improvement upon the expected time given in Theorem 2, and in

fact Theorem 3 improves upon the expected time given by (20) if m ∈ o(n).
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Appendix: Misprints in the previous work

I would like to take the opportunity to correct two misprints in [Die11b].

• In subsection 4.2 the following situation is considered: Let k be a field,

let n1 > n2, and let p : (P1
k)

n1 =
∏n1

i=1 Proj(k[Xi, Yi]) −→ (P1
k)

n2 =
∏n2

i=1 Proj(k[Xi, Yi]) be the projection to the first n2 factors. Let hi
be the class of V (Xi) in any of the two Chow rings. Lemma 4.6 is

on the push-forward map p∗ : CH((P1
k)

n1) −→ CH((P1
k)

n2), which is a

group homomorphism. There is a misprint in the lemma. The correct

statement is:

Let e ∈ {0, 1}n1. Then p∗(h
e1
1 · · ·he1n1

) = he11 · · ·he2n2
(rather than being

1) if en2+1 = · · · = en1 = 1 and p∗(h
e1
1 · · ·he1n1

) = 0 otherwise.

Computations with the push-forward map are used only once in the

analysis of the algorithm, namely in equalities (6) in subsection 4.5.

Here, the correct statement is applied.

• In Proposition 4.28 a subset M of {(P1, . . . , Pn) ∈ E(K)n |
∀i = 1, . . . , n : ϕ(Pi) ∈ P1(k)} is fixed and a lower bound on the

number of elements P ∈ E(K) such that there exists a ϕ-isolated de-

composition (P1, . . . , Pn) of P or −P with P1, . . . , Pn ∈ M is given.

This lower bound is a difference, and in the subtrahend a factor of n!

is missing. The correct lower bound is:

#M − n3 · n! · 22n2−n · (q + 1)n−1

n! · 2n2

In a similar way, the next lower bound is also incorrect. All following

bounds are correct again and no further changes have to be performed

for the proof of Proposition 4.29. Proposition 4.28 is also cited for

Proposition 5.9 in [Die11a], which is concerned with an application for

fixed n. This proposition is not at all affected by the cited misprint.
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