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Zusammenfassung

Fiir eine feste endliche, separable Korpererweiterung K|k kann man
jeder quasi-projektiven K-Varietat auf funktorielle Weise eine quasi-
projektive k-Varietat hoherer Dimension, die sogenannte Weil-Restrik-
tion, zuordnen.

Diese Arbeit ist dem Studium verschiedener Aspekte dieser Varietiten
gewidmet. Der Schwerpunkt liegt zuerst auf Resultaten rein theoreti-
scher Natur. Spater werden diese Resultate angewandt, um potentielle
Angriffe auf das diskrete Logarithmus-Problem in Klassengruppen von
Kurven uber endlichen Nicht-Primkorpern darzulegen.
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Foreword

For a fixed finite, separable extension of fields K|k, one can attach in a
functorial way to every quasi-projective K-variety a higher-dimensional
quasi-projective k-variety, the so-called Weil-restriction.

This work is devoted to the study of various aspects of these varieties.
At first, the emphasis is on purely theoretical results. Later these re-
sults are applied to outline potential attacks on the discrete-logarithm
problem in class groups of curves over finite non-prime fields.

Historical background and motivation

Let K|k be a finite Galois extension of fields, X’ a quasi-projective K-variety. '
Then there exists a quasi-projective k-variety W which has in particular the
properties that X'(K) ~ W(k) and Wxg = W ®; K is a product of Galois-
conjugates of X’'. Within the framework of arithmetic algebraic geometry, W is
defined by the property that for all k-schemes Z, there exists a functorial bijection
W(Z) =2 X'(Z @ K).

To prove the existence of W one can for example define a certain 1-cocycle
datum for a product of Galois-conjugates of X’ and then apply “descent” as in
A.Weil’s paper “The field of definition of a variety”; see [We-F|. Although Weil
does not state it explicitly, his paper even contains a construction of W as a
subvariety of some concrete projective space; see proof of [We-F, Proposition 1].
In honor of him, W is often called the Weil-restriction of X' (with respect to K|k).
(Here, the word “restriction” refers to the fact that the base-field is “restricted”
from K to k.) We follow this terminology.

Weil-restrictions of abelian varieties were studied to solve various problems of
arithmetic algebraic geometry and thus also number theory. Prominent examples

!Throughout this work, if we are given an extension of fields K|k, we will denote varieties
over k by X,Y, etc., and varieties over K by X', Y’ etc.

iii
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are Milne’s proof that the conjectures of Birch and Swinnerton-Dyer for abelian
varieties over the rationals imply the conjectures for abelian varieties over all
number fields and Honda'’s theorem about the classification of isogeny classes of
abelian varieties over finite fields; see [Mi-AA] and [Ho| respectively.

With the rise of arithmetic algebraic geometry, Weil-restrictions were shown
to exist in a much a more general context. A construction of the Weil-restriction
in a very general setting can be found in the book “Néron Models” by Bosch,
Liitkebohmert and Raynaud; see [BLR, 7.6].

After Weil-restrictions where successfully studied to solve problems of “pure
mathematics” for decades, a new direction of research was shown by Frey in a talk
in 1998; see [Fr]. He suggested to use Weil-restrictions of elliptic curves both as a
tool to construct as well as to break discrete-logarithm problems.

The general idea for the use of Weil-restrictions as a means to construct attacks
on the discrete-logarithm problem in the group of rational points of an elliptic
curve over a finite non-prime field is that as an abelian variety of dimension greater
than 1, a Weil-restriction has “more structure” than the original elliptic curve.

In particular, Frey noted that for a fixed elliptic curve and a fixed constant
field extension, it should be possible to transform the DL-problem in the group of
rational points into DL-problems in class groups of curves on the Weil-restriction.
Thus it should in principle be possible to transform the original DL-problem into
DL-problems in class-groups of curves of higher genera over a smaller field. If one
finds a suitable curve on the Weil-restriction whose genus is not too high, it should
be more efficient to solve the DL-problem in this curve than in the original elliptic
curve. This is suggested by the results of Gaudry and Enge; see [En], [EG], [Gau].

As discrete-logarithm problems are one of the bases of public-key cryptography
(another one being the factorization problem), this shows that Weil-restriction may
be relevant from an applied point of view as well.

The first results in this direction were obtained by Galbraith and Smart, and
the first major paper in this new direction was written by Gaudry, Hess and Smart;
see [GHS].

Introduction

In this work we study Weil-restrictions of varieties both from a pure as well as from
an applied point of view. In particular, we show how questions on Weil-restrictions
of abelian varieties motivated by the cryptoanalytical applications outlined above
can often be proven directly from the defining functorial properties.

Conversely, the problem of finding curves of low genus on Weil-restrictions
of a (non-singular, projective, geometrically integral) curve X' is by the defining
functorial property equivalent to finding certain coverings of X’. Most of the time
it is probably easier to find these coverings of X' (where one can use Galois theory)
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than to find curves on the Weil-restriction using hyperplane-sections.

Thus when trying to transform the DL-problem in the class group of curve
X' over a non-prime finite field into a potentially easier DL-problem in a class
group of a curve defined over a smaller field, we emphasis on a Galois-theoretic
approach. We would like to regard the Weil-restriction as being only a tool provid-
ing the necessary background to motivate that we indeed transform the original
DL-problem into an equivalent problem.

The work consists of three chapters and an appendix. Each chapter has its own
introduction. The main results are mostly stated in or around a “theorem”. 2
Whenever stating a theorem, we have tried to include all necessary conditions to

understand the context properly.

In the chapter one, we first give basic definitions related to Weil-restrictions of
varieties and schemes. After having given two constructions of the Weil-restriction
in rather abstract settings, we study its first properties. Then we restrict ourselves
to a projective variety X'/K with a rational point and study the Weil-restriction
of X' with respect to a Galois field extension K |k. We analyze the Picard functor
of the Weil-restriction W and relate it to the restriction of the Picard functor
of X'. In the third section we first give an introduction to Weil-restrictions of
abelian varieties. Then we derive the structure of the endomorphism ring of Weil-
restrictions of an abelian variety over finite fields.

For the second chapter, let K|k be a Galois field extension of perfect fields
and let A be an abelian k-variety, > W the Weil-restriction of Ax with respect to
K|k. In the first section, we give a description of Endg (V) as a skew-group-ring
over Endg (Ak). We then restrict ourselves to the case that A is an elliptic curve
E. Then W is isogenous to the product of £ and an abelian variety N called its
trace-zero-hypersurface. We study the Néron-Severi group of N and in particular
the polarizations of N. As a first step towards the determination of the Néron-
Severi group of N we include a study of the Néron-Severi group of a product of
elliptic curves. In the last section of this chapter, we study an affine open part of
N with explicit equations for the particular case that the extension degree [K : k|
equals 3.

The third chapter is entirely devoted to cryptoanalytical applications. Let &
be a finite field, K|k a field extension of prime degree n. Let X' be a non-singular,
geometrically irreducible curve over K. Assume that X’ has “cryptographically
good” properties. In particular, the group CI°(X"’) of classes of divisors of degree
0 should have a large prime factor. Let C be a non-singular, geometrically irre-
ducible curve over k with a covering C ®;, K — X’. Using this covering, we have

2A Less important result is called “proposition”, a smaller or more technical result is called
“lemma”. The reader should keep in mind however that when we cite a result and call it “propo-
sition” or “lemma” it may in fact be a theorem deeper and more important than the “theorems”
in this work.

3In our terminology, Ax is an old abelian variety. Thus the title of the chapter.



vi FOREWORD

an explicit morphism from C1°(X’) to C1°(C). The hope is that if the genus of C
is not “too large”, perhaps the discrete-logarithm problem in the group CI1°(C) is
“easier” than the discrete-logarithm problem in the original group C1°(X"). Apply-
ing results of the previous two chapters, we will give theoretical results predicting
when the large prime factor to be preserved under the morphism to C1°(C). Then
we use Galois theory to construct rather explicitly some examples.
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Notations

Isomorphisms

We use three different signs to denote isomorphisms: If we merely want to indicate
that two objects X and Y are isomorphic with some isomorphism we write X =~ Y.
Most of the time, the isomorphism will be in a certain (obvious) sense “canonical”.
If this is the case, we write X ~ Y. If we want to stress that an isomorphism is

[1a 22

in a certain sense functorial, we write — Thus if we are given two categories
C, D, two functors F,G : € — D, an isomorphism of functors ¥ ~ G and X a
C-object, we write F(X) = G(X).

Let C be a category, Ens the category of sets, F : € — Ens a contravariant
functor. Let F be a C-object, u € F(F). Then by

¢ : Hom(—,F) — F, p(a) := F(a)(u)

a natural transformation is defined. Recall that if ¢ is an isomorphism, one says
that F with the universal element v represents F.

Now assume that we know that F is representable. Then the representing
object F with u is unique up to a unique isomorphism. 4 We think of F and u as
being fized. Thus, if F' with ' is some object representing F, we write F ~ F'.

Rings and Schemes

All rings and schemes considered in this work are assumed to be contained in some
fixed universe.

If k is a field, we fix an algebraic closure and denote it by k. The separable
closure of k inside k will be denoted by k5P,

All schemes will assumed to be locally Noetherian, i.e. we will work entirely
in the category of locally Noetherian schemes which are contained in some fixed
universe.

Fix some scheme S and let X be an S-scheme. Then for any S-scheme T,
we call the S-morphisms from T to X T-valued points of X. Let Y be another

“One speaks of “the” representing object. Note however that if one speaks of “the” or “a”

representing object one always means an object with a fixed universal element.
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S-scheme. Any S-morphism X — Y induces by “push-forward” a functorial
morphism (in T') from the T-valued points of X to the T-valued points of Y.
Conversely, any such functorial morphism determines an S-morphism from X to
Y. 5 We will often use this fact to construct morphisms from X to Y. When we
do so we speak of .-valued points for T-valued points for some T'.

If X and Y are S-schemes, then the T-valued points of product X xg Y will
be be denoted by (P,Q), where P € X(T), Q € Y(Q) (analogous notation for
products consisting of more factors).

If X and Z are S-schemes, we denote the product X xg Z also by Xz. If we
use this notation, we think of X as being fixed and Z as being variable.

In the context of schemes, all rings will automatically assumed to be com-
mutative. Let A be a (commutative) ring. Let X be an A-scheme, by which
we mean a scheme over Spec(A). Let B be an A-algebra. Then we denote
Spec(X) Xgpec(a) Spec(B) by X ®4 B or simply by Xp.

Let 1 : X — Y be a closed immersion, o : Z — Y some morphism. Then by
a~!(X) we always mean the scheme-theoretic preimage, i.e. a~'(X) := X xy Z
where the product is taken relative to ¢ and «. If « is also a closed immersion, we
denote X Xy Z also by X N Z.

Following [Ha, 11,4,p.103], a quasi-projective morphism X — Y is a morphism
which factors into an open immersion followed by a projective morphism. Likewise,
an immersion is a morphism which factors into an open immersion followed by a
closed immersion.

Let k£ be a field. A k-variety X is a separated and reduced scheme of finite
type over k. Note that we do not assume X to be irreducible or geometrically
reduced. Similarly, a k-curve is a separated and reduced scheme of finite type over
k which is equidimensional and of dimension 1.

If X is an irreducible K -variety, we denote its function field by k£(X). Note that
X is geometrically integral (i.e. geometrically reduced, geometrically irreducible)
iff £(X)|k is regular.

Galois coverings

Let h : 8" — S be a Galois covering of schemes with Galois group G (in the
sense of [SGA I, V]). This means by definition (in particular) that there is a fixed
injective anti-homomorphism G — Autg(S').

This anti-homomorphism induces a homomorphism G°PP — Autg(S’). We
identify G°PP with its image.

We denote the elements of G by bold letters. The corresponding operators

of h are usually denoted by the same symbol in “usual” letters, i.e. we have an
injective anti-homomorphism o — o.

®This is a trivial fact from category theory: For any category €, the functor X — Hom(—, X)
is a full and faithful. A less trivial fact is that it suffices to define a morphism of schemes on
ring-valued points.
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If G is commutative, we identify G with G°PP and denote the elements of G
also by “usual” letters.

Now let 8" = Spec(K) and S = Spec(k) be spectra of fields. Then h is
determined by the field homomorphism h# : k — K.

The extension K|k given by h# is finite and Galois with Galois group G, the
galois group of h. (In particular, we denote the automorphisms of the extension
K|k also by bold letters.) The anti-homomorphism G — Autg(S’) is given by
o + o where o is given by o = 0¥ € G = Aut(K k).

The Picard group

Let X be a scheme. Sheaves on X are denoted by L, M, etc.

The Picard group is the group of isomorphism classes of invertible sheaves on
X, denoted Pic(X). Its elements are denoted by L, M, etc.

A morphism ¢ : X — Y induces a group-homomorphism * : Pic(Y) —
Pic(X).

Let k be a field and let X be a non-singular, geometrically reduced, geomet-
rically irreducible, projective k-variety with a k-rational point. Let Pic(X) be
the Picard functor Z —Pic(X xj Z)/p5Pic(Z), where py : X Xy Z — Z is the
projection. We denote the elements of Pic(X)(Z) by L, M, etc. Under our as-
sumptions on X, the Picard-functor is representable, and we denote a representing
object of Pic(X) by Pic(X) and the universal element by P. The Picard-scheme,
Pic’(X), is the connected component of the zero of Pic(X). We still denote
the universal element by P. Under the isomorphism Hom(—, Pic(X)) ~ Pic(X),
Hom(—, Pic®(X)) corresponds to a functor which we denote by Pic?(X).

Let X, Y be k-varieties as above, 9y : X — Y a morphism. Then the
“pull-back” Pic(Y) — Pic(X) induced by 1 is denoted by 9* and so is the

corresponding morphism between the Picard schemes. 6

Abelian varieties

Let k be a field. An abelian k-variety is a geometrically integral, projective k-
group-variety. The addition on A is denoted by “+”.

Let A be an abelian k-variety.

If we speak of the endomorphism ring of A we mean the ring of endomorphisms

of Aover k, i.e. the endomorphisms of A; defined over k. It is denoted by Endy(A).
Likewise, the endomorphism algebra of A is the ring End})(A) := End}(4) ®7 Q.

If we say that two abelian k-varieties are isogenous or isomorphic, we mean
isogenous or isomorphic as abelian k-varieties. We denote isogeny by ~.

The same applies also to complex multiplication: By saying that an elliptic
k-curve has complex multiplication, we mean that E has complex multiplication

A brief exposé of the Picard functor and the Picard scheme can be found in subsection 1.2.2.
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and the complex multiplication is defined over k.

Let Z be some k-scheme, P a Z-valued point of A. Then the translation by
P is the morphism Tp =ida, + Popz : Az — Az, where py : Az — Z is the
projection.

A dual abelian variety is denoted by 2, the universal divisional correspondence
by P. By definition, Pic(A)(Z) = Z( Z) where Z is a k-scheme.

Ifa:A — Bi isa morphism, the dual morphism is denoted by a. With other
words, @ : B —> A is just another notation for o* : Pic® (B) — Pic%(A).

Let M be an invertible sheaf on A. Then ¢p : A — A is the morphism
associated to the natural transformation Homy(—, A) — Pic®(A) with is given
on Z-valued points by P +— T5p% (M) ® ¢(M)~!, where gz : Az — A is the
projection.

Following [Mi-A], a polarization of A is a morphism ¢ from A to its dual A
such that ¢ ®j id; = ¢y : Az — EE for some ample sheaf M on Az.

The group NS(A) := Pic(A)/Pic’(A) is called Néron-Severi group.

For any natural number n, we denote the (scheme-theoretic) kernel of n :
A — A by A[n].

Let K|k be a finite field extension, A" an abelian K-variety. Then, if A’ is
defined over k, i.e. if there exists an abelian k-variety A such that A’ ~ A ®; K,
we say that A is an old abelian variety (relative to K|k). If A’ is not isogenous to
an abelian variety defined over k or some proper intermediate field A of K|k, then
we call A" a new abelian variety (relative to K|k).

Note that if the extension degree [K : k| is prime, every abelian K-variety is
either a new abelian variety or it is isogenous (not necessarily isomorphic) to an
old abelian variety.



Chapter 1

Basic properties of
Welil-restrictions

Introduction and results

Let k be a field, K|k a finite separable field extension and X'/ K a quasi-projective
variety. The base-restriction of X' with respect to K|k is the functor Resf (X”)
defined by Resl (X')(Z) := X'(Z ® K) for any k-scheme Z. It can be shown
that the functor Res/ (X') is represented by a k-variety Res) (X’), the so-called
Weil-restriction of X'; see Proposition 1.4.

In the first section of this chapter we give two constructions of the Weil-
restriction in a more general situation and show basic properties of it.

In the second section we “pull-back” the invertible sheaves on X’ to invertible
sheaves on the Weil-restriction. It follows in particular that the Weil-restriction
of a quasi-projective variety with a fixed immersion into some projective space
is in a canonical way immersed in some higher dimensional projective space; see
Proposition 1.13.

Let K|k be a finite Galois extension, let X’ be a non-singular, projective K-
variety with a K-rational point. We show that under certain conditions on X’,
the Weil-restriction of the Picard scheme of X’ is an abelian variety which is
canonically isomorphic to the Picard scheme of the Weil-restriction of X’. This
is rather obvious for abelian varieties where the Picard scheme is nothing but the
dual abelian variety; see Proposition 1.20. It is also true if char(k) = 0 or X’?
has a “smooth, proper global lifting”; see Theorem 1, p. 25. (This assumption
is always fulfilled if X' is a curve.) The proof relies on the fact that the Picard
scheme of a product of varieties over an algebraically closed field is — under our
assumptions — reduced and isomorphic to the product of the Picard schemes of
the factors.

In the third section, we begin with the study of the Weil-restriction of abelian
varieties. Using the results of the previous section, we show how the Weil-
restriction of X’ inherits the polarizations of X’. In particular, if X’ is principally

1



2 CHAPTER 1. BASic PROPERTIES OF WEIL-RESTRICTIONS

polarized, so is the Weil-restriction.

We then derive the structure of the endomorphism algebra of the Weil-restric-
tion of an abelian variety with respect to an extension of finite fields (see Theorem
2, p. 29) and show that for prime extension degree [K : k], the Weil-restriction of
an abelian K-variety which is not isogenous to an abelian variety defined over k
is simple (see Theorem 3, p. 31).

The study of the Weil-restriction of abelian varieties will be continued in the
next chapter where we consider the Weil-restriction of an abelian variety which is
defined over k. (Such abelian varieties will be called old abelian varieties.)

1.1 Definition and construction of
Weil-restrictions

In this section, we give the definition of “base-restriction” of a functor. Then
we show how to construct the Weil-restriction of a quasi-projective scheme with
respect to a finite and locally free morphism via “restriction of scalars”. Here, we
follow [BLR, 7.6]. In the case that the base-morphism is étale, we show how to
construct the Weil-restriction via a “geometrical approach”. We then restrict our-
selves to the case that the base-morphism is Galois and show how the “geometric
construction” is related to the construction via “restriction of scalars”. Finally
we show how the arithmetic operation of the Galois group induces a geometric
operation on the Weil-restriction.

We start more abstractly with an abstract category instead of a subcategory
of the category of locally Noetherian schemes. This abstract setting is in no way
more difficult.

In order to define base-restriction properly, we first define the functor “base-
change”. This is done in the first subsection.

1.1.1 Base-extension and base-change

We fix some universe U and denote the category of sets which are contained in
this universe by Ens.

Let C be a category whose objects are contained in U.

Let D be another category whose objects are contained in U. Then for some
functors F,G : € — Ens, the natural transformations between ¥ and G form a
set. Thus the covariant functors from € to D form a category, denoted Hom(C, D).
Analogously, the contravariant functors form a category, denoted Hom°PP (€, D).

If X and Y are two objects of C, we denote the set of morphisms between X
and Y by Hom(X,Y). An S-object is a morphism « : X — S, and a morphism
between S-objects a: X — S and f:Y — S is a morphism ¢ : X — Y such
that Sop =a.
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As usual, we write X for X — S and Homg(X,Y") for the set of morphisms
of S-objects X and Y. For any S € € let €/S be the category of S-objects.

Definition Let F,§: € — Ens be contravariant functors, o : ¥ — G a natural
transformation, T' some object of € and ¢ € §(T'). Then idy — ¢ defines a natural
transformation 8 : Hom(—,T) — G, v € Hom(Z,T) — §G(v)(t) € §(Z).

F

|
B
Hom(—,T) m 9

Now let F xgT : €/T — Ens be defined as follows:

T xg T(Z) = F x5 T(1) == { € F(D)laz(f) = fz(n)}, 7 : Z — T a T-object
and for a morphism f : Y — Z of T-objects by
FxgT(f):= ?(f)|‘3"><9T(Y)

Assume that in C fiber products exist, i.e. for all S € €, products exist in the
category C/S. Let F be represented by (F,u) with u € F(F), § by (G,v) with
v € §(G). Let F xg T be the fiber product of the morphism F — G which
is associated to o : ¥ — G and the morphism T' — G which is associated to
f:Hom(—,T) — G,let z: F xgT — F, y: F xgT — T be the structural
morphisms. Then F xg T is represented by (F xg T, F(z)(u)), where we regard
F x@ T as a T-scheme via y.

Definition Let F:€/S — Ens be a contravariant functor. The base-eztension
of F with respect to a morphism 7" — S is the functor FxsT = Fp : €/T — Ens
defined by
Fr(Z) :=F(Z), Z a T-object
and for a morphism f :Y — Z of T-objects by
Fr(f) = F(f): FY) — F(2)

Note that this definition can be regarded as a special case of the preceding defini-
tion with €/S instead of € and with G the trivial functor which assigns to every
object the set of one element.

(—)r is a covariant functor from the category Hom°PP(C/S, Ens) to the cate-
gory Hom®PP(C/T, Ens). The images of group-objects are group-objects.

Again assume that in € fiber products exist. Let T — S be a morphism and
let X be an S-object. If Z is a T object, then Homg(Z, X)r = Homg(Z, X) ~
Homp(Z, X xgT), i.e. Homg(—,X)r is represented by some product X xg T
(regarded as T-object) with the structural morphism X xg T — X.
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Since by assumption the objects of € form a set, we can apply the axiom of
choice. For every X, we choice products X xg T (together with the structural
morphisms).

Now let f : X — Y be an S-morphism. Then we define f xXg T to be the
unique morphism such that the diagram

Hom(—, X xgT) —— Hom(—, X)r
lHOmT(—,fXST) lHOmS(_af)T
Hom(—,Y xgT) — Hom(—,Y)r

1s commutative.

We obtain the functor base-change —xgsT : €/S — €/T, and by construction,
we have a natural isomorphism

Homp(—, X xgT) = Homg(—, X)r.
By considering the image of idx 7, we see that the diagram
XxgT——X
lf xsT Lf
Y x¢T ——Y
is commutative. Since by definition f xg T is also a T-morphism,

fXST:fXSidT.

1.1.2 Base-restriction

Let € be again a category whose objects are contained in the universe U and in
which fiber products exist. Let h : S’ — S be a morphism in €. Let ' : €/S" —
Ens be a contravariant functor.

Definition The base-restriction of F' with respect to h is the following con-
travariant functor Res3 (F) = Res"(F') : €/S — Ens:

Res"(F')(Z) :=F'(Z x5 S"), Z an S-object
and for a morphism f:Y — Z of S-objects by
fResh(X')(f) = g"l(f Xg idsl) : 3",(2 Xg SI) — SI(Y Xg SI)
In particular Res”(F7)(S) = F'(S’). Res" is a covariant functor from the category
Hom®PP(C/S’, Ens) to the category Hom®PP(C/S, Ens).
The images of group-objects are group-objects and Res” restricts to a covariant
functor from the category Hom°PP(€/S’, Ens) to the category Hom®PP(C/S, Ens).

Note In [BLR] base-restriction is called “direct image” and is denoted by h,J.
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Let X’ € €/S’. Then X' induces the functor Homg/ (—, X') : €/S" — Ens.
We denote Res"(Homg:(—, X')) by Res"(X') = Resd (X'). So Res"(X')(Z) =
HOmS/(Z Xg S’,X’) = X’(Z Xg SI)

With this definition, Res” is a covariant functor form the category €/S’ to the
category HomPP(C/S, Ens).

“Base-extension” commutes with “base-restriction”:
Lemma 1.1 Let T — S be a morphism, T' :=T xg S’. Then
(ResS ()7 = Res. (Fy).
(Functorially in F'.)
Proof Let Z be a T-scheme. Then

ResT (55,)(Z) 2 Fu(Z xq T') = F(Z xq T') =
F(Z x5 8") = Resg (F)(Z) = (Res? (F))r(Z).

a

Lemma 1.2 LetT — S, T':=T x5 S'. Let a: X' — T'. Then

Resh (X') = Res? (X') X Ress! T.

(")

Here the right-hand side is defined by Res(a) and id € Resg (T")(T) (which defines
the natural transformation Homg(—,T) — Resgl ().

Proof Let v:Z — T’ be some T'-scheme. Then
ResT (Z) = Homp/ (Z x7 T', X') =

{B€Homg (Z xr T, X") a0 B =vxrT, ie. Resd ()(B) =y xrT'} =

Res g (X') X gess gy T(Z).

Let F: €/S — Ens be a functor. Then the morphisms F(7) — F(Z xgS') =
Fs1(Z xg S') induce a natural transformation

F — Ress (Fg).
This is natural in F. Thus we get a natural transformation
id — Res? (()gr),

where id is the identity functor on the category Hom®PP(C/S, Ens).
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Let X be an S-scheme. Then by this construction we get a natural transforma-
tion
Homg(—, X) — ResS (X x5 ).

given by a — a Xgidg. It is defined by mapping the identity on X to the identity
on X xgS’, and it is natural in X.

Lemma 1.3 If the morphism S' — S is faithful (i.e. if the functor — x S’ :
/S — €/S" is faithful), then the natural transformation Hom(—,X) —
Res? (X xg 8') is injective.

a

1.1.3 Weil-restrictions of schemes

In the following and in the rest of the paper we will use the above definitions
only for the category Sch of locally Noetherian schemes which are contained in
the fixed universe U.

We will see that within this category for special h and quite general X', the
base-restriction Res”(X') is representable. We call a representing object the Weil-
restriction of X' with respect to h : ' — S and denote it by Res? (X').

Idea of the construction by restriction of scalars

Assume that S =Spec(A), S’ =Spec(B), where B = Aay & -+ ® Aay, is a finite
and free n-dimensional A-module. Let X' =Spec(B[X1,...,Xn]/(f1,---,f1)) be
affine and of finite type. The coordinates X; define a closed immersion X’ —
A7 = Spec(B[X1,...,X]). We use this immersion to define a scheme W which
represents fResgl (X"), the Weil-restriction of X' with respect to S" — S. It can
be constructed by “restriction of scalars”:

Fix some A-algebra C'. The idea is to express the m coordinates of some
C ®4 B-valued point P of A} in the basis («j,...,ay) of the A-algebra B. This
gives a point p in A}, and expanding out the “equations” f; in the new variables
gives equations f; ;, i =1,...,1, 7 =1,...,n. Now P satisfies the f; iff p satisfies
the f; ;. One then proves that the scheme constructed in this way has the correct
property not only for every A-algebra C but for any S-scheme Z.

An example

We give a small example to present the idea:

Let K|k be a quadratic field extension with K = k(a) where o? = a € k.
Let V' be the affine variety in A% given by XY = 1. We are interested in
the C' ®) K-valued points of this variety (for any k-algebra C'). Let P be an
arbitrary C ®; K-valued point of A% with coordinates X = X(P), Y = Y(P),
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X =21@p 14220, Y =y1 @ 1 + 92 . (With z;,1; € k.) Then the defining
equation XY = 1 becomes

(z1y1 + azoys — 1) @k 1 + (21y2 + 22y1) O @ = 0.
This equation is satisfied iff (z1, z2,y1,y2) satisfies
Ty +axeye = 1, 1y2 + x2y1 =0

Let W be the k-scheme defined by these equations. From the construction,
W(C) =2 V'(C ® K) for all k-algebras C. From a general argument (which
we will formalize below), it follows that one can generalize this functorial iso-
morphism from affine k-schemes to arbitrary schemes. It follows that W is the
Weil-restriction of X' with respect to K|k.

We will now formalize these ideas and prove that the variety W constructed
in this way has indeed the correct properties for any S-scheme 7.

Formal construction

Let S =Spec(A), S" =Spec(B) where the ring B is a free A module on the bases
ai,...,0, as above. Let also X' be as above. For each i = 1,...,1, let f;; €
Alz11,...,Zmp] be defined by

fi,lal + o+ fz',na’n = fi(qf'l,lal + o Tip0n, . Ty + e +$m,nan)
€ B[$1,17---7xm,n]7

where the right-hand side is the image of f; under the map
B[Xl, R ,Xm] — B[:L‘Ll, . ,xm,n], X; — Ti10 + 0+ XTipOn.

Let W :=Spec(Alx1,1, -, Tnml/(fij)i=1,...1, j=1,..1)-

Now, if C' is any A-algebra, then C 4 B=C®4 01 @ - B C Q@4 oy, and it
is immediate that a C' ® 4 B-valued point of X’ (i.e. a solution of f;, 1 =1,...,n
in C ®4 B) corresponds under “restriction of scalars” to exactly one C-valued
point of W (i.e. to a solution of the f;;, i = 1,...k, 7 =1,...,n in C). This
correspondence is functorial in €. Thus W (with the natural transformation
“restriction of scalars”) represents .‘Resg, (X') in the category of affine schemes.

Now let Z be an arbitrary S-scheme and let ZxgS" — X’ be an S’-morphism.
Then any open affine part Z% of Z induces a morphism Z% x ¢ S’ — X' and thus
a morphism Z% — W. If Z% is another open affine part of Z, then we also get
a morphism Z” — W and from the functoriality of the construction, it follows
that both morphisms agree on the intersection Z® N Z° (because they agree on
all open, affine subsets of the intersection). Thus by glueing we get a morphism
7 — W. This construction is again functorial in Z. Moreover, any morphism
7 — W determines again by functoriality and by glueing a unique morphism
7 — X'. So, W is indeed a representing object for the functor Resgl (X").
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[The last step follows from fact that Res3 (X') has the “sheaf property with
respect to the Zariski topology” i.e. one can glue morphisms (see [BLR, p.194])
and the general fact that if an affine scheme represents a functor in the category of
affine schemes and the functor has the sheaf property with respect to the Zariski
topology than the scheme represents the functor in the full category of schemes.]

With this construction, the Weil-restriction of an affine scheme regarded as
closed subscheme of m-dimensional affine space is canonically a closed subscheme
of m - n-dimensional affine space.

Proposition 1.4 (/[BLR, 7.6, Theorem J]) Let S,S" be schemes, h : S' — S
a morphism which is finite and locally free. Let X' be an S’-scheme (locally)
of finite type. Assume that for each s € S and each finite set of points M C
X' xg Spec(r(s)) (where k(s) is the residue class field at s), there is an affine
open subscheme U’ of X' containing M. (E.g. X' is a quasi-projective S’-scheme.)
Then the base-restriction is representable by an S-scheme (locally) of finite type,
i.e. the Weil-restriction of X' with respect to h exists and is (locally) of finite

type. 1

proof (outline) We can assume that S and S’ are affine and that S’ — S is finite
and free. For affine X', one can construct the Weil-restriction by “restriction of
scalars”. For general X', one glues the representing objects of the open affine
parts of X' to get a scheme W. This can be done since the Weil restriction of an
open inclusion is an open inclusion. Then one constructs a natural transformation
Hom(—, W) — Res? (X') using the fact that W has the “sheaf-property with
respect to the Zariski-topology”. Now one uses the assumption to show that this
natural transformation is a bijection. O

For the rest of this subsection, let S" — S be finite and locally free and let X’
be an S’-scheme which fulfills the assumptions of the proposition.

We denote an S-scheme which represents Res”(X') by Res? (X'). We will
often abbreviate it by W. By definition as a representing object of Resg' (X",
there is a universal morphism u = uxs : Res? (X') xg &' — X’ such that if
Y is any S-scheme and ¢ : Y xg S’ — X’ is a morphism, there is a unique
morphism b: Y — W such that c=wuo (b Xgidg) : Y xg S" — X’. As usual,

n [BLR], the proposition is stated without the assumption “locally of finite type”. That the
Weil-restriction is locally of finite type if X' is follows easily from the construction. That the
Weil-restriction is of finite type if X' is, is a more difficult result. — It follows from [BLR, 7.6,
Proposition 5 (e)] and our general assumption that all schemes considered be locally Noetherian.
Further properties of the Weil-restriction depending on properties of X’ and the base-morphism
S — S are given in [BLR, 7.6, Proposition 5]. In the subsequent parts of this work, we will
restrict ourself to the case that S is connected, X' is quasi-projective over S’ and the base-
morphism is étale. Under these assumptions, we will proof all properties of the Weil-restriction
we need.
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(Res? (X'), ) is unique up to unique isomorphism.
c

u

YXSS,

Res? (X') x5 S’ X' (1.1)

bXSidSI

Y . Resd (X')

If S, 5" and X' are affine (with notations as above) and Res? (X') is constructed
by “restriction of scalars” as above, then w is given by

B[X1,..o, X/ (fi)i=1,.0 — Blz11s -y Tmnl/(fij)i=1,..15=1,..n; (1.2)
X — Q1T 1 + -+ apTin. ’

Let Y’ be another S’-scheme which fulfills the assumptions of the proposition.
As said above, every S’-morphism v : X’ — Y induces a natural transforma-
tion Res? (7) : Resd (X') — Res? (Y') which is given by,“push—forwa,rd”. This
natural transformation corresponds to a morphism Res? () : Res? (X') —
Resgl(Y’ ). By the universal property of Resgl(Y’ ), the morphism in the lowest
line of the following commutative diagram exists, is unique and equal to Resg, ().

X7 il y! (1.3)

Uxr Uy

Res? (X') x5 S’ Res? (Y') xg S’

| |

Res? (X) Res? (V')

!
Resg ()

Let S = Spec(A), S’ = Spec(B) be affine, where B is a free A-module on the
generators aq,...,a,. Let X' = Spec(B[X1,...,Xn]/(f1,---, 1)), Y = Spec
(B[Y1,...,Yzl/(g1,---,97)- Let v: X" — Y’ be given by Vi + h;(X1,..., Xm).
Then yux is given by Y; — hi(a1z11+ -+ onTip, ..., 01T + - + @nTimp).
Let h;; be defined by hi(aizii + -+ + anZip,s. - Q1m0 + - + Tmp) =
hiion + ...+ h; poy,. Then Resgl () is given by y; j — h; ;.

Let S be connected. Let X be an S-scheme and let X' := X xg S’. (Again
assume that X’ — S’ fulfills the assumptions of the proposition.) By assumption,
the morphism S’ — S is flat and surjective, thus it is faithfully flat. In particular,
it is faithful, i.e. the functor — xg T is faithful. By Lemma 1.3 the natural
transformation Hom(—, X) < Res? (X) is injective. We get a morphism ¢ :
X — Resgl (X") which is uniquely defined by

idX/ =Uuo (L Xg idsl) (1.4)
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and which is injective on .-valued points.

Lemma 1.5 Let S be connected and let X — S be separated such that X Xg
S" — 8’ fulfills the assumptions of the proposition. Then 1 : X — Resgl (X xg
S") is a closed immersion.

Proof Since X — S is separated, so is Resgl (X') — S’; see [BLR, 7.6, Propo-
sition 5], under the assumption that X' is quasi-projective over S’ and S’ — S
is étale, this follows also from the construction of W in the next subsection.

Now (1.4) implies that ¢ xg idgs is a closed immersion:

The morphism (of topological spaces) X gidg is injective. Since Res? (X') —
S' is separated, the subset U’ := {z € Resy (X')| (v xg idg') o u(z) = z} of
Res? (X') is closed. If C" is a closed subset of X’, then tx gidg (C") = U'Nu~"(C"),
and since U’ is closed, this is also closed in Resg, (X'") xg S'. Thus 1 xgidg is an
injective, closed morphism of topological spaces.

For all z' € X', (1.4) induces an isomorphism of local rings

# (LXsid /)
U S
Oxr g — = Ox7 (1xsidgr ) (@/) — = Ox ar-

Thus .# : oyesg’(X’)sz' — 1*(Ox) is surjective.

This means that ¢ x gidg is a closed immersion. Since the morphism S’ — S
is faithfully flat, we obtain that + : X — Resgl (X') is a closed immersion; see
[SGA I, VIII, Corollaire 5.5.]. O

1.1.4 The étale case

Now let S be connected and let S — S be an étale covering, i.e. a finite, flat and
unramified morphism; see [SGA I, I] for details. (For example, S’ and S could
be spectra of fields, and S’ — S could be induced by a finite separable field
extension.)

Let X' be a quasi-projective S’-scheme. We will give an alternative construc-
tion of the Weil-restriction in this case. In this construction we will define a
T'-scheme W' for some Galois covering 7' — S and a Galois-operation on W'.
By [SGA I, V], the quotient scheme of W' under the Galois-operation exists. This
quotient scheme will be the Weil-restriction.

Note that under our assumption that all schemes considered be locally Noethe-
rian, “finite and flat” is equivalent to “finite and locally free”; see [Ha, III, Propo-

sition 9.2. (e)]. Thus we will consider a special case of the situation in Proposition
1.4.

Base-change by étale coverings

Before we come to the construction of the Weil-restriction via Galois-operation,
we first fix some notation.
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Let 7' be an S-scheme and let o : T" — S’ be an étale covering of S-schemes. 2
Then let 0~ '(X’) be the T’-scheme defined by the following Cartesian diagram 3

o H(X") ——= X' (1.5)
|
T’ s’

We denote the morphism o~!(X’) — X' in the first row of (1.5) by o.

Let 0 : T" — S', 7 : T'" — T' be S-morphisms. Then (o7)~!(X’) and
7 (o1 (X")) are naturally isomorphic as S’-schemes. We denote the composition
(o7) Y (X" ~ 77 (o7 (X")) = 071 (X") also by 7.

If o is an isomorphism, we denote (o~ ')~1(X) also by o(X).

By base-change, an S’-morphism « : X’ — Y’ induces an S’-morphism o :
o Y(X") — o 1(Y"). If o is an isomorphism, then a” = 0!
denote a?~ " also by o(w).

With this definition, p” : o~!(X') — S’ is the left hand side morphism in
(1.5).

ao. In this case, we

Let S = Spec(4), S’ = Spec(B) and T' = Spec(C) be affine. Let X' =
Spec(B[z1,- .., Zm]/(f1,---, f1)) be affine and of finite type. Then o : 7" — S’ is
given by an A-morphism o# : B — C.

Let 0 : T' — S’ be as above and extend the morphism o¢# : B — C
to an “arithmetic” A-morphism o# : Blzy,...,zm] — C[z1,...,2m] given by
B 3 b+ 0#(b), x; = x;. Then the diagram

Clar, ..., xml /(0% (f1), - 0*(f))) <2 Bla1, ..., xm]/(f1,- - f1)

| |

C ~ B

is co-Cartesian and thus defines the underlying ring of o~ (X’). If S, 8, 7" or X'
are not affine, 0~ !(X’) and the morphisms of diagram (1.5) can be defined like
this locally.

2The morphism ¢ : T' — S’ might also be a pro-étale covering, i.e. a projective limit of étale
coverings (provided T” is still locally Noetherian). For example, S’ — S might be defined by a
finite separable extension of fields K|k, and o : T' — S’ might correspond to an inclusion of K
into k*°P.

3The S’-scheme Uﬁl(X’) with the morphisms as in the diagram is unique up to a unique
S’-isomorphism. In the following we will assume that for all S-schemes S’ and T', S’-schemes
X' and S-morphisms ¢ : ' — S we have chosen such a o~ !(X").
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Note that in the case that o : T" — S’ is an isomorphism, the following diagram
is Cartesian.

X' =X’ (1.6)
!
S/

[

T —=g'.

Thus 0~'(X') is (canonically isomorphic to) X' regarded as T'-scheme via the

-1
structure morphism X' — ' 2 T

Construction

We now construct the Weil-restriction of X’ with respect to S — S via Galois-
operation. If S” — § is itself Galois, the construction is relatively easy and will
be described in the next subsection. Here we continue with the general case.

We first need the following lemma which is a generalization of the fact that for
every finite separable field extension K|k there exists a splitting field. This means
that there exists a finite Galois field extension L|k, included in k, such that the
image of all inclusions of K|k into k is contained in L.

Lemma 1.6 There exists a connected Galois covering f : T' — S such that:

Fizing a geometric point Py of S and a geometric point Qo of T' over Py, every
geometric point P’ of S’ over Py defines by Qo — P’ a unique morphism T — S’
over S.

Proof This follows from the construction of the étale fundamental group (.S, P);
see [SGA T, Vi4,g)]. [If S’ is connected, in the terms of the étale fundamental
group, S’ — S corresponds to a conjugacy class in (S, Py) of subgroups of
finite index. T" corresponds to the intersection of all subgroups in the conjugacy
class. This is a normal subgroup of 71 (S, Py) of finite index.] O

Fix such a T' with Galois group G. This means by definition that there is a
fixed injective anti-homomorphism G < Autg(T"). [Since T" is connected, this is
an isomorphism.] 4

This anti-homomorphism induces a homomorphism G°PP < Autg(T"), where
G°PP is the opposite group of G (i.e. there is an anti-isomorphism G — G°PP).
We identify G°PP with its image.

We denote the elements of G by bold letters and the corresponding elements
of the opposite group G°PP by usual letters, i.e. we have an injective anti-homo-
morphism o — o.

“In [SGA I, V], the Galois group operates from the right. Writing all homomorphisms from
the left, we obtain an anti-homomorphism G — Auts(T").
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Let
W' = H o HX").5
o:T—S'
For future application, we fix the notation that p, : W' — o 1(X’) is the
projection to the “o-th” factor.

Now define a Galois-operation of W’ which is compatible with the operation
of Gon f:T' — S as follows:

For 7€ G, let 7: [[,.p_ g0 " (X) — [I,.pv_.g 0" (X') be defined on
~valued points by (Py), — (7 0 Pyr)s, i€

Py OT =T O Pyr. (17)
Lemma 1.7 The map G°°* — Autg(W'), 7 — T is a group-homomorphism.
Proof

ﬁo(%o(Pﬂ)O’):ﬁO(TZOPO'TQ)O':

(TITZ o P0'7'17'2)0' = 7/{7—:2 o (Pa)cr

|

Since we assumed that X' is quasi-projective, so is W’ and the quotient scheme
W := W'/G under this operation exists; see [SGA 1, V, Proposition 1.8]. More-
over, since the operation is compatible with the Galois-operation on f : T — S,
the quotient scheme is an S-scheme with W xg T ~ W'.

We now show that W is the Weil-restriction of X’ with respect to S’ — S.

Let Z be some S-scheme. We will establish a functorial bijection between the
7 x g S8'-valued points of the S’-scheme X' and the Galois invariant Z x ¢ T"-valued
points of the T'-scheme W'. (These points are functorially in bijection with the
Z-valued points of W.)

We start with the Z xg¢ S’-valued points of X’. If P is such a point, then
(P?), is Galois-invariant. (In fact, for 7 € G, 7o (P?)y o7 ! = (tP"77 1), =
(P77 )y = (P7),.)

Lemma 1.8 The map P — (P7), is an bijection between the 7 Xg S'-valued
points of X' and the Galois-invariant Z x g T'-valued points of W'.

Proof The map is obviously injective. We now show that all Galois-invariant
7 x g T'-valued points of W' have this form.

Let (P,)s be a Z x g T'-valued point of W’. Then this point is Galois invariant
iff (1P,,7 Y, = (Py), forall T € G, i.e. Py, = P for all 7 € G. Assume that
this is the case.

SHere and for the rest of the subsection, morphisms are always assumed to be S-morphisms.
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Let SI, i =1,... be the connected components of S’, ¢; : S} < S’ the immer-
sions. Let U(O),Ul(l), ... be the S-morphisms T — S!. The sets {LZ'O'Z(J) |7=0,...}

i
are the orbits of the operation of G on the set of o : T' — S,

Fix some 7. We will show that there is some Z xg Si-valued point P; of

X! = 1, }(X') with P &= P;’f]) for all j. By the universal property of the
disjoint union, the ;P define a morphism P : Z xg S, — X' with P? = P, for
allo: T — S,

(0)
’ —1
group. Then O'Z(O) (X;) — X! and Z xsT' — Z x g S| are also Galois with the
same Galois group.

Now, o,/ : T" — S} is a connected Galois covering, let H; < G be its Galois

(0)
For all 7 € H;, P" ,, = P ©_= P (. Thus P = Pigl for some
Lio; Lio; T L;0; L;0;
()

Z x g S;-valued point P; of X|. Because G operates transitively on the aij , We

also have Pbmi(j) — Piaﬁf) for all j. O

We have thus seen that W is the Weil-restriction of X’ with respect to 8" — S.
The Weil-restriction is again quasi-projective, and if X' is projective, it is also
projective. In Subsection 1.2.1, we will show that if we fix some immersion of
X' into a projective space, W is immersed in some concrete higher-dimensional
projective space, the immersion being canonical up to an isomorphism of the
surrounding projective space.

After we have constructed W, equation (1.7) can be reinterpreted by

p; = Por (18)
or — what is the same —
T(Ps) = Por-1- (1.9)

Let u : W — X' be the universal morphism. Then by definition, u corre-
sponds to the identity on W, which is of course given by (p,), : W' — W'. Tt
follows that

u’ = pr. (1.10)

By construction, W is quasi-projective and in particular separated. Many other
properties of X’ carry over to W' and then to W:

Lemma 1.9 Let S be connected and let h : S — S be étale. Let X' be a quasi-
projective S'-scheme and let W be the Weil-restriction of X' with respect to h.
Then

o If X' is projective, so is W.

o If X' is of finite type, so is W.
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o If X' is reduced, so is W.
o If X' is flat, so is W.

o If X' is smooth, so is W.

Lemma 1.10 Let h : 8" — S be given by a separable finite extension of fields.
Then

e If X' is geometrically irreducible, so is W.

o If X' is geometrically reduced, so is W.

We now review the Weil-restriction as a functor. Let v : X' — Y’ be an
S'-morphism. By diagram (1.3), Res? () : Res? (X') — Res? (V') is the
morphism which corresponds to the Resg (X') xg §'-valued point yu of X'.

By the above construction, especially (1.10), this is given by

Resg (7) xs T' = (7))o = (¥Po)o : [[o ' (X) — [[o (). (1.11)

Let h : 8" — S still be étale. Let n be the degree of h (i.e. the number of
geometric points over some geometric point of ).

Let X be a quasi-projective S-scheme, X' := X xg S'.

The quasi-projective S-scheme X is in particular separated, and by Lemma
1.5, the injective natural transformation Homg(—, X) < ResZ (X’) corresponds
to a closed immersion + : X — Res? (X'). After a base change T' — S as
above, Resg, (X') is isomorphic to X7, and ¢ xg idp = (id)!; : Xpr — X7
This shows again that ¢ X gidv is a closed immersion, and as S’ — S is faithfully
flat, sois 1 : X — Resgl(X’).

1.1.5 The Galois case

We now restrict ourselves to the case that the base-morphism S’ — S is Galois.

Let h : S — S be Galois with Galois group G. Again let X’ be a quasi-
projective S’-scheme. Then the “geometric construction” of the Weil-restriction
becomes much easier:

Let W' := [, cqooo 0 ' (X'). As above, define a Galois-operation on W' by
7 +— T where 7 : (P,)yeqore — (T 0 Pyr)geovr.

Since by assumption X’ and thus also W' is quasi-projective, the quotient
scheme W := W'/G exists; see [SGA I, V, Proposition 1.8]. We will now show
that W which universal element u := 0jq is the Weil-restriction of W’ with respect
to S’ — S.



16 CHAPTER 1. BASic PROPERTIES OF WEIL-RESTRICTIONS

Fix some S-scheme Z. Then the Z xg S’-valued points of W’ which are
Galois-invariant are exactly the points of the form (P,)scgorr = (P7)gcgorr =
(071 (P))yeqovo, where P is a Z x g S’-valued point of X',

Thus P + (071 (P))seqorr is a bijection between the Z x g S’-valued points
of X’ and the Galois-invariant Z x g S’-valued points of W’. On the other hand,
by Galois theory the Galois-invariant Z x g S’-valued points of W' are in bijection
with the Z-valued points of W.

The bijection between the Z x ¢ .S’-valued points of X’ and the Z-valued points
of W is natural in Z. Moreover, the identity of W corresponds to the projection
piq from W' to X°.

So, W = W'/G with universal element u = pjq is the Weil-restriction for X’
with respect to S — S.

Remark This construction is of course closely related to the construction in the
étale case. For example, equations (1.7) to (1.11) still hold. However, the two
constructions are only equal if S” is connected.

Comparison

Again let S’ — S be Galois with Galois group G and let X' be a quasi-projective
S’-scheme. We show how the first construction arises in a natural way if one tries
to find W starting from W’ and the Galois action.

Since a Galois covering is by definition étale and finite, it is also locally free
(finite and flat is equivalent to finite and locally free [Ha, III, Proposition 9.2.]).

Assume that S = Spec(A), S’ = Spec(B) and X' are affine and that B is free
over A, B=a1A® -+ ® a,A and X' =Spec(B[X1,...,Xn]/(f1,---, 1)) as in
the “Formal construction” of Subsection 1.1.3. This presentation of X' defines
a closed immersion X' < A and if we fix this immersion, 0=!(X) is also im-
mersed in A%, and W' = [] cqopp 0 '(X’) is a closed immersion of A%} GoPP —
Spec(B[{zi g }i=1,..m,oecoer]). The closed immersion of W' is defined by the
presentation  B{%ig}i=1,...m,ceqorr] /(0% (f)) (@101 - - Tme )iz, ocqorr)  Of
Spec(W').

We try to find an affine A-scheme W and a B-isomorphism p: W ®4 B ~ W'
where under the isomorphism p, the Galois-operation on W' corresponds to the
natural operation of W ® 4 B induced by the operation G on B. If we have such
an isomorphism, W with p;q o p as universal element is the Weil-restriction of X’
with respect to S’ — S. (Unique up to a unique isomorphism.)

We think of W’ with its concrete representation as immersed in Ag™ETT,
We are searching for a closed subscheme W* of some affine B-space which is as
closed subscheme defined over A and an isomorphism between W* and W' which
is Galois-invariant. (Where the Galois-operation on W* is the one induced by the
canonical one of the affine space.)

We know already that Res’ (X’) ®4 B as constructed in Subsection 1.1.3 is
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such an affine scheme. It is embedded in AZ". The coordinate ring of AZ GPP s

the free B-algebra on z;,, 1 = 1,...,m,0 € G°PP and the coordinate ring of A"
is the free B-algebra on x11,...,Tmn.
The invertible matrix
o (1)
U#(O‘n)

oeGopPP

defines an isomorphism

p" : B{{Zi g }ict,...m,cecore] — BU{mijYiz1,...m, j=1,..n]
Tig > a#(oq)xi,l 4+ 4 a#(an)xi,n.

And this induces an isomorphism
. AmN m G°PP
p: A" — AR :

Let i = 1,...,I. Then under p*, o#(fi)(%1,6,...,%Tmo) is mapped to
a#(al)fi,l 4+ a#(an)fi,n, where the f; ; are defined as in Subsection 1.1.3.
As the matrix (o 4);» is invertible, the ideal generated by these elements for all
o € G°PP equals the ideal generated by f;1,..., fin. Therefore, the ideal gener-
ated by (o7 (f))(Z1,55- -+, Tme) for i =1,...,1, 0 € G°PP is mapped to the ideal
generated by f; ; fori=1,...,[, 5 =1,...,n.

Thus p identifies the Weil-restriction W' with Res (X’) ®4 B as constructed
in Subsection 1.1.3. It is also Galois invariant, as can be seen as follows:

P#?# (Tio) = P# (Tior) = T#U#(al)xi,l +oe T#U#(O‘n)xz n = T#P# (i)

Arithmetic becomes geometric operation

Let S' — S be Galois with Galois group G. ©
Let X be a quasi-projective S-scheme, X’ := X x¢S’. For 7 € G°PP, let

s, W =X w = x'¢
be given on .-valued points by

(Py)occorr = (Pyr)aegopp.

Then the Galois-operation on Wg = W' = X' is given by 7 +— 7 = 78, = s,7.
where 7 : X' — X'%"" is the “canonical” arithmetical operation induced by
base-change from S’ — S.
For any S-scheme Z, G operates on Res3 (X')(Z) = Homg(Z x5 S', X x5 S")
by
7(P) = rPr 1.

®For the moment and the next Lemma, S’ — S might also be a pro-Galois covering.
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These operations define an automorphism of the functor Resgl (X") which we de-
note again by 7, and G°P? — Aut(iResgl (X")) is a group-homomorphism. Let
Resgl (X")(Z)% be the set of Galois-invariant elements, and let fResg,(.)G be the
functor defined by Res? (X')¢(Z) := Res? (X')(Z)C.

Lemma 1.11 The inclusion Homg(—, X) < Res? (X') induces a bijection
Homg(—, X) = Res? (X)),
natural in X.

a

The automorphism 7 of the functor Resgl (X') defines an S-automorphism of
the representing object Resg, (X") which we denote by a.

We want to calculate how a, operates on Res? (Xgr) xg S & [ cqomm Xs =
X

We have 7(u) = 7(piq) = p,—1 by (1.8). The S-morphism a, of Resg (X') is
the Res? (X')-valued point of Res? (X’) which corresponds to 7(u). So a, =
(T(u))oegorr = ((Pr=1)7)geqorr = (Pr-15)occore (The last equation is again

(1.8).)

—

Lemma 1.12 a, operates on .-valued points by (Py)gecorr — (Pr-1,)0cgorr. In
particular, the group-homomorphism G — Aut(Res? (X')) =~ Autg(Res? (X))
18 1njective.

Compare this operation with the operation of s;!

Let X be a group-scheme. Then the map P+ Y _copp 0(P) defines a natural
transformation Res§ (X') — Res? (X')(.)¢ and thus by Lemma 1.11 a morphism

Res? (X') — Homg(—, X), (1.12)

which is natural in X. The composition Homg(—,X) < Res3 (X') —>
Homg(—, X)) is given by multiplication with |G/|.

1.2 Pull-back of sheaves to the Weil-restriction

1.2.1 Pull-back of modules

Let S be connected and S’ — S étale, X' a quasi-projective S’-scheme, W =
Res? (X'). Let T’ be as in Lemma 1.6 so that Wy ~ [, o~ 1(X").
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Let L be an quasi-coherent O xs-module on X'. Then Ly, := @, pro* (L) is
an Ow,,-module with

P Qi (L) = @ F Vpiot (L) 2 @ pt, ur ot (L) ~
Qs (07 1) (L) ~ Q) psot(L).

Let w; be the isomorphism from right to left. Then 7 +— w;, defines a 1-cocycle-
datum for the Oy _,-module Lyy,. Thus Ly, is a G-sheaf. Now, by Proposition
A.30, it “descends” to an Ox/-module Ly on W.

This module is (up to unique isomorphism) independent of the choice of T".
For, assume the construction was performed with two different f; : T — S,
fa : Ty — S. Call the resulting sheaves L%l,) and LE,%,). Then there exists a
f3 : Ty — S (again Galois and connected) such that f3 factors through f; and
fo. Now the pull-backs of L%,) and L%,) to W x g T4 are naturally isomorphic and
thus so are L%,) and LE,%,).

Let S and thus S’ be affine. By construction, if £ is a very ample invertible
sheaf, then Ly, = @, p;o*(L) is very ample and so is Ly. Since a sheaf is
ample, if some power is very ample, Ly is ample, if £ is ample.

The canonical embedding

Now let 8" — S be defined by a finite, separable extension of fields K|k of degree
n, let L|K be a splitting field of K|k, and denote the Galois group of L|k by G. Let
X' be a separated quasi-projective K-scheme with a fixed immersion X' — P72,

Then for o : Spec(L) — Spec(K) (over Spec(k)), o~ }(X) is immersed in P,
and via the Segre-embedding, W7y, is immersed in IP’S-JmH)nfl. — We want to show
that W is also immersed in (m + 1)® — 1-dimensional projective space. *

The immersion X’ — P corresponds to a very ample sheaf £ with global sec-
tions My, ..., M,, which generate L. The ring I'(X,L) is included in
T'(o 1(X),0*(L)). If we identify T'(X, L) with its image, the M; are again global
sections which generate o*(L).

Let ¢ run through all maps
(Spec(L) — Spec(K) (over Spec(k)) — {0,...,m}, o+ i,.

Then the M; are global sections of 0*(L) which generate the sheaf. The Segre-
embedding is defined by the (m +1)™ global sections ®,M;_ of Ly, = &), 0*(L),
which generate the sheaf.

"The following argumentation is inspired by A.Weil’s original use of the Weil-restriction in
[We-F].
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Now, I'(W, L) is included in T'(Wp,Lw, ), and we want to find (m + 1)"
global sections of Ly such that all ®,M;  are linear combinations of these (and
vice versa).

The L-module Ly, is isomorphic to the pull-back of Ly to Wr. For the
following argumentation we will identify these two sheaves on Wy,. There is a
Galois-operation on I'(Wp, Ly, ) and

D(Wr, Lw, )% = T(W, Lw).
(See the remark following Proposition A.30 for details.) Conversely,
F(WL,LWL) ~ F(W,Lw) R L

Here we use that “taking global sections commutes with flat base-change”, i.e
cohomology commutes with flat base-change” for the special case of 0-dimensional
cohomology groups; see [Ha, III, Proposition 9.3].

More generally, if H is any subgroup of G and L the corresponding fixed
field,
D(Wp, Lw, )2 ~ (W, Lw) @ L. (1.13)

Call the (m + 1)™ global sections ®,(M;,) of Ly, P, 1 =1,...,(m+ 1)". The
Galois group G operates on the set of P,.

For some [, let GG; be the stabilizer of P, in G, k; the fixed field of G} in L,
let [k; : k] = d. Choose a basis f1,...,04 of kj|k. Then by (1.13), there exist
QV",...,QY e (W, Lw) with

d
P=Y"pQY.
7j=1

For o € G, let 0% denote the corresponding operation on Lyw,. The orbit of P
under G has exactly d elements and 7% (P)) = E;l:l 7#(8;) Q;l) for all 7 € G.

Choose from every orbit of the operation of G on the set of L; one represen-
tative. Call this set P, P,,.... Then the Qg-li) are (m 4 1)" global section of Ly
which span the same linear space in I'(Wp, Ly, ) as the P, do.

. . . Dr=1 .o . .
We obtain an immersion W — Ichm+ ) which is canonical up to an isomor-

phism of IP),(cmH)n*l. Moreover, after base-change and identification of Wy with

[1,cc o' (X), this immersion is up to an isomorphism of [P),(ﬂmﬂ)n*l the Segre

embedding.

Proposition 1.13 Let K|k be a finite separable extension of fields. Let X' be a

separated quasi-projective K-scheme with a fized immersion X' — PR, Then
the Weil-restriction of X' with respect to K|k is immersed in ]P’I(gmﬂ)nfl. This

. . . . . . m+1)"—1
immersion is canonical up to an isomorphism of IP’,(C "1
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Pull-back of Weil-divisors

Let K|k be a separable field extension, let L|k be a splitting field. Let X' be a
nonsingular k-variety. Then Weil-divisor classes correspond to classes of invertible
sheaves. Let the invertible sheaf £ by defined by the effective Weil divisor B which
we regard as (not necessarily reduced) closed subscheme of X'. Then by Proposi-
tion A.29, the sheaf Ly, is defined by the closed subscheme D :=Y"_p_lo~!(B).
The operation of & on W] induces an operation on D. The immersion D — W7,
is now invariant under this operation, and D descends. Tt defines the sheaf L(B)yw
on W.

1.2.2 The Picard functor and the Picard scheme

We include the following subsection mainly for notational reasons.

Let k be a field, let X be a geometrically integral non-singular projective k-
variety with a k-rational point Fp.

Definitions We denote the isomorphism class of an invertible sheaf L on some
k-scheme by L. For any scheme Y, the isomorphism classes of invertible sheaves
on Y form a set, and with the operation of the tensor product, this set is an
abelian group, the so-called Picard group of Y, denoted Pic(Y).

Let Pic(X) be the contravariant group-functor which is defined as follows:

For any k-scheme Z, let pz : X X, Z — Z be the projection. Let Pic(X)(Z) :=
Pic(X xy Z)/p%Pic(Z). We will denote this quotient by Pic(X xj Z)/Pic(Z) and
its elements by £, M, etc.

For any morphism « : Y — Z, Pic(X)(«) is defined by (idx xj a)* :
Pic(X xy Z)/Pic(Z) — Pic(X xj; Y)/Pic(Y). (Consistently, we would have
to write (idx Xy «)* or even more accurately (idy X a)* but we omit the bar.)

Note that pz o (Py xj idz) = idz implies that (Py xj idz)* opy = idpic(z).
Thus Pic(X xy, Z)/pyPic(Z) is functorially isomorphic to the subgroup of M €
Pic(X xj Z) such that (Py x i idz)*(M) = 0.

The association X — Pic(X) defines a contravariant functor from the cate-
gory of punctured geometrically integral projective k-varieties to the category of
contravariant functors from the category of k-schemes to the category of abelian
groups. If &« : X — Y is a morphism, we denote Pic(a) : Pic(Y) — Pic(X) by

a*.

Proposition 1.14 Under the above conditions on X, Pic(X) is represented by a
k-group-scheme Pic(X) which is locally of finite type.

Proof First see [BLR, 8.1, Proposition 4] and then [BLR, 8.2, Theorem 3]. O

Let P € Pic(X xj, Pic(X)) be a representative of the universal element Pe
Pic(X xj, Pic(X))/Pic(Pic(X)).
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Let Pic’(X) be defined by: For any k-scheme Z, let Pic?(X)(Z) be the subgroup
of M € Pic(X)(Z) for which there exists a connected k-scheme T with two Z-
rational points o, 8 : Z — T and an Ne Pic(X)(T') such that (idx xka)*(ﬁ) =0
and (idy x5, B)*(N) = M.

Definition The Picard scheme Pic?(X) is the identity component of Pic(X).
It is immediate that Pic®(X) with the restriction of P represents Pic’(X). We
denote the restriction of P still by P.

Because PicO(X ) has a k-rational point, it is also geometrically connected; see
Lemma A.28.

Proposition 1.15 Again under the above conditions on X, Pic?(X) is a projec-
tive k-group-scheme.

Proof See [BLR, 8.4, Theorem 3|. O

In the case that X is a curve, the Picard scheme is geometrically reduced, thus
it is an abelian variety, called the Jacobian variety of X, denoted in this work by
J(X); see [Mi-J] for a detailed account about the Jacobian variety.

Base change

Let K — X be a morphism of fields. Then X, has a A-rational point, and for all
A-schemes Z, Pic(X) x Z)/Pic(Z) ~ Pic(X xy Z)/Pic(Z), therefore Pic(X)) ~
CPIC(X))\

Let P € Pic(X xj Pic(X)) be the representative of the universal element
defined above, let Py be the pull-back of P to Pic(X x; Pic(X)®xA) ~ Pic(X) x
Pic(X),). This represents an element Py € Pic(Xy x) Pic(X),)/Pic(Pic(X)y).
With this element, Pic(X)) is represented by Pic(X)y.

An important special case of this is the following:

Let K|k be a Galois field extension, o € Gal(K|k). Let X' be a non-singular
projective K-variety with a K-rational point. Consider X’/K and the correspond-
ing automorphism o : Spec(K) — Spec(K) as a special case of the above result.
It follows that Pic(o~1(X")) is represented by (o~ !(Pic(X’)),o*(P)), and analo-
gously, Pic?(c=1(X")) is represented by o~ ! (Pic(X')?).

1.2.3 The Picard functor of the Weil-restriction

In this subsection we study the relationship between the Picard-functor and the
Weil-restriction.

Let K|k be a finite Galois field extension, X a geometrically integral, non-
singular, projective k-variety with a k-rational point.
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Since Pic(X) is the disjoint union of projective schemes, its Weil-restriction
exists. By Lemma 1.11, we have a natural transformation

Homy,(—, Pic(X)) ~ ResE (Pic(X)x)¥ ~ ResK (Pic(Xk))%, (1.14)
and by (1.12) we have a morphism
Resf (Pic(Xg)) — Homy(—, Pic(X)) (1.15)

We define a Galois-operation on the functor Resk (Pic(Xk)): For o € G, let
0: X X, Z®p K ~ (X ®x XgZk) be the “natural” operation induced by base-
change, i.e. 0 = idy Xidy X0 or — what is the same — 0 = (idx x0) X g (idz X0).
Now let o € G operate on Pic(X x; Z ® K))/Pic(Z @) K) ~ Pic((X @ K) X
(Z @), K))/Pic(Z @ K) by o~ .

Lemma 1.16 The Galois-operation on Resy (Pic(Xk)) corresponds to the Ga-
lois-operation on the functor Resk (Pic(Xk)).

Proof Let Px € Pic(Xg xx Pic(X)x) be the representative of the universal
element of Pic(Xg) constructed above. Then Px by construction is invariant
under the Galois-operation.

Let a: Z ®; K — Pic(Xg) be a K-morphism, o € G. Then by definition,
idy, Xk o(a) =00 (idx, Xk a)oo ! Thus

(idy, xx o(a))* (Pr) =0 " (idx, xx @) 0" (Px) =
o (idx, xx @)* (Px)
O
Let gk : Xk — X be the projection. Then it follows from (1.14) that ¢j
induces an isomorphism
i : Pic(X)—>Resk (Pic(Xg))C. (1.16)

Note that this means in particular that every sheaf on Xgx whose isomorphism
class is invariant under G descends to a sheaf on X. This is a stronger statement
than Galois-descent of quasi-coherent modules.

Let M € Resk (Pic(Xx))(Z) = Pic(Xk)(Z xx K). Then 3, copp 0" (M) €
ResK (Pic(Xk))¥, thus there exists an M € Pic(X)(Z) with (gx xxidz)* (M) = M.

Definition We call the element M just defined the norm of M and denote it
by N(M'). 8
We get a natural transformation
N : Resl (Pic(X)) — Pic(X),
which we also call norm.

Via the representing objects, this natural transformation corresponds to (1.15).

8In [EGA TI, 6.5], the norm of an invertible sheaf is defined in a more general situation. Note
however that our definition applies for classes of sheaves.
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Now let X’ be any geometrically integral, non-singular, projective K-variety
with a K-rational point Py, let W = Resk (X’) be the Weil-restriction of X’ with
respect to K |k. By definition of W, it has a k-rational point.

Consider the natural transformation

ResK (u*)

T : Resfl (Pic(X")) Resf (Pic(Wk)) (1.17)

lWH(gaeGopp a* (W)

N{ Resl(Pic(Wk))“

qu;{—l

Pic(W).
Lemma 1.17 T is injective.

Proof Let Z be a k-scheme. Then 7 € G operates on Pic(Wgk X i Zg ) =~ Pic(W xy
Z ®r K) by 77*. (Where 7 is the “natural” operation on W x Z ®j, K.)

Now (W xi Z)k ~[], 0 1(X' Xk Zk). Under this isomorphism, 7 operates
on Pic([[, 07" (X' Xk Zk)) by 7~'*, where 7 is the “twisted” operation as in the
construction of the Weil-restriction in the Galois case.

Under the identification of (W x;,Z) g with [T, 0™ (X' Xk ZK), Y seqorm 07 ()0
ResK (u*) : ResK (Pic(X"))(Z) — ResK (Pic(Wk))9(Z) is given by

PiC(X, XK ZK)/PIC(ZK) — (PIC( H O’il(Xl XK ZK))/PIC(ZK))G
oEGopPP

M > F@00) = > pi(e* (D).

ogEGoprp oEGOPP

By assumption X’ has a K-rational point Py, and o~'(P) is a k-rational point
of 0~ 1(X"). These rational points define a closed immersion ¢ = (1), : X' —
[1, o7 "(X"), given by tiq = idxs, 1, = 07 '(P) for o # id. Now (1 X idz)* o
> pecorr 0 () 0 (u X idz)* is the identity on Resf (Pic(X"))(Z). O

The functor T restricts to a natural transformation T : ResX (Pic’(X’)) —
Pic?(ResK (X)), and this induces a morphism between the corresponding repre-
senting objects.

T : Resk (Pic’(X')) — Pic’(Resk (X))
After the base change K|k, T becomes the canonical morphism

U:( [ o7'Pic"x") — Pie’( [ o '(x")),

ocGopp ocGopp

induced by p% : o~ (Pic’(X')) — Pic’([], o~ H(X")).
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We are interested whether T or — what is the same — T is an isomorphism. We
only have to check this for U or U ® id.

The phrase “smooth proper global lifting” used in the following theorem is
defined in Subsection A.1.1. Under this condition, U ® g ids- is an isomorphism
of abelian varieties; see Proposition A.4. Tt thus follows the following theorem.

Theorem 1 Let K|k be a finite Galois field extension, let X' be an integral non-
singular projective K -variety with a K-rational point. Assume that char(k) = 0
or that X% has a smooth proper global lifting. Then T : Res) (Pic’(X')) —

Pic’(Resi (X)) is an isomorphism of abelian varieties.

Corollary 1.18 Let X' be a geometrically integral non-singular projective K -
curve with a K-rational point. Then T is an isomorphism of abelian varieties.

Proof If char(k) > 0, every such curve has a smooth, proper global lifting; see
[Po, Satz 10.1]. O

Corollary 1.19 Let X' be a curve as above. Then N o u* : Pic’(X') —
Pic’(Res (X)) is an isomorphism.

1.3 Welil-restrictions of abelian varieties

In this section, we study first properties of the Weil-restriction of abelian varieties
with respect to a finite separable field extension. In the next chapter, we will
study the Weil-restriction of old abelian varieties — i.e. abelian varieties which are
defined over k£ — more in depth.

Let K|k be a separable extension of fields, A" an abelian K-variety. Let W be
the Weil-restriction of A’ with respect to K|k. Then

Wksep ~ H O'il(Al),
o : Spec(k3eP) — Spec(K)
(over Spec(k))

thus W is also an abelian variety.

1.3.1 Weil-Restrictions and dual abelian varieties

Let K|k be Galois, A" an abelian K-variety.

Since the product of a dual abelian variety of a product of abelian varieties is
the product of the duals, the morphism U on the previous page is an isomorphism.
Thus the morphism T defined in the last subsection is an isomorphism.

Proposition 1.20 Let K|k be a finite Galois field extension, let A’ be an abelian
variety. Then T : ReskK(;l\’) — Res[\ (A) is an isomorphism of abelian varieties.

d
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1.3.2 The Galois-operation on geometric points

The following Proposition is well known; see for example [Mi-AA, par. 1].

Proposition 1.21 Let k be perfect. The Galois-operation on Resk (A')(K) is the
induced representation of the one of A'(K)

Res/ (4')(K) ~ Indé %gzﬁ%?]ﬂ (A'(R))

and the same is true for the Tate-module

for every prime .

In particular, if K|k is an extension of finite fields, the characteristic polyno-
mials of the relative Frobenius morphisms are related by

XResk (4/)/k(X) = Xar/ g (X™).

Proof We only show the first isomorphism, the proof of the second is analogous.

The Galois-operation of Gal(K|k) on Resj (A')(K) ~[[, o~} (A")(K) is given
by 7= ((Pr)e = (T(For))s)-

Let t# : K < K be the inclusion, corresponding to ¢ : Spec(K) — Spec(K).
The immersion : 1 (A4") < [], 0 1(A4’) ~ Wk to the factor “.” induces an injection
A(K) < [1,07"(A)(K) ~ Wk(K) which is compatible with the operation of
Z[Gal(K|K)]. By the universal property of the induced representation, we have a
Z]Gal(K |k)]-module-homomorphism

Indggziggg}”m'(ff)) — ResX (4)(K). (%)
Now for every inclusion o# : K < K (over k), let o’ be a continuation to a
K-automorphism (i.e. ¢# = ¢/1# : K — K or — what is the same — 0 = 10" :
Spec(K) — Spec(K)).

On the left-hand side of (*), every element has a unique representation in the
form > o'(P,) with P, € A’(K). Such an element is mapped to the element
(6'(Py))s. Also every element of the left-hand side has this form for unique P, .

We thus have an isomorphism. O

1.3.3 The functor “Weil-restriction”

We have already seen that fReskK is a functor and so is Res,f . It restricts to
a functor from the category of abelian K-varieties to the category of abelian k-
varieties which respects the addition.

For abelian K-varieties A’, B’, the homomorphism of abelian groups Res] :
Homg (A', B') — Homy(ResX (A’), ResX(B')) extends canonically to a homo-
morphism Res) : Hom (A’, B') — Hom{(Resy (4’),Resy (B’)). Thus the
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functor Resf extends to a functor from the “category of abelian K-varieties

up to isogeny” to the category of abelian “category of abelian k-varieties up to

isogeny”. ?

In particular, ReskK is a ring-homomorphism from Endg(4’) to
Endy(Resy (4’)) and from End%(A4’) to End)(Resk (4")).
Let K|k be Galois. Let A', B’ be abelian K-varieties. Then

Homg (Res) (A) g, Resy (B') k) ~ Homg ( [ v '(4), [] ¢7'(B)) ~
vEGOPP o EGoPP

P Homg (v '(4"),07"(B"));

o,VEGOPP

see equation (A.3) in Subsection A.2.3.

Let a: A’ — B’ be a morphism. Then by (1.11), Resk (a) ®; idx is given by

the diagonal “matrix” (6 (a)ds )opecorr € D, cqorn Homg (v 1(A"),0 1 (B')).

Now let o : A’ — B’ be an isogeny. Then ResX(a) : Resk(A') —
Res (B') is also an isogeny.

For every k-scheme Z, we have the commutative diagram

0 —— ker(a)(Z @ K) A(Z @ K) B'(Z @y K)

0 — Resy (ker(a))(Z) — Resl (A')(Z) — Res) (B')(Z).

Since the first row is exact (in the category of abelian groups), so is the last. Thus
the kernel of the isogeny Resk («) is ResE (ker(a)).

1.3.4 Weil-restrictions of a polarized abelian varieties

Let K|k be a Galois field extension, A’ an abelian K-variety, A’ the dual abelian
variety. By Proposition 1.20, Resk (4’) is (canonically isomorphic to) the dual
abelian variety of Resy (A').

Let p: A" — A be a polarization of A’, defined by an ample sheaf £ on A’?,
ie. Y @k idez = ¢y : A’? — :47?. 10" As above, this induces an isogeny

Res () : ResK(A') — Resl(4') ~ Resk (4')

which has by the above remarks kernel Resf (ker()). We show now that this
morphism is again a polarization.

°The category of abelian k-varieties up to isogeny consists of all abelian k-varieties, where for
two abelian k- varieties A and B, the set of morphisms is Hom{ (A, B); cf. [Mu, par. 19], see also
Subsection A.2.1.

0For a polarization ¢ of A’, we do not require that there exists a sheaf defined over K which
defines ¢; see Subsection A.2.2 for details.
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Let 0 € G°PP. As at the end of Subsection 1.2.2, we regard 0_1(1/4\’) as the
dual abelian variety of o~ !(A').

Let o/ be a Spec(K )-automorphism with a’#|K = o#. Then by Lemma A.9,
¢’ @k idz = ¢7 = $or+(c)- (In particular, the class of o'*(L) in the Néron-Severi
group is independent of the choice of ¢’.)

After base-change, we get

Res,{f(<p) ® idx = (¢7 0 ps)segorr : H o A' ) — H o~ Al

oeGopp ocGopp

This is a “product polarization” defined by the ample sheaf
Ly, = ®(pa ®r idg) 0" (L) = R0 (pia @ idg)* (L)
ag g

on WE

If one starts with an ample sheaf £ on A’, then the polarization Res) (¢) is
defined by the ample sheaf Ly, := @), 0*pi5(L) on Wg. The class of Ly, in the
Picard group is invariant under the Galois-operation and thus this construction
defines an ample sheaf on W. (This follows also directly from the results in
Subsection 1.2.1.)

Proposition 1.22 Let K|k be a finite Galois field extension, A" an abelian variety
over K. If v is a (principal) polarization on A" (defined by a sheaf over K ), then
Resk () is a (principal) polarization on Resk (A') (defined by a sheaf over k).

Thus “Weil-restriction” is a functor from the category of polarized abelian K-
varieties (with polarizations defined by a sheaf over K) ' to the category of polar-
ized abelian k-varieties (with polarizations defined by a sheaf over k). The images
of principally polarized abelian K -varieties are principally polarized.

1.3.5 Weil-restrictions of abelian varieties over finite fields '?

Let K|k be a finite extension of finite fields of degree n. Let A’ be an abelian
variety over K of dimension d, W the Weil-restriction of A" with respect to K|k.
We now study the endomorphism algebra, '? and the isogeny decomposition of
w.
In the next chapter, we will study the same question for Weil-restrictions of
abelian varieties with respect to an arbitrary Galois extension K|k under the
assumption that the abelian K-variety A’ is defined over k.

"For definition of the category of polarized abelian varieties see Subsection A.2.2 in the ap-
pendix.

12This subsection is joint work with N.Naumann.

13Recall the following definitions: The endomorphism ring of an abelian variety A over a field
k is the ring of endomorphisms of A over k, i.e. the endomorphisms of Aj defined over k. It is
denoted by Endy(A). The endomorphism algebra of A is the ring End(A) := End(A4) ®z Q.
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In the following, we make use of various concepts of “Frobenius morphisms”;
see Subsection A.3.4 for details.

Identify Gal(K|k) with its dual and denote by o € Gal(K|k) the Frobenius
automorphism, defining a Spec(k)-automorphism o} of Spec(K). By base-change,
this induces the arithmetic Frobenius isomorphism o} : a,f_l(A') — Al

We also have the geometric Frobenius endomorphism m : A" — U,f_l(A')
which is an isogeny of p-power degree whose kernel is connected. Just as for every
isogeny, there exists a 7 ' € Hom%(ak_l(A’E), A7) which is a left- and right-inverse
for mj; see Lemma A.7.

Analogously, we have a geometric Frobenius endomorphism 7y : W — W.

Let mx be the geometric Frobenius endomorphism of A’. Then the image of 7k
under the ring-homomorphism Res,f equals the endomorphism 7} of W. (In fact,
after base-change, Res,f (rr) as well as 7} is represented by the diagonal matrix
mrc1.) Thus the ring-homomorphism Res : Endg (A') — End, (W) restricts to
an inclusion Z[rg] — Endy (W), given by mxg + n. This ring-homomorphism
extends to a ring-homomorphism Z[ng|[X]/(X"™ — 7)) — Endg (W), given by
X — mp.

The geometric Frobenius endomorphism 7w, of W commutes with all endo-
morphisms of W. Thus by the universal property of the tensor product (see
[FD, proposition 3.2]), the ring-homomorphisms Endg(A’) — Endg(W), A —
Rest (\) and Z[ng][X]/(X" — 1x) — Endg(W), X + 7 induce a ring-
homomorphism

EndK(A') ®Z[ ] Z[’]TK][X]/(Xn - 7TK) — Endk(W), A ReskK()\), X — .

TK

Theorem 2 Let K|k be an extension of finite fields of degree n. Let A’ be an
abelian K-variety, W the Weil-Restriction of A" with respect to K|k. Then

End} (A') ®qing) Ak [ X]/(X™ = mx) — End) (W), A — Resg (A), X = m,

18 an isomorphism.

Proof By the defining property of the Weil-restriction, as abelian groups,

n—1 .
Hom (W, W) ~ Hom} ([ [ o "(4'), 4") via a — pig o (a @ idg).  (1.18)
=0

We show that the homomorphism of abelian groups

Hom(}((A', A,) ®Q[7FK] Q[WK][X]/(XTL — 71'[() — Homk(W, W) ~

i i 1.19
Hom ([T7y of "(A"), A') ~ @) Hom(af "(A), A") (1.19)

Jfrom left to right is an isomorphism.

Let 0, € Gal(k|k) again be the Frobenius automorphism. Again by base-
change, this induces the arithmetic Frobenius automorphism oy, : Wi — W7.
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The morphism 7, : W — W is uniquely determined by the fact that it
operates on k-valued points P of W7 as the inverse of the arithmetic Frobenius
isomorphism: 7 o P = ak_l(P) = P%; see Lemma A.32.

Let P = (P,)") be a k-valued point of Wy ~ | of (A% Then by
definition of the Galois-operation on W, ox(P) = (0(P;41))l, (where P, = P).
Thus mx 0 P = 07 (P) = (07, (P=1))i=y = (w0 Pict)}y -

Thus under the isomorphism Wx ~ [[/—; o X 72'(A’ ), the geometric Frobenius

endomorphism 7, of W is given by the “matrix”

0 DY DY 7rk
0 .
0 Tk 0

For some A € End) (4’), ResX ()) is given by the diagonal “matrix”

A
-1
o (N

Ulg(l—n()\)

Let = be the image of X in Q[mg][X]/(X™ — 7k). Let A\jz + XAox? 4+ - + X\pa™ €
Hom?((A’, A") @] Q[WK][X]/(X" —m.() where )\; € End% (A4’). Such an element
is mapped under the homomorphism of in the theorem to an endomorphism of W
which is represented by the “matrix”

An TR An—1 71'2'71 Ao 7r,% A g

oK () ™ oK () T ol ) oK T )

2— - 2— -
o )T oK ) T !

— 2— 2—
K P o "R of T e
- _ 1— _ 1—
o Q)T oE T M) T e oK ) e

n
L k
i () T

The elements of Hom{ (A’ A’) @qjr.] Qi |[X]/(X™ — 7k) have a unique
representation as Mz + Aoz? + -+ + A\,z" where \; € Endg((A’). Under ho-
momorphism (1.19), this element corresponds to the first row in the above ma-

n—l A7 ). Now, every element

trix, i.e. to the row vector ( A\,7p A7
of @7y HomY (o "(A’), A’) has this form with unique ;. Thus (1.19) is an

isomorphism. O

Remark Since the geometric Frobenius endomorphism has degree a power of
p := char(k), we obtain in fact an isomorphism

(Endg (A") ®z(r ZIrk][X]/(X™ — 7K)) ®z Z[1/p] — Endp(W) @z Z[1/p].
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Corollary 1.23 End}(W) is commutative iff End% (A’) is commutative.

a

Now assume that A’ is a simple new abelian variety * with commutative endo-
morphism ring.

We are interested in the question whether W is simple. This is the case iff
End(W) ~ End%(4'/K)[X]/(X" — ng) ~ Q[rg]/(X™ — ng) is a field, ie. iff
X" — 7k is irreducible over End% (A") ~ Q[rx].

So, W is not simple iff X" — g is reducible over End% (A’) ~ Q[rf]. Under
the condition 4 { n, this is equivalent to the existence of a § € Q7] and a prime
divisor g of n with 87 = 7g; see [Lo, par. 14, Satz 2].

We claim that under the assumptions on A’ and the additional assumption
4tn, W is simple. 15

Assume that 4 f n and W is not simple so that $? = mx for some prime g¢|n
and 8 € Q[rk] (so that Qnx] = Q[f]). Let Alk be the intermediate field of K|k
with [K : \] = ¢. We claim that A’ is isogenous to an abelian variety defined over
A

Let V' be the Weil-restriction of A" with respect to K|X. Then yy/(X) =
XA/ x(X7), and f is a root of Xv/x, the characteristic polynomial of the Frobe-
nius of V; see Proposition 1.21. So V contains a simple abelian variety A such
that the characteristic polynomial of the Frobenius of A has 8 as a root. The
endomorphism ring of A is commutative (since the endomorphism ring of V' is)
and thus isomorphic to Q[3] = Q[nx]. This is a number field of degree 2d over
Q, thus A has dimension d. So A ®) K is a d-dimensional abelian subvari-
ety of V@) K ~ [ o7 (A"), thus A ®) K ~ of *(A") for some i. Now,
ol " (A") ~ A’ via the i-power of the (geometric) Frobenius endomorphism rela-
tive to A\. Thus A®) K ~ A’.

We proved:

Theorem 3 Let K|k be an extension of finite fields of degree n and assume 4 1 n.
If A" is a simple new abelian variety over K with commutative endomorphism ring
(i.e. A" might be a non-super-singular elliptic curve), then the Weil-restriction of
A" with respect to K|k is simple.

14WWe fixed the following definition: If A’ is defined over k, i.e. if there exists an abelian k-
variety A such that A’ ~ A ®; K, then we say that A is an old abelian variety (relative to K|k).
If A" is not isogenous to an abelian variety defined over k or some proper intermediate field X of
K|k, then we call A" a new abelian variety (relative to K|k).

15The following proof is inspired by the proof of the “arithmetical part” of Honda’s Theorem;
cf. [Ho]. As stated by Honda, the argument goes back to Tate.
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Chapter 2

Welil-restrictions of old abelian
varieties

Introduction and results

In this chapter, we continue with the study of Weil-restrictions of abelian varieties.
We restrict ourselves to the following situation:

Let K|k be a finite Galois field extension, A an abelian k-variety. ! Let W be
the Weil-restriction of Ax with respect to K|k.

We begin with the determination of the ring of endomorphisms of W over
k. The result is that this ring is canonically isomorphic to the so-called skew-
group-ring of Endx (Ax) with the group Gal(K|k) and the natural operation of
Gal(K|k) on Endg(Ak); see Theorem 4, p. 35.

We then restrict ourselves even further to the case that A is an elliptic curve
E and K|k is a cyclic field extension of odd degree of perfect fields. In this case,
W is isogenous to a product of the elliptic curve F itself and the so-called trace-
zero-hypersurface N. If E has no complex multiplication, than N is simple; see
Theorem 5, p. 42. 2

Our goal is then to study polarizations of N. In particular, we want to know
if there exist principal polarizations on V.

In order to do so we study in an excursus first the Néron-Severi group of a
product of elliptic curves. For each element of the Néron-Severi group we give an
explicit divisor which defines the given element; see Theorem 6, p. 48.

There exists a canonical polarization on N, and this polarization has kernel
E[n] = EN N. It follows in particular, that after a choice of a generator of
Gal(K|k), N is canonically isomorphic to its dual; see Proposition 2.17.

However, the existence of this isomorphism does not mean that N is always

! According to our terminology, Ak is then an old abelian K-variety. Thus the title of this
chapter.

’By saying that all elliptic k-curve has complez multiplication, we mean that E7; has complex
multiplication and the complex multiplication is defined over k.

33
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principally polarized as one sees from the following result:

If £ has no complex multiplication then N is not principally polarized. If n
is prime, it is isogenous to a principally polarized abelian variety iff the group
scheme FE[n] contains a non-trivial sub-group scheme over k; see Corollary 2.26,
p- 58 to Theorem 7, p. 57.

If E has complex multiplication, the situation is more complicated. For n = 3,
we give an explicit criterion whether the abelian surface IV is principally polarized;
see Theorem 8, p. 59.

In the last section of this chapter, we specialize to the case n = 3 so that N is
an abelian surface. We give explicit equations for an affine, open part of N and
try to find curves of genus 2 on N whose existence was predicted by the previous
results. The curves constructed will also serve as examples in the next chapter.

2.1 The endomorphism ring

Throughout this section, let K|k be a finite Galois extension of fields of degree n
with Galois group G, and let A be an abelian k-variety of dimension d. Let W be
the Weil-restriction of Ax := A ®) K with respect to K|k.

We want to determine the structure of the endomorphism ring of W, and
determine in which isogeny factors W splits.

2.1.1 The endomorphism ring as skwe-group-ring

Recall that in Subsection 1.1.5, we have seen that the arithmetic operation of
G on Ag induces a geometric operation on W. If 7 € (G, the corresponding
k-automorphism of W is denoted by a.

Lemma 2.1 Let T € G,\ € Endg(Ar). Then a,oRes) (\) = Resj (1(\))oa, €
Auty(W).

Proof We check the relation for the corresponding automorphisms of the functor
Resf (Ak). Let Z be a k-scheme, P € Resl (Ax)(Z). Then

(CL,,-)\)(P):7'o>\oPo7'_1:7’0)\07'_107'01307'_1
=7(A)oToPo7 ! =(7(\) a;)(P)

To formulate the result about the structure of the endomorphism ring of W, we
need a generalization of the concept of a group ring first.
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Definition 3 Let A be a ring, G a group, t : G — Aut(A) a group-homo-
morphism. The image of ¢ € G under ¢ will again be denoted by o. Following
[Kar], we define the skew-group-ring A'[G] to be the following ring: * The un-
derlying set is A, i.e. the set of functions (A\y)scq : G — A. The addition is
defined pointwise, just as for the “usual” group ring. Also as usually, for 7 € G,
let 7 € A'[G] also denote the function o — 6, € A'[G]. Here, §,, is the “Kro-
necker delta”, d,, = 1 and d,, = 0 if 0 # 7. The multiplication is defined by

Yoo AT D ea vV =D 5 eq Ao 0(pw) ov.

Lemma 2.2 AY[G] is a ring.

Proof We only have to check the associativity of the multiplication. Using the
fact that ¢ is a group-homomorphism, one calculates on generating elements (of
the abelian group AY[G])

ANo-B1)-yv=XAo(B)oT-yv =
Ao(B)or(y)orv =Ao-B1(y)To =Ao- (BT -vyV)

A![G] has the following universal property:

Lemma 2.3 Let B be a ring, f : A — B be a ring-homomorphism, and let g :
G — B* be a group-homomorphism. Assume that for A € A, € G, g(1) f(A) =
f(t(N)g(7). Then there is a unique ring-homomorphism AYG] — B with X —
fX) and 7 — g(7).

a

Now let G be the Galois group as above, ¢ : GPP — Aut(Endg (Ak)) the nat-
ural operation given by o+ (A = o(\) = cAo~!). From Lemmata 2.1 and 2.3 it
follows that Y . copp Ag 0+ Y comn Res’ (\,) a, defines a ring-homomorphism

Endg (Ag)'[G°PP] — Endy,(W). (2.1)

Theorem 4 Let K|k be a finite Galois extension of fields with Galois group G,
A an abelian variety over k, W the Weil-restriction of Ax with respect to K|k,
t: GP? — Aut(Endg(Ag)) the natural operation. Then Endg (Af)![GOPP] —
Endy (W) is an isomorphism.

Proof Analogously to the proof of Theorem 2, we make use of the isomorphism
Homy, (W, W) ~ Homg(AS™", Ak) ~ @,cqor» Homg(Ag, Ag) on the right-
hand side.

3This definition is a special case of the more general definition of a crossed product (with
respect to some operation); cf. [Kar, Chapter 10, 2].

*In [CR], the same ring is called twisted group ring. However, in [Kar], this word is reserved
for the special case of a crossed product with respect to a trivial Galois-operation.
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By (1.9), the image of some o € G°PP in Homg (AF"", Ak) is p,-1, corre-
sponding to the row vector which is zero except at the “o-th” entry where it
is 1.

Thus the image of ) copp Ag0 (Where A\, € Endg (Ax)) is Y- cqope Ao-1 Pos
corresponding to the row vector (A,-1)gyecGorp.

It is thus immediate that we have an isomorphism. O

By tensoring the above isomorphism over Z with Q, we get
Corollary 2.4 End%(Ax)![G°PP] — End%(W) is an isomorphism.

We know that the ring End) (W) is semi-simple. Thus the skew-group-ring
End?((AK)t[G‘)pp] is semi-simple.

It can be proven more generally that every skew-group-ring of a semisimple
ring in which the group order is (finite and) invertible is semisimple or even more

generally that every crossed product of a semisimple ring is semisimple; see [Kar,
Volume I, Chapter 10, Corollary 2.5].

We now want to study the ring-homomorphism °

Endg (Ax)H[GOPP] =5 End, (W) <

o 2.2
EndK(WK) ~ EndK(Alg pp) ~ MGOpp(EndK(AK)). ( )

For o0 € G°PP, let v, : Ax —> Algopp be the immersion to the “o-th” fac-
tor, and let p, : [, cqo» Ak — Ax be the projection to the “o-th” fac-
tor. Now, EndK(A?;pp) — Mgore (Endg (AK)), ¢ — (PotPty)opecorr is a ring-
homomorphism; see Subsection A.2.3.

We denote the matrix corresponding to a, by A; and the matrix corresponding
to Rest (\) by J(\).

We have already established in Subsection 1.3.3 that J(X) is the diagonal
matrix (U_l(A)éa,y)g,yggopp.

We want to determine to which matrix the endomorphism a., corresponds.

First of all, p, : Wi ~ Algopp — Af corresponds to the row-vector (6q.)vea-
Recall that a; = (p;-1,)0cq; see Lemma 1.12. Thus

A = (67*10,1/)0,1166' = (60,71/)0,1/66'- (2.3)

Before continuing we want to clarify the definition of the left regular (matrix)
representation.

’Let A be a ring and ¥ a finite set. Then by Mx(A) we mean the ring consisting of: The set
of functions a = (@o,r)o,rex : ¥ X ¥ —> A with pointwise addition and multiplication defined
by (a-b)o,r := 3" c5 o by,r. After the choice of a bijection of ¥ with the numbers 1,..., %],
Ms(A) is canonically isomorphic to Mg (A), the matrix ring in |¥| variables.
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The left regular (matrix) representation

Let A be a ring. If A — = is a homomorphism of rings, we can regard = as
A-right module, and if we do so, we write Endy (£) for the ring of endomorphisms.

Now let A — = be a homomorphism of rings and assume additionally that
2 is as A-right module free on a finite set of generators ¥, i.e. E ~ A as A-
right modules. Multiplication of elements of Z from the left on itself induces a
ring-homomorphism

L:E — End} () ~ End} (A¥), (2.4)

the left reqular representation.

For a fixed basis X, the right-hand side of (2.4) is canonically isomorphic
to the matrix ring Mx(A). The isomorphism My (A)——End}(A%) is given as
follows: To every matrix (as,)specx associate the endomorphism (z4)sen —
(> ves towTu)oes. (This is given on the basis elements v = (d5,4)0ex by v =
Y ocy O Go,p-) The inverse is

EndrA(AE) — ME(A)a at— (aa,u)a,ueE with Qg € A

and a(v) = ZaeE T Qg (2.5)

By composition of (2.4) with (2.5), we get the left reqular matriz representation
(with respect to the basis X).

[: 2 — ME(A)

(In particular, for A = Z and ¥ = {1}, the left regular matrix representation is
the identity on A.)

We now apply these concepts in the context of the skew-group-ring. Let G be
a finite group, t : G — Aut(A) be a homomorphism, A![G] the corresponding
skew-group-ring.
We calculate explicitly the left regular representation I : AY[G] —
End} (A’[G]) and the left regular matrix representation L : A'[G] — Mg(A)
with respect to the basis G.

Let 7€ G. Then l(7) : v = v =) 50057, and thus
L(T) = (5a,ru)a,ueG-
Let A € A. Then [(\) : v — Av =vv~()\) and thus
L) = (07 (V) dow)wea-
So
L(Z AoO) = (Z o7 (Ae)doov)owec = (07 Agp-1))opec-

oeG oceG
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We are now going to relate these definitions and calculations with our situation.
So let A := Endg(Ak), G the Galois group and ¢t : G°PP — Endg(Ak) the
natural operation. Let L be the left regular matrix representation of A'[G] ~
Endg (W) with respect to the basis G°PP. Then L(1) = A; and L(\) = J(A).
Thus:

Proposition 2.5 Homomorphism (2.2) is the left reqular matriz representation
of the skew-group-ring Endg (Ag)!{[GPP] with respect to the basis GOPP.

2.1.2 The Rosati involution, isotypic components and orthogo-
nality

The Rosati involution

Let ¢ : Ax — Ag be a polarization. Then Rest (p) : W — W is also a
polarization; see Subsection 1.3.4.
We want to calculate how the Rosati involution of W with respect to ResX (¢)

is given under the isomorphism of Corollary 2.4.
Let us denote the Rosati involution by (...)".

First of all, the (defining) equation X' = 0~ "Ap where ) € End%(Ax) implies
Res’ (V) = Res/ ()" o Res*(\) o Res/ () = Resf ().

To calculate the Rosati involution of a,, we use the inclusion of End)(W) into
the matrix ring Mgors (End% (A)) and the fact that Res (o) ®y idk is a product
polarization, and calculate the Rosati involution with the help of Lemma A.16.

Since a; corresponds to the matrix A; = (dg,rv)svecorr (see (2.3)), a. cor-
responds to the matrix (6, r0)svegorr = (6;-1,5)oveqorr = (0 r-1,)0vegorr =
AT—I. Thus

U —_—
a; = Q;-1.

Since the Rosati involution is an anti-ring-endomorphism, this implies:

Proposition 2.6 Let K|k be a finite Galois field extension with Galois group G,
A an abelian k-variety, W the Weil-restriction of Ag with respect to K|k. Let
p: A— A be a polarization. Let X\ — X' be the Rosati involution associated
to . Then under the isomorphism of Corollary 2.4, the Rosati involution as-
sociated to the polarization Res) (@) : W — W is given by > cqomp Ao O >

ZO’EGOPP 0_1>‘Ia = deGopp 0_10‘,0) ol

Dimensions of components

From now on, let k be perfect.
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As in the above proposition, let A be an abelian k-variety, K|k a galois field
extension of degree n with galois group G, W the Weil-restriction of Ax with
respect to K|k, let t : G°PP — Endg (Ax) be the natural operation.

Let D C End% (Ax) be a subring which is a division ring and which is invariant
under the operation £.

Let @;_;A; ~ D'[G°PP] be a decomposition of the D![G°PP]-right module
D![GPP], where we regard the A; as submodules of D*[G°PP]. This defines partition
of unity 1 = >, e; where the e; are pairwise orthogonal and idempotent and
e; € A;. Now, A; = ¢; Dt[GOF’p], and conversely, if we are given a decomposition
of the unity 1 = Y, e; with pairwise orthogonal idempotents e;, A; := e; D![GPP]
defines a decomposition of the D![G°PP]-right module D'[GPP].

Via the inclusion D*[GPP] «— End% (Ax)![G°PP] ~ End}(W), we can regard
the e; to be elements of Endg(W). For each i, let ¢; € N such that ¢;e; € Endg(W).

Now let W; := ¢;e;(W). Then @@;_, W; ~ W. (Conversely, such an isogeny
decomposition where the W; are abelian subvarieties of W defines a partition of
unity and thus a decomposition of End% (Ag) as right-End% (Ax) module; see
A.2.5 for details.)

Proposition 2.7 Let D C End% (Ax) be a subring which is a division ring which
is invariant under the operation t on End%(Ax). Let @;_, A; ~ D'G°PP] be
a decomposition of the D'[GPP]-right module D'[G°PP]. This corresponds to the
partition of unity 1 =Y . e;. Let W; := c;e;(W) as above. Then Wik = A}l(i where

n; = dimD(Ai).

Proof Choose a bijection of G°PP with the set {1,...,n}. Then AZ™" ~ A%

Let [ and L be the left regular (matrix) representations of End% (Ax)![G°PP],
Ip and Lp the left regular (matrix) representations of D'[G°PP] (both regular
matrix representations with respect to the basis G°PP). Let uy @ Mgorn (D) —
Mgors (End% (Af)) be the canonical inclusion. Then I =\ Lp.

By construction Ip(e;) is the identity on A; and zero on all A; for j # i.

Let n; be the dimension of the D-module A;. For each i, choose a basis
(bgj))jzl,___,ni of the D-module A;. Then all n elements bl(-J) define a basis of the
D-module D![G°PP]. With respect to this basis, the matrix associated to Ip(e;) is

zero outside a block of size n; where it is the identity matrix.

We now have two matrix representations of Ip(e;) with respect to different
bases, and via a base change matrix, we can transform one into the other: There
exists an invertible matrix B such that BLp(e;)B~"
n; where it is the identity matrix. By multiplying B with a constant in N, we can
assume that all entries of B lie in D N Endg (Ak).

Let b be the endomorphism of A" ~ A% which is associated to «y(B). By
our notational conventions, the endomorphism associated to the matrix L(e;) =
imLp(e;) is e; ®pidg. We see that b~ (e; ®¢idx )b is the projection of A%Opp ~ A%

is zero outside a block of size
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to A%. Thus the image of b 'c;(e; ®y idk )b is A%, and the image of ¢; e; ®y, idx
is isomorphic to A%, O

Remark Let A be simple, D = End%(Ax). Assume that all e; in the above
proposition are central. Then all A; as above are rings and @;_; A; ~ D![G°PP] is
an isomorphism of rings. Further, the W; = c¢;e;(W') are generated by the isotypic
components of W and A; ~ End?(W;). So in particular, the number n; in the
above proposition satisfies n; = dimp (End{(W;)).

The Rosati involution and representation theory

In Subsection A.2.5, the following is shown:

A decomposition of an abelian variety into isotypic components corresponds to
the partition of unity 1 = ), e; into central simple pairwise orthogonal idempo-
tents. (The decomposition of the abelian variety as well as the partition of unity
are unique up to a permutation.)

Further, the isotypic components are orthogonal with respect to any polariza-
tion. This corresponds to the fact that for any Rosati involution e; = e/.

We now want to show how for the Weil-restriction W the orthogonality of the
isotypic components is closely related to a well-known result from representation
theory.

To use this result, we make the assumption, that A is simple, the endomor-
phism ring of Ax is commutative and all endomorphisms of Ax are defined over
k. Fix a polarization ¢ on A.

Under our assumptions, End)(W) is isomorphic to the “ordinary” group ring
EndY (Ag)[GPP].

We fix an inclusion of End% (Af) into Q. Then the Rosati involution operates
on End%(Ax) by conjugation.

Let (...)" be the involution of Q[G°PP] given by 3" copp AeT = D pcopp Aa0
Note that by Proposition 2.6, this involution restricts to the Rosati involution on
EndY, (Ag)[GPP].

Let xj, 7 = 1,... be the character maps of G°”P. And let 1 = Zj el)) be the
decomposition of the unity in the ring Q[G°PP]. Then by representation theory,
ell) = Y occrop %Xj(l)Xj (01) o; see [La, XVIII, Proposition 4.4.].

1

Ce N B v R -~
| Mhisimpliese = 3 hr GG = Sy bo(1x(0) ot =
e,

The central idempotents e; of the group ring Endx (A )[G°PP] have the form
Z,y el™) | where all iy are distinct. Thus e; = € for the Rosati involution with
respect to Resk (), which is consistent with the result e; = ¢! for general abelian
varieties and any polarization.
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2.1.3 The cyclic case

Let k still be a perfect field. We now apply the above results to the case that G
is cyclic.

We identify G with G°PP and fix some generator o € G. Let a = a, € Endy (W)
be the automorphism corresponding to . (Since G is commutative, a, = s, ';
p. 17)

Denote the residue class of X in Q[X]/(X™ — 1) by z. Then we have an
inclusion

see

Q[X]/(X™ — 1) — End% (Ax)'[G], =~ o.

The polynomial X™ — 1 splits over Z[X]
X" —1=]]%a
din

Here, ®,; is the d-th cyclotomic polynomial, a normalized and irreducible poly-
nomial of degree ¢(d) whose roots are the primitive d-th roots of unity. So
QX]/®4 = Q(¢a)-

Let @/, := (X™ — 1)/®4. By the Euclidian algorithm, there exist ¥, € Q[X]
with 32, Ug®y = 1. Let Eq := Uy ®;. Then the Ey(z) € Q[X]/(X™ —1) are pair-
wise orthogonal idempotents and define a partition of unity. The decomposition
corresponding to this partition is

QX]/ (X" —1) ~ [JQIX]/®a = [] Qa)-

d|n d|n

(This is nothing but the Chinese Remainder Theorem in this particular case.)
Let Wy := ¢4 E4(a)(W) for suitable ¢; € N. We then have an isogeny decom-
position
W~ [ W,
d|n

and by Proposition 2.7, the W, are abelian varieties with Wy =~ A%d).

We also have Wy = ®/(a)(W). — We only have to show that cq®’,(a)(W) C
Wy This follows from ®(z) = (3, V() (x))Py(z) = V4(x)P) () =
Eq(z) ().

It is clear that Wy is also the reduced identity component of the kernel of ¢y (id—
Ey(a)) = cq Zf\n,f;éd ‘I’f(a)q)lf(a) = (cq Zf|n,f7éd Uy (a) Hg\n,g;ﬁd,f Dy(a)) ©q(a).
It is also the reduced identity component of the kernel of ®4(a). — We only have
to show that Wy is contained in this kernel. But since Wy = @/ (a)(W) and
P! (x)®g(x) = 0, this is obvious.

Let W) be the abelian subvariety which is generated by the Wy, f|n, f #
d. Then Wy = (id — Eq(a))(W) = (32;.4 Ey)(W). Analogously to the above
arguments one shows that W) = ®4(a)(W) and that W} is the reduced identity
component of the kernel of ®/(a).
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We now want to study whether the W, are simple or split further. We make
the following assumptions.

Ag is a simple abelian variety whose endomorphism are all defined over k and
whose endomorphism ring is commutative.

Note that if k is finite, all endomorphisms of Ax are automatically defined
over k if we assume Endg (Ag) to be commutative.

Also if A is a non-super-singular elliptic curve over any field and n is odd,
then all endomorphism of Ax are defined over k. This is because under this
condition, End(Af) is either Z or a quadratic order, thus the only possible non-
trivial automorphism of Endg (Ax) has order 2, and consequently the kernel of
the representation Gal(K|k) — Aut(Endg(Ax)) is trivial.

Under the assumptions, we have the isomorphisms

End)(4)[X]/(X" —1) ~ End(Ax)[G] ~ End)(W)
€T = o — a

Let &4 split into the product of the non-trivial irreducible polynomials @((il), @&2),

., 0 over EndY(A). Let ) := (X7 —~1)/®1. Since X" —1 is in characteristic
0 a separable polynomial, the (I>Eli) are all different for all d and 7, and there exist
U with Y g, 7L, 09,0 = 1. Let BY) = v e/,

Then again by Proposition 2.7, Wéi) = E'g)(a)(W) is an abelian variety
with Wéi) ~ A(Ii(eg(q)d(i)). The abelian subvariety Wéi) is simple and its endo-
morphism ring is isomorphic to the integral commutative ring End(A)[X]/ @((ii).
Since Endg (W) is communtative, the Wd(i) are pairwise non-isogenous and they
are thus the isotypic components of W.

As above, one sees that Wd(i) = q>'d(i) (a)(W) and that Wéi) is the reduced
identity component of the kernel of (I>((;) (a).

The component Wy is simple iff ®4 is irreducible over End(A), i.e. iff End}(A)

and Q(¢y) are linearly disjoint. ® If we fix an inclusion of End)(A) into Q, this is
the case iff End)(4) N Q(¢4) = Q.

It particular, non of the Wy splits if Endg(A) = (Q as is the case if A is an
elliptic curve without complex multiplication.

We proved:

Theorem 5 Let K|k be a finite cylcic field extension of degree n of perfect fields.
Let A be an abelian variety over a field k.

Let W be the Weil-restriction of Ak with respect to K|k. For all djn, W con-
tains canonically an abelian subvariety Wy with Wy ~ A?}(d), and W is isogenous
to the product of the Wy. Here, Wy = A itself.

Assume in addition that A is simple, End%(Ak) is commutative and all
endomorphisms of A are defined over k. Fix an inclusion of End(}((AK) into Q.

5For definition of “linear disjoint” see Subsection A.3.1 in the appendix.
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Then the isotypic components of W are all simple, and its endomorphism rings
are all commutative. For each d, Wy is simple iff End)(A) N Q(¢q) = Q.

Let A be a non-super-singular elliptic curve with complex multiplication (de-
fined over k). Fix an inclusion of Endy(A) into Q.

Then End?(A) is a imaginary quadratic extension of Q. Now End}(A) and
Q(¢gq) are not linearly disjoint iff End)(A4) C Q(¢y). If this is the case then @4
splits into two polynomials of degree %(p(d).

Let A still be a non-super-singular elliptic curve and let k& be finite. Then
End}(A) = Qo] where « is a root of the characteristic polynomial of the Frobe-
nius. Thus &4 splits iff « € Q({y).

Corollary 2.8 Under the assumptions of the theorem, let A be a mon-super-
singular elliptic curve with Endg(A) = Endg (Ax) (this condition is automatically
satisfied over finite fields or if n is odd).

Then for each d, Wy is not simple iff Ax has complex multiplication and
EndY(A) C Q(¢q). If this is the case, Wy contains canonically two simple non-

1sogenous abelian subvarieties with dimension @, and Wy is isogenous to the

product of these abelian subvarieties. ”

The trace-zero-hypersurface

Let again A be an abelian k-variety.

By the above argumentation, W is isogenous to Wy which is isomorphic to A
itself and W], the abelian subvariety of W generated by Wy for d|n and d # 0.
Now ®; = X — 1 and & = X" ! 4+ ... + 1 and thus Wy = (a" ! +--- +id)(W),
W{ = (a —id)(W), and W, is the reduced itentity component of the kernel of
a — id and W] is the reduced itentity component of the kernel of a”~1 + . +id.

Now both these kernels are in fact itself equal to Wy, W/ respectively. This is
obvious for W7, since ker(a — id) is by definition equal to A embedded in W. But
it is also true for Wy:

Let N := ker(®)(a)) = ker(a” ! + -+ +1id). Let %, := {0,...,n — 1} and
consider the isomorphism W3 ~ EEG ~ EEE" where the “o’-th” factor corresponds
to the i-the factor. Under this isomorphism, Ny corresponds to ker(po+- - -+pn—1),
where for 1 =0,...,n — 1, the p; : EEE" — I are the projections. Now ker(po +
e pp1) — ngl, P=(PR,...,P, 1)+~ (Py,...,P, 1) is an isomorphism.

As W] = N = ker(®)(a)) = ker(a" ' + --- + id), we call N the trace-zero-
hypersurface of W (although this term is not completely accurate if dim(A) > 1).

Note that W is isogenous to A X, N but not isomorphic to it, for NN A :=

n times

N xw A =ker(idg + - - - +1id4) = ker([n]) = Aln].

"Over finite fields, the dimensions of the simple isogeny-factors of W in Corollary 2.8 were
first established by N. Naumann using the [-adic representation; see [Na)].
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This fact makes the study of N particularly interesting, and we will concentrate
on this object for the rest of the chapter.

The following result gives a flavor of the consequent results about N.
Let o : A — Abea polarization of A, defined by the ample sheaf L on Ay.

As said above, Res) () : W — W is also a polarization, defined by the sheaf
L.

k
We are interested in the kernel of the polarization Iy ReskK (p) tn defined by

L’]‘V(LWF).

Proposition 2.9 AN N = A[n] is immersed in ker(ix Resk (¢)tn). If ¢ is a
principal polarization, they are equal.

Proof The first statement follows from Lemma A.19, the second from Lemma A.23
with f =id — a™ !, (It is N = im(f), and further f = f' by proposition 2.6 and
ker(f') = ker(f) = A.) O

Let FE be a non-super-singular elliptic curve, NV the associated trace-zero-hyper-
surface. We want to study the Néron-Severi group of N via a “geometric” ap-
proach. In order to do so, we now study the Néron-Severi group of the product of
isomorphic elliptic curves.

2.2 The Néron-Severi group of a product of
isomorphic elliptic curves

Let E be an elliptic curve over a perfect field K, let » be a natural number. In
this section, we want to study the various properties of the endomorphism ring
and the Néron-Severi group of E™.

In the first subsection, we put the results of [Mu, p.208-210] into more concrete
terms. In the second subsection, we give a basis for the Néron-Severi group of E™,
then in the show the Néron-Severi group on an abelian variety which is a twist
of E™ (i.e. which is after a base-change isomorphic to E™) can (in principle) be
calculated. This result will be the basis of the calculations of the next section.

2.2.1 The Néron-Severi group and the endomorphism ring
The canonical product polarization of E™

Let p; : E™ — FE be the projections and let +; : £ — E" be the immersions onto
the “i-th factor”.

Let D; be the divisor ® p; 1(0) = Ex Ex -+ x Ex0x E--- E (0 in the i-th
position), D :=>"" | D;.

8Since abelian varieties are non-singular, effective (Weil- or Cartier)-divisors are in bijection
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Let p: F — E be the canonical principal polarization defined by the ample
divisor (0). The divisor D defines the “canonical” product polarization of E™, let
On: B" — E™ denote this polarization. Since (0) defines a principal polarization
of E, ¢, is a principal polarization, i.e. ¢, an isomorphism. (Corresponding to
the fact that D has Euler-characteristic n!.) °

The Galois group Gal(K|K) operates on NS(E%), and we have an inclu-

sion ¢+ NS(BL)G(KIK) — Homp (E", E"), M — ¢5z. By composition with

Gal(K|K) hecomes a subgroup of Endg(E™) ~

the homomorphism ¢, !, NS(E%)
M,,(Endg (E)). '© Tts image equals the subgroup of elements which are fixed

under the Rosati involution; see Lemma A.14. '

The Rosati involution

If A € End%(E), let X denote the corresponding conjugated element. (If E is
super-singular, let A be the conjugated element in the field extension Q()).) Then
the Rosati involution of E (with respect to the ample divisor (0)) is given by
A=

The following lemma is a special case of Lemma A.16:

Lemma 2.10 The Rosati involution of E™ with respect to L(D) is given by A —
a’ (transposition and conjugation) on M, (End% (E)).

So if E is non-super-singular, NS(E%)GM(EK ) is isomorphic to the group of
hermitian matrices of M,,(Endg (E™)).

The degree and the Euler-characteristic

Let us state how the degree and the Euler-characteristic of a divisor can be calcu-
lated if it is given as an element of M, (Endg (E™)). We follow the ideas of [Mu,
p.209].

First, we need to know how the degree of an endomorphism given as an element
of M, (Endg (E™)) can be calculated. On Endg(E), the degree of A € Endg (FE)
is given by deg()\) = M.

Lemma 2.11 Assume that E is non-super-singular. The degree function of E™
is given on M, (Endg (E)) by deg(A) = det(A) det(A).

with closed subschemes of pure codimension 1. We will also call such subschemes (effective)
divisors. We will use that for some surjection a : A — B of non-singular, connected varieties
A, B and some closed subscheme of pure codimension 1 D of B, the “pull-back” of the Cartier-
divisor associated to D corresponds to the scheme-theoretic inverse image a ™ (D); see Subsection
A3.2.

®This section relies on Subsection A.2.2 in the appendix.

107¢ it important here that D defines a principal polarization.

"'We will see that NS(E™) — NS(E‘%)G"“(?'K) is an isomorphism.
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Proof The equation is true for singular matrices (which correspond to endomor-
phism with non-finite kernel and thus have by definition degree 0).

Further, the equation is true for diagonal matrices (the value on both sides
being the product over the squares of the norms of the diagonal elements), for
upper /lower triangular matrices with diagonal elements all 1 (the value on both
sides being 1) and for permutation matrices (where the value on both sides is
again 1).

Let A be non-singular. By the complete Gauf-Algorithm, there exist B;, 7 =
1,...,m which are diagonal matrices or upper/lower triangular with diagonal el-
ements 1 or permutation matrices such that B,, --- B1 A = al, where a € N.

Since the equation is multiplicative on both sides and true for all B; and for
al, it is also true for A. O

Remark If F is super-singular, a similar result holds: If we chose a quadratic
field extension F inside End% (E), then M, (F) is a subgroup of M, (End% (E)).
On this group, the lemma holds. (To calculate the degree for the whole group
End% (E™), one has to use the so-called reduced norm.)

For any divisor C' on E", the degree of C (i.e. the degree of ¢ ¢)) is the degree
of the endomorphism ¢, ! o b (o) of E™. If this endomorphism corresponds to the
matrix A with entries in a commutative subring of Endx (F), by the Riemann-

Roch-theorem and the above result, x(£(C))? = deg(L(C)) = det(A)det(A), thus
IX(L(C))] = [det(A)].

Lemma 2.12 Again let C be a divisor on E™. Assume that E is non-super-
singular or that C fulfills the conditions of the above remark. Then x(L(C)) =
det(A).

This follows from the following lemma.

Lemma 2.13 Let the notations and the conditions on C be as above. Then
X(L(D)* @ L(C)) = det(zI + A) = p_a(z), where p_4 is the characteristic poly-
nomial of the matriz —A.

Proof For any z € Z, |x(L(D)* @ L(C))| = |x(L(zD + C))| = |det(zI + A)| by
linearity and the above result. So we only have to check that the sign is correct.

By the Riemann-Roch theorem, z — x(L(D)? ® L(C)) = L(zD +C)" is a
polynomial function of degree n, and X (2D + C)" = L (2"(D)"+(lower order
terms))= 2"+ (lower order terms). Analogously, p_a(z) = 2"+ (lower order
terms). Thus for large z, p_4(2z) and x(L(D)* ® L(C)) are both positive, and
thus they are equal for these z. Especially, they are equal for infinitely many z,
and being polynomial functions they are equal. O
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Lemma 2.14 Let the notations and the conditions on C be as above, and further
assume L(C) to be non-degenerate. Then i(L(C)), the index of L(C), is the
number of negative eigenvalues of A. In particular, L(C) is ample iff det(A) # 0
and the eigenvalues of A are all positive.

Proof By Proposition A.25 (cf. [Mu, par. 16, p. 155]) and the above lemma, the
index is the number of positive roots of p_ 4, i.e. the number of positive eigenvalues
of —A, i.e. the number of negative eigenvalues of A. The second statement is a
reformulation of Lemma A.26. O

2.2.2 A basis for the Néron-Severi group

For each i = 1,...,n, let \; € Endg(FE). Let not all A\; be 0. Let A:= (Aq,...,Ap)
and let A := \ip1 + -+ 4+ \ypn : E” —> FE be the corresponding morphism.

Now the closed subscheme C()) := ker()) is purely n — 1-dimensional and is
thus an effective divisor on E™. The .-valued points of C'()) are

{P:(Pla---apn”>\10P1+>\20P2+---—|—)\nopn:0}_

Proposition 2.15 The class of the sheaf L(C(A)) (in NS(E™)) corresponds to
the endomorphism with the matriz

ML A e A, A
XAl A2 o Ay A2

: : . ) = ) (M X An )
Al Anda e ARy An

Proof In the notation of Subsection A.2.3, we have to show that 90;1¢L(C()\)) =N\
We may assume that K is algebraically closed. We use that for all K-valued
points P of E™ and endomorphisms A, Ao Tp = T),p o .
Now, for every K-valued point P of E™, ¢r(c(a)) 0 P is defined by T, (C(N) -
C) = Tp'A7H0) = A1 (0) = A1 (Th (0) = (0). Thus drica)) = ApA = @pA'A.
O

Notation Let A € Endg(F) and 1 < 7 < 5 < n. Let C{\,j be the divisor
associated with the closed subscheme

{P=(P,...,P,)|P;+ Xo P; =0}.

Then the by the above results the matrix of C' is zero but at the entries (i, 14), (i, 7),
(7,4), (4,7). Here it looks like
1 A
(5 )
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We see that the group of endomorphisms of E™ invariant under the Rosati
involution is generated by the endomorphisms corresponding to D; and C{\’j. So
NS(E™) :NS(E%)GM(MK). We can give a basis for NS(E™) in terms of a basis of
Endg(E).

Theorem 6 Let K be a perfect field and let E be a non-super-singular elliptic
K -curve. Then NS(E™) =~ NS(E%)GM(K\K),

With the above notations,

e if E has no complex multiplication (over K ), then D; for i =1,...,n and
Cilyj fori < j is a basis for NS(E™).

e if Endg (FE) is an order in a quadratic imaginary field and K, X is a basis of
Endg(E), then D; fori =1,...,n and Cf,, C{\,j for i < j is a basis for
NS(E™).

e if Endg (FE) is an order in a quaternion algebra and k, X\, p,v is a basis of
Endg(E), then D; for i =1,...,n and Cf;, C{\’j, C;fj, Cyj fori <jisa
basis for NS(E™).

2.2.3 The Néron-Severi group of a twist

Let K|k be a Galois field extension of odd degree and let E be a non-super-
singular elliptic curve over k. Let A be an abelian k-variety such that Ax ~ E%.
We want to calculate the Néron-Severi-group of A as a subgroup of Endg (E}) ~

By Lemma A.11, the Néron-Severi-group of A consists of those elements of the
Néron-Severi-group of Ax ~ E% which are invariant under the Galois-action. For
each o € G, we have an arithmetic operation of Ax /K. Under the isomorphism
Ak ~ E} this operation corresponds to an automorphism o on E%.. ¢ is of the
form s,o with o the canonical automorphism of E7 /K and s, a K-automorphism
of E%.

Under our assumption that F be non-super-singular and n be odd, all endo-
morphisms of Fx are defined over k. So also all endomorphisms of E%- are defined
over k and so all elements of NS(E7.) are invariant under ¢ and in order to de-
termine the invariant elements under the action of o we have to calculate which
elements are invariant under s, for all o € G.

A special case of Proposition A.15 is:

Let € NS(E}), corresponding to a hermitian matrix X € M, (End;(F)).
Then s’ (x) corresponds to the matrix S_(,TXS(,.

This implies:

Proposition 2.16 Let K|k be a Galois field extension of with Galois group G
of odd degree. Let E be a non-super-singular elliptic curve over k. Let A be an
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abelian k-variety such that Ax ~ EY%.. Assume that all K-endomorphisms of Ex
are defined over k. For each o € G, the Galois-operation on Ak /K is defined
by 0 = os, where s, is a K-automorphism of E™ corresponding to a matriz
S, € Mn(EndK(EK))

Let © € NS(E™), corresponding to a hermitian matriz X € My, (Endg(FE)).
Then © € NS(A) iff for all o € G,

5. XS, = X.

2.3 The Néron-Severi group of the trace-zero-
hypersurface

In this section, we study the Néron-Severi group of the trace-zero-hypersurface
N of the Weil-restriction of a non-super singular elliptic curve with respect to a
cyclic Galois extension of odd degree. In particular, we want to know if V has a
principal polarization; see Subsection 1.3.4.

Let K|k be a cyclic Galois extension of degree n with Galois group G. Identify
G with G°PP and let o be a generating element of G.

Let E be an elliptic curve, W be the Weil-restriction of Fx := F ®; K with
respect to K|k. Let N be the trace-zero-hypersurface, 1 : N — W the embed-
ding.

2.3.1 The canonical polarization of the trace-zero-hypersurface

Let ¢ be the canonical principal polarization of E. Then Res’ (y) is a principal
polarization of W.

As in the end of Subsection 2.1.3, let £,, denote the set {0,...,n —1}. Then
Wx =~ E2", and under this identification Resk (¢) is defined by the divisor
D := 3, D; where D; := p;'(0). (This divisor is Galois-invariant under the
“twisted operation” and descends to a divisor on W.)

We call the pull-back of the polarization ReskK(go) the canonical polarization
of N. Since W is not the product of £ and N but only isogenous to the product,
the pull-back of this polarization is not principal.

Recall that with Proposition 2.9, the kernel of this polarization is
K(n(L(D))) = ENN = E|n]. (2.6)
This implies:

Proposition 2.17 After the choice of the generator o of Gal(K|k), N is canon-
ically isomorphic to its dual.
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Proof Since the polarization ¢, rp) has kernel E[n], N is canonically isomorphic
to N/E[n].

Now choose a generator o of Gal(K|k). The morphism a, —id : N — N has
kernel E[n]. Thus this morphism induces an isomorphism of N with N/FE[n]. O

We can give a sufficient condition so that N is isogenous to a principally
polarized abelian variety.

Proposition 2.18 Let K|k be an extension of prime degree . If the group scheme
E[l] has a non-trivial subgroup over k - e.g. if k contains an l-torsion-point of E
or if char(k) =1, then N is isogenous to a principally polarized abelian variety.

Proof Any non-trivial subgroup of the group FE[l] is automatically a maximal
isotropic subgroup of % (L£(D)); see [Mu, p.233-234]. '2 If E has a k-rational
[-torsion point, then this point defines a prime subgroup. If char(k) = I, then the
Frobenius endomorphism of F is purely inseparable and has degree [. Its kernel
defines a non-trivial (connected) subgroup of E[l]. O

To give an idea of the methods employed in this chapter, we give a new proof
of equation (2.6).

If we identify Wg ~ EKG with E'I?" where the “o’-th” factor corresponds
to the i-th factor, then for any K-scheme S, the S-valued points of Ax are
P = (Py,...,P,_1) where P, € Eg(S) and Py +---+ P,_1 = 0. So via P =
(Po,...,Py—1) = (P1,...,P,_1), Nk is identified with E}Z{I.

Under this identification of Nx with E%~" the divisor t5' (D) is given by
E?;ll D; + C where C is the kernel of pg + - -- + pp—1. By Proposition 2.15, the
corresponding matrix is

2 1 1 1
1 2 1 1
11 . 2 1
T 1r - 1 2

By subtracting the lines one sees that all .-valued points of the kernel have the
from P = (Py,...,P;). Then one sees that P, € E[n]. O

We identify N with E}’(_l as in the above proof. Then o operates on Ng by
o = os, where o is the canonical arithmetic automorphism of E}Z{I /K and the
automorphism s is given by

(Pl, - ,Pnfl) — (PQ,P3,. .. ,Pnfl, -P—- = nfl).

12T [Mu] it is proven that over an algebraically closed field every abelian variety is isogenous to
a principally polarized abelian variety. This is not true over an arbitrary groundfield, the reason
being that the kernel of a polarization need not have a non-trivial subgroup.
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This corresponds to the matrix

0 1 0

S = 0 (2.7)
0 . 0 1
-1 -1 - =1

As a special case of Proposition 2.16 we get:

Proposition 2.19 Let K|k be a cyclic Galois extension of perfect fields and let
E be a non-super-singular elliptic curve. Assume that oll K-endomorphism of Eg
are defined over k. Let N be the trace-zero-hypersurface of the Weil-restriction
with respect to K|k. Let S be defined as in equation (2.7). Then the Néron-Severi
group of N corresponds to the subgroup of hermitian matrices X with entries in
Endy(E) which satisfy

STXS =X.

2.3.2 A basis for the Néron-Severi group

From now on we assume that the degree n is odd and that E is non-super singular.

Recall that under our assumption that n be odd, all K-endomorphism of Ex
are defined over k.

Let n = 2m + 1. Then N is an abelian variety of dimension 2m, Ng ~ E%(m
We want to define a basis of NS(E?™) = NS(E%™) which is permuted under the
operation of the Galois group of K over k, i.e. if = is an element of the basis, then
s*(x) shall also be an element of the basis. Then the linear invariants of this basis
form a basis of NS(Ng )@al(Klk) ~ NS(N).

We consider the case that F has no complex multiplication first. In this case
NS(E?™) is the group of symmetric 2m X 2m-matrices with entries in Z, and so
we want to find a basis for this group such that if X is an element of this basis,
STXS is also an element of this basis.

Let E;; be the matrix which is zero except at the entry (7,j) where it is 1.

Let A;; be the matrix which is zero except at (4, j) and (j,%) where it is 1. (If
i = j there is only one non-zero entry.) So A;; = E;; and A;; = E; ; + E;; for
i # j. The m(2m + 1) matrices A;; for 1 < i < j < n form a basis of the free
abelian group of symmetric matrices with entries in Z. For any symmetric matrix
X, let X =%, X(i,7)Ai,; where X(i,j) € Z. We also write X (j,1) for X (i, j)
(i < 7).



52 CHAPTER 2. WEIL-RESTRICTIONS OF OLD ABELIAN VARIETIES

Let Bl = Z’L:l, 2m _El,l + Zj:L...’Qm _El’] =

[-th column

-1
-1

lthrow —1 .-+ —1 -2 1 -1
-1

-1
Let V:= 371 o; icom Eij = ((1)) be the matrix whose entries are all 1.

Lemma 2.20 Let m be a number. Then A;; for i < 5,5 —1 # m,m + 1, B
forl £ mm+1 and V form a basis for the free abelian group of symmetric
2m X 2m-maltrices with entries in 7.

Proof The set defined in the lemma consists of m(2m + 1) — (2m — 1) of the form
A; j, 2m — 2 elements of the form B; and V, thus the total number of elements is
m(2m + 1) — as required for a basis.

We have to check that that the base change matrix from the basis A; ;, 4,5 =
1,...,n to the elements in the lemma is invertible.

For this, we only have to check that the following 2m — 1 X 2m — l-matrix is
invertible:

Bi(l,m + 1) cor Bpoi(L,m 1) Bpmyo(l,m +1) <o+ Bam(l,m+1) V(1,m+1)
.Bl (m, 2m) s .Bm,l(m, 2m) .Berg(m, 2m) s .Bgm (m, 2m) .V(m, 2m)
Bi(l,m + 2) cor Bpo1(L,m +2) Bmyo(l,m +2) <o+ Bapy(l,m +2) V(1,m +2)
.Bl(m—1,2m) .Bm,l(m—1,2m) .Bm+2(m—1,2m) .Bgm(m—1,2m) .V(m—1,2m)
This is
B1 B “ Bm-1 Bm42 -+ Bam—1 Bam V
1 0 01
-1 -1 1
—1 -1 1
0 0 -1 1
-1 -1 1
-1 1
-1




THE NERON-SEVERI GROUP OF THE TRACE-ZERO-HYPERSURFACE 53

Except for the sign this has the same determinant as

1 0 -+ --- 0 1
1 1 1

1 1 1

0 11
0 1 0
0 -1 0

1
0 -1 1 0

And the determinant of this matrix is

1 1
1 0
det | —1 0 | =det A =1.
1 : '
-1 1 0
O

We now check that this basis is permuted under the Galois-operation, i.e. if
X is an element of the basis, then ST XS is another element of the basis.

We do some calculations first.
Let 7 < 2m. Then E; ;S = E; j11.
EipmS =32j=1,. om —Fij-

Let i < 2m. Then STE; ; = Ejy1 .
ST Eomj = Yiet,...om —Eig.

It follows
Let 7,5 < 2m. Then STE; ;S = Fjy1 41
Let i < 2m. Then STEj9mS = 8T (3,2 om —Fij) = Y jm1, . om —Bit1j-
Let 7 < 2m. Then STEQm’jS = STEQm’]‘+1 = Ei:l,...,Zm _Ei,j+1-
ST BonpmS = ST (X 21 om —Fomj) = X ji, . om Bij-

And this implies
Let @ < 2m. Then ST(3,_; o, Fij)S =
Zj:l,...,Qm—l Eiy1j41+ Zj:l,...,Qm —Eit1j=—Eit1-

T _ —
ST o1, 2m Bomg)S =221 om jm1,2me1 —Bigt1 + 200 i1, om B =
Zi:l,...,?m Ei.

Let j < 2m. Then ST(3 E;;)S =

i=1,...,2m
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Dicty2m1 Bttt + 21 om —Fij1 = =Bt

ST(Zi:l,...,Qm Ei,Zm)S = Zi:l,...,Qm—lj:l,...,Qm —Eip1;+ Zi,j:l,...,?m Ei; =
Ej:l,...,Zm By .

And

ST(Zi,j:l,...,Qm Ei,j)s =

(ST(Zizl,...,Qm—l Zj:l,...,Qm Ei,j)S + ST(ijl,...,Qm E2m,j)5 =

(i, ome1 —Firr1) + (i1, om Fit) = Erp-

It follows:

Lemma 2.21

Let 1 <i<j. Then STA; ;S = Aji1 1.
ST AomomS=V.

STVS =A,.

Let i < 2m. Then ST A; 9,S = Bij1.

ST By, S = By.

Let 1 < 2m. Then STB)S = Ay 4.

With this result it is easy to give a basis of NS(V) as a subgroup of Moy, xom (Z).

For the convenient notation let for [ =0,...,2m — 1V, := Ei:l,...,2m4 A it
So if we call the main-diagonal the 0-diagonal and give numbers 1,...,2m —1
to the upper diagonals and numbers —1, ..., —2m + 1 to the lower diagonals, then

V; is zero except at the ith and —ith diagonal where all entries are 1.

It follows from the lemma that the following matrices define a basis of NS(N):
Vo + Ei:o,...gmq Vi.
Vi+ B1 + Bop, it m > 2.
Vi+Vom g1+ B+ Bom gy forl = 2,...;m—1 (if 2 <1 < m —1, then
m+1<2m—-1+1<2m-1).

We now study the case that F has complex multiplication (over k). Since
we assumed that E is non-super-singular, Endg(E) is an order in an imaginary
quadratic field. There exists an A €Endi(F) such that 1,)\ is a basis of the
free abelian group Endg(E). (If (1,)') is a basis of the main order and f is the
conductor of the order then (1, f\’) is a basis of Endy(F).)

With respect to this A we want to define a basis of the free abelian group of
hermitian n X n-matrices with entries in Z[A] =Endj(E). The basis defined above
will be a part of the new basis. Then we will show that the new elements of the
basis are also permuted by the Galois action.

Let 1 # j. Let Af"j be the matrix which is zero except at the places (i, 7)

and (j,4). At the place (i,7) it has value )\, at place (j,i) is has value X. So
Ai,j = >\Ei,j + >\E,z
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A (i < j),Af"j (¢ < j) is a basis for the group of hermitian n X n-matrices
with entries in Z[\]. If X is any such matrix we define X(i,7,A) by X =
Eigj X(iaj)Ai,j + Zi<j X(i,j, A)Ag\,j‘

Let Bl)‘ = Zi:h...,gm —AE;; + Zj:l,...,Qm _XEZ,J' =

[-th column

-2

Ithrow —A = —A A=A B N |

Let VX =301 oA+ XA+ X< jcicom A2 =

DN W A

>
>
>
+

>

Lemma 2.22 A;; for i < j,j —1 # m,m+ 1, B; forl # m,m + 1, V,Af"j for
1< j,7—1#mm+1, Bl)‘ for 1 # m,m 4+ 1 and V> form a basis for the free
abelian group of hermitian 2m X 2m-matrices with entries in Z[\].

Proof We only have to check that the matrix

BM1,m+1,)) ... BMA_;(1,m+1,)) Bhyo(l,m+1,0) ... B3, (1,m+1,)) VA1, m+1,1)
A A A A A

Bf (m, 2m, \) ... By _i1(m,2m,X) BJ, 4o(m,2m, X) ... B3, (m,2m,X) VA (m, 2m, )

BY1L,m+2,)) ... Bh_i(L,m+2,0)  Bhio(IL,m+2,0) ... B3 (IL,m+2,))  V1,m+21)

BNm — 1,2m,\) BN _(m—1,2m,\) B\ .(m —1,2m,\) B (m —1,2m,\) Vm —1,2m,\)
7 ,2m, <o Bp_g ,2m, o ,2m, ... By, ,2m, ,2m,

is invertible. But this is the same matrix as the one considered in Lemma 2.20. O

Lemma 2.23

Let i < j < 2m. Then STAf:jS = A;\+1,j+1'
Let i < 2m. Then STAZ?"QmS =B},.
S'B3.,S = B}

Let 1 < 2m. Then STB}S = A}, .
STVAS =V,
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Proof Everything is proven by the calculations preceeding Lemma 2.21 but the
last equation.

Now, ST(ZIgigngm E;;)S = ST(Zlgi§j§2mfl Ei,j)S+ST(Ei:1,...,2m Eiom)S =
22§i§j§2m Eij + Elgngm By = El§i§j§2m B j
and

ST(ZI§j§i§2m Ei,j)S = ST(Egjgimel Ei,j)s + ST(Ej:l,...,Zm E2m,j)5 =
Yoo<j<i<om Fij + Xi<icom Fig = Yi<j<i<om Fiy-
This implies STVAS = V. O

Let for [ = 1,...,2m V) = D=1, 2m—1 Af:i_i_l. Then the following matrices
define a basis of NS(N):

VO+E¢:0,...,2mf1Vi

Vi+ By + Bay, if m > 2

Vi+Vom g1+ B+ Bom g forl = 2,...;m—1 (if 2 <1 < m —1, then
m+1<2m—-1+1<2m—1)

VQ? + B} + By, it m > 2

VA + Vo i+ B+ By, for I =2,...,m—1 (if 2 <1 < m—1, then

m

m+1<2m—-1+1<2m—1)
VA= A+ 0Vo+ X1 om 1 VI

We get the following proposition:

Proposition 2.24 Let K|k be a cyclic Galois extension of perfect fields of degree
n =2m+ 1. Let E be a non-super-singular elliptic curve over k. Let N be the
trace-zero-hypersurface of the Weil-Restriction of Ex with respect to K|k. Then
NS(N), the Néron-Severi group of N, equals NS(N)G KK and is canonically a
subgroup of the matriz group Moy, wom (Endg(E)). Under this inclusion, the free
abelian group NS(N) has the following basis:

If E has no complex multiplication:
Foy:=Vy + Zl:O,...,Qm—l Vi — this defines the canonical polarization of N
Fy :=Vi 4+ By + By, meZQ
F:=Vi+Vop_s1+ B+ Bopp—ja1 forl=2,....m—1 (if2 <1 <m—1, then
m+1<2m—-1+1<2m-1).
In particular, NS(N) is m-dimensional.
If E has complex multiplication and 1, is a basis of Endy(F):
Fo, e ,Fm,1 and
Fo=Q+ Vo + 2 oma Vi
F) =V} + B+ By, if m > 2
Fr =V Vo + BN+ By, forl=2,...,m—1
In particular, NS(N) is 2m-dimensional.

In this proposition, we use the same notations as above, i.e.
Bi=3% i om—Eia+ 30, om—Elj
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B} = Dictom —AEL D0 om —)E,
Vii=2imi, ot Biitt + 2521, om—1 B, for >0
Vz/\ = Zi:l,...,Qm—l AEjiti+ Zj:l,...,Qm—l AEj1,j for [ > 1.

Definition Let G, be the subgroup of My, xom (Z) which is generated by the
matrices Fy, ..., Fp,. We have seen that Fy,..., Fp, is a basis for this group.

Let N be the trace-zero-hypersurface as above. Then NS(N) is embedded in
M,,(Endg(E)), and the elements of NS(/N) which correspond under this injection
to elements of G, define a subgroup of NS(N) which we call the generic part of
NS(N). Loosely speaking, the elements of the generic part of NS(N) are those
elements which “do not come from complex multiplication”. In particular, if
has no complex multiplication, the generic part of NS(N) is the full group.

Theorem 7 Let K|k be a cyclic Galois extension of perfect fields of odd degree
n. Let E be a non-super-singular elliptic curve over k. Let N be the trace-zero-
hypersurface of the Weil-Restriction of Ex with respect to K|k. Then NS(N), the
Néron-Severi group of N, equals NS(NE)Gal(Mk).

If E has no complex multiplication (over k), the kernel of any element of
NS(N) contains the group scheme E NN = E[n] of n-torsion points of E.

If E has complex multiplication, the statement is true for all elements of the
generic part of NS(N) defined above.

Proof Let n = 2m + 1. Under the isomorphism Ny ~ E%(m, the .-valued points of

Ek[n] correspond to the .-valued points of E2™ which are of the form (P,...,P)

for P € Fx[n]. We claim that for [ = 0,...,m — 1, the sum of all the columns of
ap

Fj is a vector of the form n : with a; € Z. It follows from this claim that

a2m
all .-valued points of F[n] are mapped to zero under every element of the generic

part of NS(NV).

The claim is obviously true for Fj; see Proposition 2.9 with the second proof,
p- 50.

We make two definitions:
First, for every symmetric 2m x 2m-matrix X, we denote >, ; o, X(i,j) by
X(@. The claim is then that for all [ = 1,..., m,i = 1,...,2m, F\" is divisible
by n.
Second, for 1 <4 < j < 2m let xp; ) = Z'y:i,...,j Oy, +{1,....2m} — Z, i.e.
Xii,j)() = 1iff i < p < j and 0 otherwise. (1 <y < 2m)

Then Vl(') = X[1,2m—1] T X[14+1,2m]-

In particular, Vl(l) =1, Vl(i) =2for2 <4 < 2m-—1, Vl(Qm) = 1. Thus
VD =2 61 — o
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m, (Vi + Vam—141)® = (X[1,2m—1) +

Further, for [ = 2, < m—-1,1 <1 <
=2- 6[ g 62m7l+1,2-

X[i+1,2m] + X[1,1=1] T X[2m—i+2,2m]) (¢)
It follows for [ =1,...m —1:

For i #1,2m — 1+ 1is F") = 2+ By(i,1) + Bom_i31(i,2m — 1 +1) =2 =2 =0.

FV =141 onBill,) + Bopeii(LL2m —1+1) = 1 - 2m +1) — 1 =

—(2m+1) = —n.

FPMD =10 o Bomip1(2m =14 1,5) + Bi(2m — 1+ 1,0) = 1 — (2m +

)-1=—-2m+1)=-n. O

If follows:

Corollary 2.25 No element of the generic part of NS(N) defines a principal po-
larization.

We already know that the canonical polarization has kernel E[n]. So:

Corollary 2.26 Let E have no complex multiplication (over k). Then N is not
principally polarized. If n is a prime, N is isogenous to a principally polarized
abelian variety iff E[n] has a non-trivial sub-groupscheme over k.

2.3.3 Complex multiplication

Let K|k be as above and let E be a non-super-singular elliptic curve with complex
multiplication (over k). We want to study whether the trace-zero-hypersurface N

)Gal(k\k)

is principally polarized. Since NS(N) ~ NS(NV; all polarizations of N are

defined by ample sheaves on N itself.
With Proposition 2.24 and the help of Lemmata 2.12 and 2.14 the question
whether N has a principal polarization is equivalent to a numerical conditions:

There exists a sheaf with Euler characteristic 1 iff the polynomial equation of
degree 2m in 2m variables

det(ong 4+ o+ xm—lFm—l =+ yoF(j\ 4+ -+ ym—an/\m—l) =41

is solvable in the integers.

A solution to this equation defines a principal polarization iff zoFy + --- +
Tm—1Fm—1 + ygFO)‘ + Ym— 1F _; has only positive eigenvalues. (Of course, this
implies that the determinant had to be 1 in the above equation.)

We now perform these calculations explicitely for n = 3.

Under our assumption of non-super-singularity, End;(F) is an order in the
imaginary quadratic field End?(E). Let End)(E) = Qv D),D < 0 and let § :=
VD. There exists an f € N such that Endy(E) is of the form Z + f© where O
is the main order in the field End)(E) (i.e. it is the normal closure of Z). The
number f is called the conductor of the order.
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D = 2,3 mod 4 Then 1, f0 is a basis of Endy(FE).

Note that if X is some 2 x 2-matrix with det(X) > 0 then either X or —X has
positive eigenvalues. So there exists a principal polarization on N iff

1 foy _ 20 c+yYfo\ _ o 0, 2.2
1 = det(zFy + yFy )_det<zp—yf5 90 =3z +y“f°D

is solvable for z,y € Z.
D =1 mod 4 Then 1, f1+‘5 is a basis of Endy(FE).

e 2x + z+yfad
T+yfs x+yf

The determinant of this matrix is

1446 d 1-D
4z® +dxyf + y*f* — 2° —xyf——gsyf——y f2T:
1+ D
322 + zy(df — f) +y f%:
3+ D

322 + 3zyf + 2 f2—— 1

So in this case N has a principal polarization iff

23+ D

322 + 3zyf +y° =1

is solvable with z,y € Z.

Theorem 8 Let K|k be a Galois field extension of perfect fields of degree 3. Let
E be a non-super-singular elliptic curve over k. Let N be the trace-zero-surface of
the Weil-restriction of Fx with respect to K|k.

If E has no complex multiplication (over k), then the Néron-Severi group of
N is a free abelian group on 1 generator, generated by an ample sheaf with kernel
E[3]. In particular, N is not principally polarized.

If E has complex multiplication (over k), then NS(N) is a free abelian group
on 2 generators. Let End}(E) = Q(v/'D),D < 0. Let f be the conductor of the
order Endy(F). Then:

If D = 2,3 mod 4, then N is principally polarized iff 3z> + y>f?D = 1 is
solvable in 7.

If D=1 mod 4 then N is principally polarized iff 3z + 3zyf + y2f2¥ =1
is solvable in Z.
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2.4 Curves on the trace-zero-hypersurface
for degree 3

For this section, let K|k be a Galois field extension of perfect fields of degree 3, E
an elliptic k-curve, W the Weil-restriction of Ax with respect to K|k and N the
trace-zero-hypersurface on W. 13

We want to study the trace-zero-surface N using explicit equations and thereby
relate the results of the previous section with explicit calculations on N.

By a theorem of A.Weil, a principal polarization of an abelian surface A over
some field & is defined by a proper geometrically reduced curve on A which is
either non-singular, geometrically irreducible and of genus 2 or geometrically the
pointed union of two elliptic curves. In the first case, A is the Jacobian of this
curve, in the second Ay is isomorphic to the direct product of the two elliptic
curves; see Proposition A.27 in Subsection A.2.7 in the appendix.

Now let A be a simple abelian surface which is isogenous to a principally po-
larized abelian surface ﬁ, i.e. there exists an isogeny 7 : A —» A. Assume that 7
is not an isomorphism. Then if the polarization on Ais given by a geometrically
irreducible curve, the image of this curve on A is a singular curve whose normal-
ization has genus 2, and if the polarization on A is given geometrically by two
elliptic curves, the images of these elliptic curves are still elliptic curves, but they
intersect in more than one point.

We want to find these curves in cases in which we know that the trace-zero-
hypersurface is isogenous to a principally polarized abelian variety.

We will succeed insofar as for char(k) = 3, we will find a curve on N whose
normalization has genus 2. If char(k) > 3,(3 € k and the z-coordinate of a 3-
torsion point lies in k, we will find such a curve after possibly a quadratic extension
of k.

Before starting with the concrete calculations we remark that by Corollary 2.8
if F is non-super-singular and (3 ¢ Endy(E), N is simple. Now, curves with
j-invariant 0 have an endomorphism algebra which contains (3. Thus with [Mu,
Appendix I, p.258, Corollary], we conclude that if k is finite, N is simple provided
that ' is non-super-singular and FE7 is not isogenous to an elliptic curve with
j-invariant 0.

2.4.1 The trace-zero-hypersurface for char(k) # 2,3

Let char(k) # 2,3 and assume that the 3-rd roots of unity are contained in k. We
want to calculate equations of the trace-zero-hypersurface N.

131f S is a closed subscheme of a variety V', we say that S is on V.
!4The results in this subsection are based on calculations by G.Frey and N.Naumann. Some
corrections and additional remarks are due to the author.
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Let (3 € k be a third root of unity. (If & = IF,, p prime, this means that
p = 1 mod 3.) By Kummer-theory, there exists an a € k with a® = a € k. Let
o € Gal(K|k) be given by o(a) = (3.
Let the elliptic curve E be defined by the affine equation
V? =X+ AX + B, (2.8)

where A, B € k.

According to the “construction of the Weil-restriction by restriction of scalars”
(see Subsection 1.1.3), we make the substitutions

X = z0®pl+1 Q)+ 10 Qf &2

9 (2.9)
Y = y®rplt+z®pra+z:®ra
and get the equation

(yo ®k 1+ z1 @ o + 22 @ &?)? =
($0®k1+$1®ka+$2®ka2)3+A($0®k1+$1®ka+$2®ka2)+B®k1,

Expanding out this equation, we get:

y% + 2ay1y2 = x% + ax% + a%% + 6azrogrizo + A9 + B,
ays +2yoyr = 3xiz1 + 3awor3 + 3arize + Amy, (2.10)
Y2+ 2yoye = 3ziz9 + w072 + 3ax i + Ao

This system of equations defines an open, affine part Wy of the Weil-restriction
of W in A?, the 6-dimensional affine space over k. (The closed subset W\Wj is
equal to the support of the divisor D defining the “canonical” polarization of W.)

We want to calculate the intersection of the trace-zero-hypersurface N with

Wy. We will denote this surface by Ny. We think of Ny as a surface in Ag.

The trace zero-hypersurface is defined by expanding the equation '

P @ o(P) = ©02(P),

2.11
(P a A ® K-valued point of E for some k-algebra A.) (2.11)

Let P be a A ®; K-valued point of E which corresponds to a A-valued point on
Wy and satisfies this equation for the X-coordinate, i.e.:

X(P®o(P)) = X(0?(P)) = X(o%(P)) (2.12)
Then P satisfies (2.11) or it satisfies
P®o(P) = o?(P) (2.13)

If this is the case, P = ¢?(P) © o(P), and thus the A-valued point of W cor-
responding to P factors through E. This means that P = o(P) = o%(P), and
substituting this into (2.13), we get P = 0, the zero on F. But this is not possible
since the zero on E corresponds to a point of W which does not lie on Wy. Thus
we may use equation (2.12) instead of (2.11).

15Tn this section, in order to distinguish the addition on E from addition of coordinates, we
write @ for the addition on E.
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We now want to use the “usual” group law on an elliptic curve E with Weier-
straf-equation given as above; see [Si, II[,2]. For a k-valued point P, let
(z(P),y(P)) denote the coordinates. Then, if P, P, are two k-valued points with

z(P) # z(Py),

y(P) —y(P)

2
z(Py) —gj(Pl)> — () — (Py). (2.14)

oo = (

To use this formula, we restrict ourselves from A ®; K-valued points as above to
ko K ~ % -valued points. This is possible because the subvariety Ny of Wy is
uniquely determined by its E valued points.

Let P, and P> be two & -valued points with z- coordlnate z(P) = (zM(P),
zp(Q)(B),azg3)(B)). Then because of the isomorphism E(k ) E(k)3, equation
(2.14) remains valid if z;(P;) # z;(Py) for i = 1,2,3.

Let X =20 ®, 14+ 21 ®p a + 22 ® &> € k®, K. Then X corresponds to
(M), 23 2(3)) ¢ % where 2() = (idy ®k o' 1) (X) = 20 + ¢l + Cg(i_l)oﬁxg.

Let P € E(E@kK) with z-coordinate X = zoQk 1421 Qra+T2Qra? € E@kK
We want to apply the group law (2.14) to X and o(X). This is possible if () £ £
for 4,5 with 7 # 5. We have

zo 4+ ¢ lazp -I— ¢ 1012332 = 1z -I-.Cg_lole + <§_1a2$2 — (2.15)
(C C3 )xl = 04(53?(2_1) - C??(]_l))%-

Thus the group law (2.14) remains valid outside the intersection of Wy with the
three hyperplanes in A? defined by (2.15). We denote the union of these hyper-
planes by H. We resrict ourselves to the subvariety Wy\H.

Now equation (2.12) is equivalent to

(U(Y)—Y

2
= a 0'2 . .
dm_X>_X+(D+ (X) (2.16)

Under the substitutions (2.9), this is equivalent to

((y1 — Cs1) @k v+ (2 — (3y2) k) = 3mo((21 — (321) Qp + (w2 — (G12) p ).
Expanding out one obtains

(1 =G)(1 = ¢3)a(yiys — 3zozi22) @k 1+ (1 = (5)%a (y5 — 3x073) ®F at
(1 =¢3)%a (y3 — 37972) @) @ = 0.

Thus as a subvariety of Wy\H, Ny\H is defined by

Y1y2 = 3xox1T2
y? 3z0z? (2.17)

2 — 2
5 = 3zoxj.
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We can insert these equations into (2.10). Thus Ny\H is defined (as a subvariety
of A’\H) by (2.17) and

v} = 1z} +az + a*s3 + Azg+ B
2yoy1 = 333%{171 + 3a$%z2 + Az, (2.18)
2y0y2 = 31‘%332 + 30,1131:1:% + Axs.

Note that the variety defined by (2.17) and (2.18) in A% contains E, thus it is not
birational to Nj.

Now regard the projection

q: Ag — Ai, (%o, x1, %2, Yo, Y1, Y2) +— (To, T1, T2, Yo)-

The restriction of ¢ to the variety defined by (2.17) and (2.18) is an isomorphism
outside yyp = 0, because for yy # 0, we can divide the last two equations of (2.18)
by 21 and thus obtain equations for y; and y». (For yo = 0, the projection induces
a 2-fold covering: For yy = 0, equation (2.18) imposes no condition on 1, y2, and
by (2.17), (y1,y2) is only determined up to a sign.)

Multiplying the resulting equations by 4y2 and dividing by z1z2, 22 and 3
respectively (which is possible outside H), (2.17) becomes

3z3 + 3ax 1z + A)? = 12z013. 2.19
0 0

Thus under ¢, No\(H U {yo = 0}) is isomorphic to the variety defined by this
equation and the first equation of (2.18), i.e. to the variety defined by the following
equations in A} \(¢(H) U {yo = 0}).

Y2 = 1} +az? +a’z3 + Azo+ B

(322 + 3amizo + A)2 = 12z0(ad + az? + a®23 + Az + B) (2.20)

Let N; be the variety defined by these two equations in Aﬁ. We now want to show
that N; has only one irreducible component and thus is birational to Ny = NNW,
or — what is the same — to N.

The second equation defines by Krull’s Principal Ideal Theorem ([Ei, Theorem
10.1]) a subscheme of pure dimension 2 in A}; the projection r : A} — AP :
(2o, 21,%2,Y0) — (xo,x1,x2) restricts to a finite (thus surjective) morphism of
degree 2 from N; to the scheme defined by the second equation.

We study the scheme defined by the second equation first. We know that
this scheme is outside r o g(H) isomorphic to r o ¢(Np). If it had more than one
component, the additional component would have to be contained in rog(H). Since
it has pure dimension 2, the additional component would have to be the image of
one component of H under r o g. But the intersection of the scheme defined by
the second equation with H is at most 1-dimensional and so the scheme does not
have such a component.

Since no component of the variety defined by the second equation lies in r o
q(H), no component of Ny lies in r!(rq(H)) = p(H). Thus Nj is birational to
Ny, more precisely, the restriction of p to N; is a birational map to Ny which is
an isomorphism outside H U {yy = 0}.
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There is a fibration by projection onto zg. We will now examine the resulting
curves if we fix . The intersection of these curves with p(H) and yo = 0 respec-
tively is O-dimensional and so these curves are birational to curves which lie on
N. 16

Let xg # 0 be fixed.

By (2.19), the fibers under the projections to z( consist (geometrically) of two
isomorphic components — defined by the second equation of (2.20) (which might
itself be reducible), both defined over k(1/12z).

Let Cj denote the affine k-scheme defined by the second equation. We claim
that Cy is a geometrically irreducible, geometrically reduced k-curve.

Proof Let f(z1,72) := (323 4+ 3az1m2 + A)? — 1220 (2} + az3 + a®23 + Azo + B)
be the defining polynomial of Cy.

Consider the morphism Cp; — A% defined by (z1,z2) — 1, corresponding
to the inclusion k[z;] < k[z1, z2]/(f).

Under all specializations k[z;] — k as well as under the inclusion k[z;] —
k(x1), the polynomial f has degree 3.

Thus for some topological point z of A%, the fiber of the morphism Coz — A%
at the fixed point z is given by a 3-dimensional algebra over the corresponding
residue class field at x.

In particular, the generic points of Cpz are mapped to the generic point of A%.

This implies that the scheme Cyy is irreducible iff the fiber over the generic
point of A% is, i.e. if the nilideal in the spectrum of the algebra k(z1)[z2]/(f) is
prime. Further, since k[z1,22]/(f) — k(z1)[z2]/(f) is an inclusion, the scheme
Coy, is reduced iff the algebra k(z1)[z2]/(f) is.

Thus Coy is integral iff the algebra E(xl)[xg]/(f) is a field. This is the case iff
the polynomial f is irreducible over k(z1).

Now, if f was reducible over k(z1), it would contain a factor of degree 1.
This would mean that the the reduced algebra (k(z1)[z2]/(f))™d splits into the
direct sum of k(z1) and another k(xz;)-algebra which would imply that Cog’d
contain a rational curve. This rational curve would be birational to a curve on
the abelian surface Nz which is impossible. O

Let C be the closure of Cp in IP’%. This means that C is obtained by writing
the second equation of (2.20) in homogeneous form (where z( is a constant), i.e.

would

C is given by
(32221 + 3az zo + A2Y)? = 1220 (232" 4+ az32 + a®232 + (Azo + B)z%).

Setting z = 0, we obtain

(3az122)% = 0.

16We use the following fact: Let V be a proper k-variety, C' a smooth k-curve, C an open, affine
part of C' and Cyp — V a k-morphism. Then this morphism can be extended to a k-morphism
c —V.
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Thus there are two points at infinity: [1:0:0] and [0:1:0].

The derivative with respect to z is for z =0
120 (azx} + a®z3),

and this is non-zero for the two points at infinity. Thus there are no singularities
of C at infinity.

The geometric operation a, on W defined by the arithmetic operation o on
Af is given by (yo,%0,71,72) — (Yo, T0,(371,(372). Analogously, one gets an

operation on C. In particular, singularities outside (z1,z2) = (0,0) occur in
triples.
Now, the arithmetic genus of (Y is W = 3, and this is equal to the

genus of the normalization of Cj plus the singularity degree. (And the singularity
degree is larger or equal the number of singularities.) Thus if Cjy had singularities
outside (0,0), it would be a rational curve. But on the other hand, C' is birational
to a curve on the abelian variety N. Thus it cannot be a rational curve since there
are no such curves on abelian varieties.

Thus the only possible singularity of Cy is (z1,22) = (0,0).

Specializing the defining equation to this point, we get:
(323 + A)? = 12x0(z3 + Az + B),

i.e.

3xg + 6Axs + 12Bxg — A2 =0

This is the 3™ division polynomial of E; see [Si, IT1,10,Exercise 3.7]. Thus (0, 0)
is a point on C' iff z( is the z-coordinate of a 3-torsion point. We now check if
(0,0) is a singularity: The derivatives of the defining equation of C' with respect
to z1 and z2 to the point (0,0) are both 0. Thus if (0,0) is a point on Cj, it is a
singularity.

Assume that this is the case and furthermore that (3 ¢ End;(E;). Then by
Theorem 5, N ®, k(1/12z) is simple and the genus of the normalization of C is 2.

If xp is not the z-coordinate of a 3-torsion point, Cy is non-singular. Being a
quadric curve in IP’% (vTZz5)’ it is a so-called canonical curve; see [Ha, IV, Example
5.2.1.].

We get the following result:

For any zg # 0, there are two curves on N ®j, k(v/12z¢) which are birational to
the curve C' (which depends on xq). If xg # 0 is not the z-coordinate of a 3-torsion
point, C is a non-singular curve which is a so-called canonical curve of genus 3.
Howewver, if xq is the z-coordinate of a 3-torsion point, C is singular, and under
the assumption (3 ¢ Endy(Ey), the genus of the normalization of C' is 2.
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Now let ¢ = 0.

Then the second equation of (2.20) becomes

3axixzo + A=0.
Let A # 0. Substituting zy = —%xfl into the first equation of (2.20), we get
(with zo = 0)
2 g AT
Yo = ari — 5 5T + B.

Multiplication by z] and substitution y = yoz? gives

3

A
2 7 4
= + B — —x1. 2.21
Yy az{ x 27a$1 ( )

Let C' be the projective closure of Cyy in P7. Then C'is either a rational curve or a
hyperelliptic curve whose normalization has genus < 3. The first case is impossible
since it is a curve on an abelian surface.

So, if the discriminant of the polynomial on the right-hand side is non-zero, the
normalization of C has genus 3, and in general it is a hyperelliptic curve whose
normalization has genus < 3. If N is simple, then the normalization of C' has
genus 2 or 3.

If N is simple, this curve is defined even without the assumption (3 € k.
One takes the intersection of N with the surface defined by “expanding out”
o(Y) = Y. The normalization of the resulting curve is still hyperelliptic, since
every non-singular curve with genus > 2 which is hyperelliptic over some field is
hyperelliptic wherever it is defined. (This holds since its function field contains a
unique rational subfield of index 2.)

For A =01i.e. j =0, we get two elliptic curves. Note that in this case (5 €
End)(E) and thus this is consistent with the decomposition of W in Subsection
2.1.3.

By (2.16), condition zy = 0 is — outside of H — equivalent to Y = o(Y’). Thus
we get the following result:

Under the condition j # 0, the intersection of N with the subvariety of W
defined by Y = o(Y') is a hyperelliptic curve C' whose normalization has genus <
3. (3 is the “generic” case.)

We now translate the idea of intersecting Ny with the variety defined by “ex-
panding out” o(Y) =Y to characteristic 2 and 3.

The curves constructed in this way will also be used as examples in the next
chapter (Section 3.3) where we outline attacks on the DL-problem in E(K).

2.4.2 The curve defined by o(Y) =Y

We explain the idea first independently of the characteristic.
Let E be given by the following affine Weierstraf-equation:

Y24+ A1 XY 4+ A3Y = X3 + As X2 + Ay X Aq, (2.22)
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where all A; lie in k.

We now intersect the subvariety of Wy which is given by the expansion of the
equation
Y =0(Y) (2.23)

with Ny, the open, affine part of the trace-zero-hypersurface V.

We restrict ourselves to the affine parts Wo\H and No\H of W and N defined
as above.

To define Ny, we can just as for char(k) > 3 restrict ourselves to the equation
for the X-coordinate. Under (2.23), we have

X(P®o(P) =-Ay— X —o(X).
Thus under (2.23), we get the following easy defining equation for Nj.
X +o(X)+0*X)= Ay (2.24)

Let Cy be the subscheme of W which is defined by (2.23) and (2.24). It will turn
out to be a curve.

char(k) > 3

This case was treated above. Stating with an elliptic curve with j-invariant # 0
defined by equation (2.8), we obtain a curve which is (possibly after a base-change
k((3)|k) birational to the curve given by (2.21).

char (k) =2

Again assume that (3 € k and assume that j # 0. (If (3 is not contained in £,
the curve Cj is after the base-change k((3)|k given by the equations which now
follow.)

Let a,a and o be defined as above. Let E be given by an affine equation
Y24+ XY = X* + A,X? + B, (2.25)
where Ay, B € k, B # 0; see [Si, Appendix A, Proposition 1.1. (¢)].
Again we make the substitutions (2.9). Then the subscheme Cj is given by
y1=y2 =0, 1g = —Ag = Ay,
and (2.25) becomes

12y)?+(1®As+a®@x +a?@32)(1 ®yo) =

2.26
(1@ A+ a®@z + 0o @x2)° + A2(1 @ Ay + a @ 21 + o @ 29)* + B. (2.26)

This expands to the following three equations, which describe Cj in Aﬁ.

yg + Agyo = A3 + ax? + a’z3 + A3+ B
1Yo = A%azl + aAQx% + ax%fm + aAQx% (2.27)
Loy = Ajzy + Agat + axia3 + Asa?
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The second and third equation can be simplified to

1Yo = A%xl + ax%xg (2.28)
Toyy = A%xg + axlx%, '

and for (z1,z2) # (0,0), this is equivalent to
Yo = A% + axi179.

Substituting this into the first equation of (2.27), we get the following equation
for 00

Ay + a?2222 + A + aAom e = A + azd + a2 + A2 + B.

The scheme Cj is a geometrically irreducible, geometrically reduced curve.
The proof of this fact is analogous to the one on page 64.

The curve Cj is an open affine part of the projective curve C defined by the
corresponding homogeneous equation

0?2222 + aAoziz02? + axdz + a’xdz + (A3 + A+ B)2t = 0. (2.29)

As this equation has degree 4, C' has arithmetic genus 3. Just as in the case
of char(k) > 3 discussed above, singularities outside infinity and (0,0) have to
occur in triples. So again, if the curve had such singularities, the genus of its
normalization would be 0, what is impossible. Thus the only possible singularities
are (0,0) and the points at infinity.

We examine the singularities at infinity. The curve C has the infinite points
[1:0:0] and [0 :1:0]. Taking the derivative of (2.29) with respect to z (note
that char(k) = 2) gives

axi’ + ang.

This is # 0 for both infinite points # 0. Thus C' has no singularities at infinity.

We now look at the possible singularity at (0,0). Firstly, (0,0) would have to
lie on Cy. Thus

A3+ A5+ B=0.

Secondly, the derivatives with respect to z; and z2 at (0,0) would both have to be
0. This implies Ay = 0 and thus also B = 0. This is impossible because it would
mean that F is singular.

We arrive at the following characterization of the curve C"

C is a canonical curve of degree 4 and genus 3 which is the normalization of a
curve on N.
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char(k) =3

Now let k be a field with characteristic 3. According to Artin-Schreier theory, K|k
is generated by some o with a® — a = a € k. The Galois group is generated by o
with o(a) = a+ 1.

For later use, we calculate

ol@®)=(a+1)2=a’-a+1

2.30
o?(a?) = (0} ()’ =(a—1) =’ +a+1 (2:30)
and
& =a+a
o
=a? + aa
o (2.31)
=ad’a+a+a
ab =0o? —aa+ad®
Let F be given by the equation
Y?2=X34+ A,X? + B, (2.32)

where according to the assumptions Ay, B € k and are both non-zero; see [Si,
Appendix A, Proposition 1.1. (c)].
Again under the substitutions (2.9), (2.24) becomes

Ty = Ag,y1 = y2 =0,
and (2.32) gives

1oy =103+ (@@2} +1®az}) + (0?43 — a®add +1®a%43)
+A5[1 ®@ 23 + @? @ 22 + a? A3 + a ® a A}
—a®zor1 — ? ® Aszg — a ® Ay — 1 @ aAyxq] + B

Thus Cy is given by the following three equation in A%.

vg =z + azi + a® A3 + Aszd — aAdz + B
0 =1} — adl +aAd — Ayzoz — A3my (2.33)
0= A3 + AQ(El + A AQLL"U

The third equation can be divided by Ay # 0 and is equivalent to
0= 33% — A% — Asx.
This equation also implies the second equation of (2.33) and is equivalent to
= A5 '2? — A,. (2.34)

This implies
= Ay%x] + 2% + A3 (2.35)
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If we insert (2.34) and (2.35) in the first equation of (2.33), we are given the curve
Cy, described by

ye = AQ_?’:B? — A3+ ax? 4+ 6’45 + A;lx‘f + Agz? + A3 — aAdz + B,

ie.
yo = Ay %S 4+ Ay x] + axd + Aga? — aAdzy + a®A3 + B. (2.36)
This is a hyperelliptic curve of degree 6.
Let C be the projective closure of Cj in IP’%. We obtain the following charac-
terization of C:
The normalization of C is a hyperelliptic curve of genus 1 or 2. (If N is simple,

the genus is 2.) In particular, if N is simple, it is isogenous to the Jacobian variety
of the normalization of C.



Chapter 3

Coverings of curves and the
discrete-logarithm problem

Introduction and results

This chapter is devoted to cryptoanalytic applications.

Let & be a finite field, K|k a field extension of prime degree n. Let X’ be a non-
singular, geometrically irreducible (i.e. geometrically integral), proper curve over
K. ' Assume that X’ has “cryptographically good” properties. Especially, the
group Pic?(X") =CI°(K(X")) should have a large prime factor. We try to trans-
form the discrete-logarithm problem in CI°(K(X')) into the discrete-logarithm
problem in C1°(k(C)) for a suitable non-singular, geometrically irreducible, proper
k-curve C.

The idea is that if the genus of C is not “too large”, perhaps the discrete-
logarithm problem in the group CI°(k(C)) is “easier” than the discrete-logarithm
problem in the original group CI°(K(X’)). This is suggested by [En], [EG] and
[Gau].

In [GHS], the following approach was introduced:

Let Cx — X' be a covering. Then K(X') is included in K(Ck). Consider
the group-homomorphism

normK(C’K)\k(C) o ConK(C’K)\K(X’) : CIO(K(X,)) — Clo(k(C)) (3.1)
Two conditions should be fulfilled:

1. The large prime factor of C1°(K (X)) is preserved.

2. The curve C has “reasonably nice” cryptographic properties. Especially the
genus of C' should not be “too large” in relation to n and the genus of X'.
For example, if we consider a family of curves X' for different extension
degree n, by the state of the art of cryptoanalysis in class groups of high

'In this chapter, X’ or X always denotes a curve and never a variable.
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genus curves, the genus of C should be at most quadratic in n; see [En].
Other interesting properties of C are hyperellipticity or automorphisms.

For 1., no “theoretical result” is known to the author. > However, using the
Weil-restriction of J(X') with respect to K|k, we motivate very strongly that
the kernel of (3.1) is small in certain situations; see Subsections 3.1.1 and 3.1.2,
especially Theorem 9, p. 77.

Then we show how to use Galois theory to construct appropriate coverings of
curves (or equivalently finite extensions of function fields of transcendence degree
1). In the case that the Jacobian J(X') is a new abelian variety (for definition see
foreword), we give the construction of [GHS] as an example. For the case that X'
is already defined over k, we first proof a theoretical result (Theorem 9, p. 77),
then we give examples based this result (see Subsection 3.3).

3.1 Coverings as curves on the Weil-restriction

Let k be a finite field of characteristic p, K|k be an extension of finite fields
of prime degree n. Identify Gal(K|k) with its opposite group and denote the
Frobenius automorphism of K|k by o/~ .

Let X' be a geometrically integral, proper, non-singular curve over K with a
K-rational point Py. Let W be the Weil-restriction of X’ with respect to K|k.

Let C be a non-singular, irreducible proper curve over k. (We do not assume
that C' is geometrically irreducible.) Then by the definition of the Weil-restriction,
k-morphisms C — W are in bijection to K-morphisms Cx = C @, K — X"
If c: Cx — X' is a K-morphism, then there is a unique b : C — W such that
c=uo(b®idg).

Again let ¢ : Cx — X' be a K-morphism, and let b : C — W be the
unique morphism with ¢ = u o (b ®; idx). Then the image of ¢ is a point iff ¢
factors through the structure morphism Cx — Spec(K) iff b factors through the
structure morphism C' — Spec(k) iff the image of b on W is a point. * Thus:

Lemma 3.1 c is dominant iff the image of b on W is a curve.

From now on, let ¢ be a dominant, finite morphism. We call such a morphism
a covering of non-singular, proper, irreducible curves.

20f course, it is possible to check that the large prime factor is preserved in specific cases, for
example with the help of a computer.

3More generally, let D be some k-scheme. Then by functoriality, b : C — W has the form
b = ed for some d: C — D and e : D — W iff ¢ has the form ¢ = f o (d ® idx) for some
d:C— D, f:D®y, K — X'. (In fact, f = uo (e ®idx).)
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We have a commutative diagram

Ck Wk X'

C

This induces a commutative diagram

c*

/—/\

PiCO(CK) W PICO(WK) u PiCO(X,)
N N
Pic’(C) Pic’(W).

b*
We have already seen that the group-homomorphism Now* : Pic?(X') —Pic®(W)
is bijective; see Corollary 1.19. In the case that X' is an elliptic curve E’, this
homomorphism is — under the identifications of E' and W with its duals via

their canonical principal polarizations — nothing but the canonical isomorphism

If k(C), K(Ck) and K(X') are the function fields of C, Cx and X' respectively,
then N o ¢* corresponds to

normK(CK)‘k(C) o COHK(C’K)\K(X’) : CIO(K(X,)) — Clo(k(C)) (32)

We want to study the kernel of (3.2) or — equivalently — the kernel of Noc* :
Pic?(X") —Pic(C).

We note first that in practice we can restrict ourselves to the case that C is
geometrically irreducible. For, let that not be the case. Let A := k(C) Nk, where
k is the algebraic closure of k (intersection in some common overfield). We now
make the assumption that n does not divide [\ : k]. (To use this construction for
an attack on the DLP in CI°(K (X")), [\ : k] should be much smaller than n.) The
fields K and X are linearly disjoint over k, i.e. K ®; A is a field, denoted KA. If
we consider C' as a A-curve, it is geometrically irreducible and Cx = C @ K ~
Co)\(K®p)\) ~C®\KX\ * As

NOTME (Ce)|k(C) © CONK (Ck)|K(X!) =
NOIM g \(C)|A(C) © COLKN(C )| KA(Xy) © COIKN(X])|K(X)
CI°(K(X")) — CI°(k(C)),

*For definition of “linear disjoint” see Subsection A.3.1 in the appendix.
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we only have to consider the kernel of (3.2) for geometrically irreducible curves.

Let C be a geometrically irreducible (i.e. geometrically integral) k-curve.

The kernel of Noc* : Pic®(X’) — Pic?(C) is isomorphic to the kernel of
b* : Pic®(W) — Pic’(C). Let J(C) be the Jacobian variety of C. Then this kernel
is isomorphic to the kernel of b* : Pic®(W)(k) — J(C)(k). (This holds even if
C has no k-rational points. In this case, we still have an injective homomorphism
Pic?(C) — J(C)(k); see [Mi-J, Remark 1.5.].)

By Corollary 1.18, Pic?(W) is an abelian variety which is canonically isomor-
phic Resy (J(X)), the Weil-restriction of the Jacobian variety of X’. To study the
kernel of b* : Pic®(W) (k) — J(C)(k), we ask if the morphism b* : Pic®(W) —
J(C) is an isogeny on large isogeny factors of Pic?(WW). If this is the case and
Pic(X') ~ Pic’(W) has a large prime factor, then we ezpect that this prime factor
is preserved under b* and thus under N o ¢*, i.e. under (3.2).

We make the following general assumption:

The Jacobian variety of X' is simple and its endomorphism ring is commutative.

The assumption that the Jacobian variety is simple is natural in the case of a
cryptographic application since Pic?(X’) should have a large prime factor.

The second condition is for example fulfilled if X’ is a non-super-singular
elliptic curve.

3.1.1 Curves with Jacobians which are new abelian varieties

Let X’ be a curve which is not defined over k such that its Jacobian J(X') is a
new abelian variety, i.e. J(X') is not isogenous to an abelian variety defined over
k. For example, X' could be an elliptic curve which is not isogenous to an elliptic
curve defined over k.

In this case, Pic’(W) ~ Res (J(X")) is simple; see Corollary 1.18 and The-
orem 3.

So in this case, the kernel of (3.2) is bounded by the separability degree of the
morphism from Pic’(W) onto its image in J(C’). Thus we expect the kernel of
¢* to be small. In particular, if Pic’(X’) contains a large prime factor, as is the
case in cryptographic applications, then we expect this factor to be preserved.

3.1.2 Curves which are defined over the small field

Let X be a curve over k, X' := X ®; K. We assumed that X’ has a K-rational
point Py. Let ¢ : X' — J(X') be the embedding defined by Py s 0.
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Diagram (3.1) extends to the following diagram

: J(XKk)

Ck - Xk
b®ridk
u
X

J(XK)"

C

\
W j:=ResX (1)

Lemma 3.2 j* := Res} (1)* : V= Res! (J(Xf)) — Pic®(W) is an isomor-
phism of abelian varieties.

Proof This follows from the diagram

Resf (1)

Res! (J(Xk)) p ReSkK(@)) :

k B

Pic’(W) ReszK))

j*

Here, the down-arrows are the morphisms defined in Subsection 1.2.3. They are
isomorphism since X is a curve and J(X k) an abelian variety; see Corollary 1.18
and Proposition 1.20. O

Instead of asking which isogeny factors of Pic’(W) are preserved under b* :
W —J (C), we now ask which isogeny factors of Res’ (J(Xf)) are preserved
under b* o j* : V — J (C). This approach is more convenient since V =
Res! (J(Xf)) is itself an abelian variety.

We already assumed that J(Xg) is simple and that the endomorphism ring
of J(Xk) is commutative. We now assume furthermore that — after an inclusion
of End)(J(X)) into Q ~ End?(J(X)) NQ(¢,) = Q. Then we know by Theorem 5
that V has exactly two simple isogeny factors, J(X) itself and the trace-zero-
hypersurface N. We expect the kernel of b* to be small if the image of N under
b* o j* is non-trivial.

There exists an extension A|k of degree prime to n = [K : k] such that C)
has a A-rational point P and such that Endx (J(X')xg) is still commutative (i.e.
End)x (J(X')ax) = Endg (J(X))).

[Proof If M|k has degree m and there exists no two roots 1, x2 of the character-
istic polynomial of the Frobenius of J(X') (in @) and no [ such that ¢ z; = zo,
then the roots of the characteristic polynomial of the Frobenius of J(X} ) are
distinct. Choose such an extension A|k whose degree is high enough (and prime
to n) such that by the “Riemann-hypothesis”, C'y has a A-rational point.]
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Now K|k and M|k are linearly disjoint, so if KX is some composite of K|k and
Ak, then KX ~ K ®; A and KA|X is again a field extension of degree n.

Since “base-restriction” commutes with “base-extension” (see Lemma 1.1), V),
is again isogenous to J(Xx )y x Ny and N, is again simple.

Let 3 := job. The morphism g := T(—Bgyidy)or @ (B®kidy) : Cy — V maps
the A-rational point P of Cy to 0. Let f7 : C\ — J(C)y be the immersion defined
by P — 0. By the universal property of the Jacobian (see [Mi-J, Proposition 6.1]),
there exists a unique morphism of abelian varieties v : J(Cy) — Vj such that

J(C)x
T fp&
P
Oy ——= V.
After dualizing, we obtain
J(O)y
l/fp* ,YP*
SN
J(C))\ -~ V,\,

where fF* ﬁ — J(C)A is the canonical isomorphism. In the last line we
can write 3* instead of BF* since T* Bop Pic®(Vy) — Pic?(V73) is the identity by
the definition of Pic (V).

In particular, ker(3*) = ker(y"*). Under the identification of V with V) via the
principal polarization induced by the canonical principal polarization of J(X"'), the
reduced connected component of the zero of ker(/5*) is the orthogonal complement
of the image of v; see Subsection A.2.4 in the appendix, in particular Lemma
A.22, i.e. 7" induces an isogeny of v7(J(C)), with its image and is trivial on
the orthogonal complement of this abelian subvariety.

We are mainly interested in the question whether 8* induces an isogeny of Ny
with its image, i.e. if the image of ¥¥ contains Ny.

Now, the image of 4" is the smallest abelian subvariety of Ny which contains
BP(C). Thus Ny is not contained in the image of ¥* iff fF(C) is contained in
J(X) -

We identified Gal(K|k) with its opposed group and denote the Frobenius au-
tomorphism of K|k by of € Gal(K|k). The automorphism o of K induces an
automorphism of Spec(K), and this induces the “arithmetic Frobenius automor-
phism” of J(X k) which we also denote by of; cf. Subsection A.3.4.

Let a = Qg be the k-automorphism of V' corresponding to the automorphism

ol on J(X'); see subsection 1.1.5. Then 87 (C) is contained in J(X), iff ((a ®
idy) —id) o BP(Cy) is a point, i.e. iff (((a —id) o B) ®} idy)(Cy) is a point, i.e. iff
(a —id) o 5(C) is a point.

Let pr : C — Spec(k), px : Cx — Spec(K) be the structure morphisms.
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Then (¢ —id) o B(C) is a point +— (a —id) o 8 factors through p; <— there exists
aq€eV(k)withaof —=qop.

For g € V/(k), let Q := uo(¢®kidx) be the corresponding element in J(X)(K).
Then the last equation is equivalent to o] (1c) — tc = Qopk, i.e. of (1c) =Tgowe
by the definition of T}.

Similar arguments for J(X) instead of N lead to

Proposition 3.3 Let ¢ : C — X' be a morphism where C is a curve. Then
B* : V. — J(C) induces an isogeny of

o N with its image iff there does not exist a Q € J(X)(K) with o} (1c) —1c =
Qopk, i.e. of(1c) =Tgo.c,

e J(X) with its image iff there does not exist a Q € J(X)(K) with vc+ --- +

2
a,ﬁ(n (tc) = Qo pk.

So if there does not exist a @ € J(X)(K) with o) (1c) = Tg o ic, then the kernel
of

normK(CK)‘k(C) o COHK(CK)\K(XK) : CIO(K(XK)) — Clo(k(C))

is bounded by the separability degree of the isogeny S* between N and its image
times Pic’(X). So we expect the kernel to be small.

In particular, if Pic’(Xf) contains a large prime factor, as is the case in
cryptographic applications, then we expect that this prime factor is preserved.

Theorem 9 Let K|k be an extension of finite fields of prime degree n. Let a,f be
the Frobenius automorphism of K|k. Let X be a non-singular, proper, geometri-
cally irreducible curve over k of genus g with a k-rational point Py. Assume that
the Jacobian J(Xg) of X is simple, and the endomorphism ring of J(Xg) is
commutative. Assume further that — after an inclusion of End})(J(X)) into Q -
End, (J(X)) N Q) = Q.

Let W be the Weil-restriction of Xx with respect to K|k. Then Pic®(W) is
an n - g-dimensional abelian variety which is canonically isogenous to J(X) Xy N,
where N is a simple (n — 1) - g-dimensional abelian variety.

Let C' be a non-singular, proper, geometrically irreducible curve over k, and
let ¢: C — X be a covering.

Assume that C has an automorphism t of degree n which is not an c-automor-
phism, i.e. such that cot # ¢ and that there does not ezist a Q € J(X)(K) such
that vt @y, idx = Tg o (1c ® idk ).

Let C* be the twist of C with respect to K|k and t, i.e. C' = Cg/ < J,ft >.
Then C* is a non-singular, geometrically irreducible curve, and t defines an auto-
morphism on Ct of order n.

Then the morphism ¢ ® idg : Cﬁ( ~ (g — Xk induces a morphism
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bt.Ct — W.
C
t /NX
K pouide N K
bt

Ct w

Now, the morphism b* : Pic®(W) — J(C") induces an isogeny of N with its

image. °

Proof We only have to check the last statement. By Proposition 3.3, we have to
show that there does not exist a @ € J(X)(K) with

ol (e @y idg) (™! @ idg)ol ' =T o (te @y idk). (*)

Now, o (1c ® idg)(t ! ®% idK)a,ﬁ(—l = 1ct ! ®p idg. Thus (*) is equivalent to
T g o (vc ® idg) = (et Q@ idg ). This is impossible by assumption. O

Remark Under the assumption that ct # ¢, the condition that there does not
exist a Q € J(X)(K) with et ®pidx = Tgo (1c®y idk) is especially fulfilled under
one of the following two conditions:

e { has a geometric fixed point

e J(X)(K) does not have an element of order n

Proof Firstly, if ¢ has a geometric fixed point, and the equation is satisfied for
some (@, then Q = 0 thus vc = tct. Since ¢ is an immersion, ¢ = ct, contradicting
the assumption.

Secondly, if a @Q exists then it follows that ic ®p, idx = of " (1c ®y idy) =

Thgo (tc®pidg). Let P € C(k). Then (1c ®} idy) o P = nQ + (1c ®y idy) o P thus
n@=0.0

3.2 Coverings of curves whose Jacobian variety is a
simple new abelian variety

3.2.1 Construction of coverings

Let K|k be an extension of finite fields of prime degree n, let X’ be a geometrically
irreducible curve over K with a K-rational point.

5In particular, in the context of the theorem, if Pic® (Xk) has a large prime factor, then we
exzpect this prime factor to be preserved under Noc* : Pic®(Xx) — Pic®(C).
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General assumptions for this section Assume that J(X') is a simple new
abelian variety, i.e. that it is not isogenous to an abelian variety defined over k.
(This implies that X’ is not defined over k, i.e. there exists no k-curve X with
Xk ~ X'.) Assume that the endomorphism ring of J(X') is commutative.

Let K(X') be the function field of X’. Suppose that K(X')|K(z) is an abelian
extension, included in K (z)%P|K(z), and the degree [K(X') : K(z)] is prime to
n. As above, we denote the Frobenius automorphism of K|k by a,f .

Let L' = K(X")o X (K(X")) -+ a,fn_l(K(X’)) be the Galois closure of K(X')
over k(z) in K (x)%P.

Then by Galois theory, we get the exact sequence

1 — Gal(L'|K(z)) — Gal(L'|k(z)) — Gal(K|k) — 1. (3.3)
Lemma 3.4 Sequence (3.3) splits.

Proof Note that Gal(L'|K(z)) is isomorphic to (Gal(K(X')|K(x)))™ for some
m < n. The order of this group is prime to n, since by assumption [K (X') : K(z)]
is prime to n. Thus the lemma follows from the following group-theoretic lemma.
O

Lemma 3.5 Letl — A — E — G —> 1 be an exact sequence of finite groups
where A is abelian, G is cyclic and the order of A is prime to the order of G. Then
this sequence splits.

Proof First let A be a general abelian group. Then if an extension F of G by A
is given, G operates on A by taking preimages and conjugation inside F. Such
an operation given, the extensions E of G by A are classified by the elements
of H?(G, A), the trivial element in this group corresponding to the semi-direct
product defined by the given operation of G on A; see [Se, VII,par. 3.

We now show that under the assumption that the orders of G and A are
coprime, H%(G, A) is trivial. Thus every extension of G by A is a semi-direct
product.

Firstly, H?(G, A) is annihilated by the order of G; see [Se, VIII, par. 2, p.130,
Corollary 1]. Secondly, H?(G,A) ~ fIO(G,A) = AY/N(A) (see [Se, VIII, par.
4, p.133, Corollary]), and this group being the quotient of a subgroup of A is
annihilated by the exponent of A.

Since the orders of A and G' where assumed to be coprime, H2(G,A) = 1. O

Assume that L'|K (z) is reqular over K. ©

SFor definition of “regular” see Subsection A.3.1 in the appendix.
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Fix a section of (3.3). Let L be the fixed field of the subgroup of Gal(L'|k(z))
defined by this section. Then by construction, L and K (z) are linearly disjoint
over k(z) and LK = L'. Thus L'|K(z) is defined over k.

Note however, that L'|K(z) is not defined over k with its Galois group. For
if this was the case, every subextension of L'|K(x) would be defined over k thus
K(X")|k(xz) would be defined over k which is by assumption not the case.

Because of the simplicity of the Weil-restriction the map
NOTM 77, © CONKL|K(X') : CI°(K(X')) — CI°(L)

is expected to have small kernel.

Now assume that L'|K (z) is not reqular. The argumentation is now similar to
the one on page 73: Assume further that [L' Nk : K] is prime to n. (In fact,
to use this construction as an attack on the DLP in CI°(K (X)), [L' Nk : K]
should be much smaller than n.) Then there exists an extension of finite fields A|k
such that K @, A ~ AK = L'Nk. Now L'|K )\ is regular, and L'|\(z) is Galois.
By the same arguments as above, there exists a regular subextension L|A with
L®y K\~ KL =1L Therefore L@y K ~L®) (K ®;\) ~L

Because of the simplicity of the Weil-restriction of X, with respect to K A|X,
we still expect the kernel of

normpygy,|y, © CONK |k (x7) = NOTM 7|7, © CONKAK T |KA(X') © CONRN(X")|K(X') *
Cl°(X') — C1%(L)

to be small.

Geometric interpretation of the construction

Let L' still be the Galois closure of K(X')|k(z). Assume that [I' Nk : K] is
prime to n. We have seen that in this case there exists a function field L|k with
L®, K ~ LK = L'. The diagram

L® K

BN

K (z)

\
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corresponds to a diagram

1
Py

of coverings of irreducible non-singular proper curves. (C is geometrically irre-
ducible iff L|k is regular, that is, if L'|K is regular.)

Let W be the Weil-restriction of X’ with respect to K|k, b : C — W the
morphism corresponding to ¢ : Cx — X'.

1
If we consider C as a covering of P}, then ¢ € Resi{‘ (X"). By Lemma 1.2, this is
k

equal to Res (X) Xﬂzesp}((X')P'l“' Sob: C — W factors through WXReSkK(Pl)]P}C ~
P

Pl xt
Resp}c (X".

We get the following diagram of coverings

C oK
X! gy off (X') xpy, - xe1 of " (X) c
Pid \
1
X' Resi}c"(X’)
Pi,
where C @ K — X' xpi_ ol (X7 Xpy tt Xpi a,fn_l(X’) is given by

(afz(a))izg,m,n,l. By construction, this morphism identifies an open part of Cx
with the open part of one component of X' Xp1 ol (X" Xp1 -+ XpL a,fn_l(X’)
(since K(X') ®x() oF (K(X") @x(a) - Oxa) oK (K(X')) — K(C) is sur-

1
jective) and the same is true for C' and Resg{((X').
k

. Pl . . .
In particular, C' — ResP{‘ (X') induces a closed immersion of an open part
k

1
of C. So is also Resi}c’((X’) ~ W XResk(p1) P — Res) (X'), since P, —
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Res; (P)) is (see Lemma 1.5) and “closed immersion” is stable under base-change
(see [Ha, IT,ex. 3.11.]). Thus:

Proposition 3.6 b: C — W induces a closed immersion of an open part of C.

3.2.2 An application

Let n be odd. Let H' be a hyperelliptic curve as above. A Weierstra-equation
of H' defines a covering H' — PL of degree 2. Let L' be the Galois closure of
K(H'")|K(z). Then if L'|K(z) is regular, by the general theory presented above,
it can be defined over k. 7

char(k) = 2
Let the elliptic K-curve E’ be given by the Weierstraf-equation
V4rzy=2*+ar’+8; o, e K

So K(E')|k(x) is a (Galois) extension of degree 2, and via this extension we re-
gard K(E') as a intermediate field of K (z)%P|K(x). After division by z? and
substitution s := y/z + B%/x, the extension K (E')|K(z) is given by

s2+s+ﬁéx*1+a+x=0.

(Note that since K is perfect, /B% € K.) Thus the Galois closure L' of K(E')|K (x)
is given by the Artin-Schreier equation

s%-l—so-l-ﬁéaz_l-l—a-l-x:[)

s2 + 59 —I—a,ﬁ(l(ﬁ)%x*l —I—a,ﬁ(l(a) +z=0

$2 14 sno1+ J,fnfl(ﬂ)%fx—l + U,fnfl(oz) +z=0

with sp = s. It is shown in [GHS] that L’ is a regular field extension of K(z) of
degree < 2™, and furthermore that it is hyperelliptic and that its genus is bounded
by 271,

More precisely, let

N .
U := spang, ({052(5)59671 + 0151(04) +z}iz0,...n—1),

U := spang, ({(of" ()%, 0L (@), 1) }izo,..n1)-

Let m :=dimp, (U/P(K (z)) NU) =dimg, (U'/U' N {(0,P(£),0),¢ € K}), where
P(€) := €2 + £. Then it follows from Artin-Schreier theory that 2™ = [L' : K(x)];
see [Ne, IV, (3.3) with (3.4)] for the statement of the Artin-Schreier theory we use
here. Calculations show that g(L) = g(L') = 2™ ! or g(L) = g(L') = 2™ ! — 1.

"This construction was introduced by Galbraith and Smart and analyzed in detail by Gaudry,
Hess and Smart in characteristic 2; cf. [GHS]. Additional remarks were made by Menezes and

Qu; cf. [MQ]. It was generalized to certain hyperelliptic curves of characteristic 2 by Galbraith;
cf. [Gal]. The analysis in the odd-characteristic case is due to the author.
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For n prime to 2, let p2(n) := ord(2) for 2 € (Z/n7Z)*.
Then for £ = Fy, m can only assume the values po(n)i + 1 for 7 > 1, thus
g(L) = 292" or (L) = 2927 _ 1; see [MQ).
Let n = 127. Then @y(n) = 7, and for this value of n, an explicit extension
K(E")|K(z) can be constructed for which L has genus 27 — 1 = 127; see [GHS].

char(k) # 2

Let n still be odd. Let H' be a hyperelliptic curve of genus g which satisfies the
“general assumptions”. Let H' be given by the Weierstrafi-equation

where f is a polynomial of degree 2g + 1 or 2g + 2. Again regard K(H') as an
intermediate field of K (z)%P|k(z), let L' be the Galois closure of K(H')|K(x)
inside K (z)%P.

We identify the places of K (z)|K with K U {co} (via z). Let ej,e,... € K
and possibly co be the ramified places of the extension KL'|K(x). (The place oo
is ramified iff deg(f) = 29 + 1.)

The absolute Galois-group Gal(K|K) operates on the covering and thus also
on the ramified places. It fixes oo and operates on the e;.

On the other hand, the set S := {e1,es,...} is not invariant under Gal(K k).
For if it was, f(z) = (z —e1)(z — e3) - - - would have coefficients in k, and thus H'
would be defined over £.

Assume that oi(e1),...,0r(e;) ¢ S and og(ejy1),... € S. Then all elements
ot(ej), i=0,...,n—1, j=1,...,1 are distinct and for i > 1, they do not lie in
S.

Lemma 3.7 L'|K(z) is reqular over K and has degree 2.

proof (by induction) Let 1 = 2,...,n. Assume that L --- a,fl_l(L’)|K(x) is regular
over K and has degree 2=, This is equivalent to [KL'---o} '(KL') : K(z)] =
2/=1. Now o}'(e1) is in the ramification locus of o}*(KL')|K (z) but not in the
ramification locus of KL' - - - 0! (K L')| K (x). Thus o (K L') cannot be contained
in KL'---0}(KL'), and thus they are linearly disjoint over K(z), defining an
extension of degree 2°. This implies that L'--- ok Z_1(L’ ) is regular of degree 2°.
0.

By the general theory, there exists a regular extension L|k(z) such that K®L ~

KL = L'. The ramification of L|k(z) or — what is the same — the ramification of
L'|K(X) can be calculated using Abhyankar’s Lemma; see [Po, Lemma (2.14)].

Lemma 3.8 (Abhyankar) Let F be a field, F a Galois closure of F, v a discrete
valuation of F of rank 1. Let Fy, Fy be finite Galois extension fields of F' in F.
Let v1, vg be extensions of v in Fy, Fa, e1 = e(v1|v), e2 = e(va|v) the corresponding
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ramification indices. Assume that v is tamely ramified in Fi|F and in F»|F and
that ey divides es.

Then: If F' is the composite of F; and Fy in F and v' is an extension of v in
F', then v' is unramified in the extension F'|F;.

With this lemma, we conclude that all ramification indices of the ramified
places of KL'|K(X) are 2.

Let 7 be the number of ramified places of K L'|K (z). Then r equals the number
of elements in the set {ofi(ej)| i=0,...,n—1,7=1,2,...}(U{oo}). So by the
remarks before Lemma, 3.7,

2g+n+1<r<(29+2)n.

The lower bound is obtained if the degree of f is 2¢g + 1 and all e; lie in k expect
one (which lies in K), the upper bound is obtained if the degree of f is 2g + 2 and
no e; lies in k.

With the Riemann-Hurwitz-formula we calculate

1 e—1

g(L) = (L) = 2°(0~ 1)+ 57

41 = 2" 42" 2 = 2" 2(r —4)+1. (3.5)
e

So
2" 229 +n—3)+1<g(L) <2" (g +1)n —2) + 1.

In particular, let H' be an elliptic curve. Then there always exists a Weierstraf-
equation such that f has degree 3. So 34+ n <r <3n+1 and

M2 —1)+1<g(L)<3-2"%(n—1)+1.

3.3 Coverings of curves defined over the small field

3.3.1 Construction of coverings

Let still K|k be a prime extension of finite fields of characteristic p, n := [K : k],
X a non-singular, proper, geometrically irreducible curve over k£ with a k-rational
point. Assume that Endg(J(Xx)) is commutative and — after an inclusion of
End)(J(X)) into Q — End)(J(X)) N Q(¢y) = Q. As proven in Theorem 5, under
these assumptions, the trace-zero-hypersurface of the Weil-restriction of J(Xg)
with respect to K|k is simple.

We want to construct coverings of X which fulfill the conditions of Theorem 9,
i.e. we want to construct coverings ¢ : C — X such that C' has an automorphism
t with cot # ¢. Furthermore we want that ¢ has a geometric fixed point. (If
C1°(X k) has no element of order n, this assumption is not needed.)
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Analogously to Subsection 3.2.1, let k(X) be the function field of X, k(X)|k(z)
an extension, included in k(z)*P|k(z), such that n divides [k(X) : k(z)]. Let L be
the Galois closure of k(X)|k(x) in k(z)5P.

Assume that n does not divide [L : k£(X)]. Then L|k(z) has an automorphism
of order n which does not fix K (X) which we denote by t#. Assume that this
automorphism is contained in some inertia group of L|k(z) or that CI°(Xf) has no
element of order n. Let C be a proper, non-singular model of k(X), ¢ : C — X the
covering corresponding to the extension k(C)|k(X). Let ¢ be the automorphism
of C corresponding to +#.

Now, if L|k is regular, we can apply Theorem 9. (If L|k is not regular but L is
regular over some extension A|k such that n does not divide [\ : k], we can work
over X instead of k and then still apply the theorem.)

A first example

Let ¢ : E — FE be the identity and let £ : E — FE be the elliptic involution, i.e.
to P = —P. Now if K|k is a field extension of degree 2 (not necessarily of finite
fields) then by the theorem, the twist of E by the involution is mapped into the
Weil-restriction. By construction, this morphism is given by the closed immersion
(id, —id) : Ex — E% ~ Wk. This corresponds to the well-known fact that the
trace-zero-hypersurface is isomorphic to E*, and W is isogenous to E xj E'.

Geometric interpretation of the construction

Let ¢ : C' — X be the covering defined by L|k(X). The field extension k(X)|k(x)
defines a covering X — IP’}C. Let W be the Weil-restriction of Xx with respect
to K|k, b : C — W the morphism corresponding to ¢ ®; idy : Cx — Xkg.
Let ' : C* — W be the morphism corresponding to Cf( ~ (Cg — Xk as in
Theorem 9.

1
Then both b and b’ factor through the closed immersion Resg{( (Xg) —
k
Res) (Xg).
We want to give conditions under which b* induces a closed immersion of an

open part of C!. This is the case iff o' ®; idx = (ct'~! @ idK)?:_O1 : Ot~
n fold

Pl . . .
Cx — ResP{‘(XK) Qr K ~ Xg XpL et XpL Xk induces a closed immersion
k

of an open part of C%. This in turn is the case iff the ring-homomorphism
n fold

K(Xk) ®k(z) " O (s) K(Xk) — KL induced by t## for § = 0,...,n—1
is surjective (where /¥ : k(x) < k(X) is the inclusion).

Proposition 3.9 Let [k(X) : k(z)] = n. Then b : C* — ResX (Xg) induces a
closed immersion of an open part of C*.

Proof Let L?E, i=1,...,n: k(z) — k(X) be the inclusions. We know that ¢
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operates non-trivially on the set of L?&. Thus by assumption, it operates by cyclic
permutation, i.e. the set of t#".# for i = 0,...,n — 1 equals the set of Lf’& for
1=1,...,n.

n fold

Thus the ring-homomorphism %(X) Ok(z) " Ok(x) k(X; — L induced by
t#'# for i = 0,...,n — 1 equals (up to permutation of the factors) the ring-
f We know that this homomorphism
is surjective. (L is generated by the roots of a primitive element of k(X)|k(z).) O

homomorphism induced by the injections ¢

A second example

Let E be a non-super-singular elliptic curve which is not isogenous to an elliptic
curve with j-invariant # 0. A Weierstral-equation of F defines a field extension
k(E)|k(y) of degree 3. Since by assumption k(F) does not have an automorphism
of order 3, this extension is non-Galois.

Let L be a Galois closure of this extension. Then L|k(F) is an extension of
degree 2, the Galois group of K(FE)|k(y) is isomorphic to the symmetric group on
three elements.

There are two possibilities: 1. L = A(E)), where M|k is the unique extension
of degree 2, 2. L is regular over k. Since L has an automorphism of order 3 and
we assumed that F does not have j-invariant 0, the first case is impossible. Thus
L|k(E) is regular.

Let ¢ : C — F be the covering of non-singular, proper, irreducible curves
which corresponds to the extension L|k(E). Since we assumed that E is not
isogenous to a curve with j-invariant 0, the genus of C' is at least 2.

Let K|k be the field extension of degree 3 and let o/ be the Frobenius auto-
morphism of K|k. Let t € Gal(L|k(x)) be of of the two elements of exact order
3. Let C! be the twisted curve defined by a,ﬁ( — taf . By construction, just as C,
C' is a covering of P}.

If we substitute ¢ be #2, the other element of exact order 3 in Gal(L|k(z)), we
obtain another covering or — P}ﬁ. However, the elements ¢ and t? are conjugated
in Gal(L|k(z)), st = t?s for some element s of order 2 in Gal(L|k()) and such an s
defines an isomorphism from C% — PL to C}? — PL which is compatible with
the Galois-operation. Therefore the two P}c—coverings C! and C* are isomorphic.

[This corresponds to the fact that there are exactly two elements in the pointed
set H'(Gal(K|k), Aut(Cx — PL).]
1
The covering C* — P} corresponds to a morphism b : C* — Resﬁ{( (Ek).
k
(Where Ef — PL is the covering induced by the extension K(Ek)|K(y).) By
Proposition 3.9, this morphism induces a closed immersion of an open part of C*.

1
All in all, the reducible K-curve Resi{((EK)K ~ Fg Xp1 Ex Xp1 Ex has five
k

irreducibility components: FEf itself, and four components which are birational to
Ck- [The ring K (Ek) X k(z) K(Ex) X g (z) K(Ex) is isomorphic to K (E) x L]
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1
One of the components of Resﬁ{‘(EK)K ~ FEg XpL Ex XpL Ef is the image of
k

Cl. ~ Ck under b ® idg = (¢, ct, ct?). The other components which are isomor-

phic to Ck are the images of Ck under (ct,c,c), (¢, ct,c), (¢, ¢, ct) respectively.
. . Pl

These components are permuted under the Galois-operation on ResIP,iK (Ex) K-

k

They descend to an irreducible k-curve on Resi% (Ex) which is birational to C'x
considered as k-curve. Thus apart from F itsglf, the image of C! is the only
geometrically irreducible k-curve on Resgi( (Ek).

Let E be given by a “nice” Weierstrafi-equation as in [Si, Appendix A, Proposi-
tion 1.1]. Then C" is birational to the geometrically irreducible curves constructed
in Subsection 2.4.2, the last subsection of the previous chapter. (In particular, the
image of C* in Res! (Ef) under ' lies on the trace-zero-hypersurface of E.) If
char(k) = 3, it is birational to the curve given by (2.36). If char(k) > 3 and
the third roots of unity are contained in k, it is birational to the curve given by
(2.21). If char(k) = 2, again under the assumption that the third roots of unity
are contained in k, it is birational to the curve given by (2.29).

In particular:
e If char(k) # 2,3, C! is a hyperelliptic curve of genus < 3.
e If char(k) = 2, C! is a “canonical curve” of genus 3.

e If char(k) = 3, C! is a curve of genus 2.

3.3.2 An application

Definition For n prime to p, let ¢,(n) := ord(p) for p € (Z/nZ)*. We might
call ¢, the local Euler-function for p.

Lemma 3.10 Fp (Cm) = prp(m).

Let ¢ : Gal(F,((m)|Fp) — (Z/mZ)* be the m-th cyclotomic character, i.e.

o(lm) = (51(0). Then ¢ induces a bijection of Gal(F,((y)|F,) with the subgroup
generated by p in (Z/mZ)*. O

For the following construction, let n be an odd prime and assume that the n-th
roots of unity are contained in k, i.e. k contains prp(n).

Let H be a hyperelliptic k-curve and let g(z, y) be some Weierstra$- “equation”

(i.e. polynomial) defining H. Let L be a Galois closure of the extension of k(z)
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given by 2" = z,9(z,y) = 0.

Let ¢ = (, be an n-th root of unity in k. Then the field L is given by the equations

2=, g(z,y0) =0, g(Cz,y1) =0, ..., g(¢" 2z yn_1) = 0 (with yo = y).
So L|k(H) is a composite of extensions of degree 2, and [L : k(H)] = 2* for some
a<n-—1.

The place py is ramified in L|k(z), its ramification index equals n. Let t# be
an element of the inertia group of L|k(z) of order n. Now t# does not fix k(H)
because [L : k(H)] = 2% and n is odd, and ¢# has a fixed point.

Let A := LNk (intersection in some common overfield) be the Galois closure of k
in L. Then the extension L|A\(H)) and the automorphism ¢ fulfill the requirements
of the theorem.

Let 1# : k(H) — L be the inclusion. Then the set t#,#(k(H)) equals the set

of images of k(H) under all inclusions into L (over k(z)). Thus the homomorphism
n fold

%(H) Ok(z) *** Ok(2) k(HY — L induced by 1 # is surjective, and as in the case
of Proposition 3.9, b’ : C* — Resf(XK) induces a closed immersion of an open
part of C'.

It is a priori not clear whether L|k is regular. However, since Gal(L|k(2)) has
exponent 2, if L|k is not regular, it is regular over the unique extension of & of
degree 2.

As above, let A be the Galois closure of k in L. Then L and A(z) are linearly
disjoint over \(x). Thus [L : k(x)] = [L : M(2)] - [A\(z) : k(2)] = [EL : k(2)] - [\ : K]
. _ [kL:k(2)]
and [\ : k| = RG]
We now address the extension-degrees in question for special Weierstra$}-
equations. Then we calculate the genus of L (which equals the genera of C' and

chy.

char(k) = 2

We still assume that the n-th roots of unity are contained in k.

Let E be an elliptic curve, given by the Weierstraf3-equation

Vrey=23+az®+8; a,f ek
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After division by 22 and substitution s := y/z + /B%/x, the extension k(E)|k(x) is
given by the Artin-Schreier equation

2 3.1 _
s“+s+p2z " +a+x=0.

Now substitute z by z. Then the extension L|k(z) defined above is given by

Zn

s%—i—so—l—ﬁéz*l—i-a—l-zzo
s%-l—sl-l-ﬁé(ﬁz)_l-l-a-l-gz:()

=T

s%_l + 8,1+ B%(C"_lz)_1 +a+ (" 2=0

with sg = s.

Let U’ be the Fy-vector space
1. ; —3
UI = SpanF2 ({IB2< Za o, CZ)}iZU,...,nfl) g ]FQ -

Let P(¢) := &2 + €. By Artin-Schreier theory in the form of [Ne, IV, (3.3) with
(3.4)], [L : k(2)] = 2¢ with d = dimg, (U'/U' N {(0,P(£),0)|¢ € k}), [Lk : k] = 2™
with m = dimp, (U'/U' N {(0,&,0)|¢ € k}). Let

V' := spang, ({5%C47 (") }iz0,...n-1)-

Then m = dimg, (V').
p2(n) <m < 2¢pa(n) (3.6)

The second inequality follows from the inclusion V' C S %FQ(C ) ® Fy(¢). The
first inequality follows from projection of V' onto Fy(¢) (projection to the second
coordinate).

Of course, since we only have n generating vectors, we also have the inequality
dimp, (U") < n which is for example a better bound if ¢9(n) =n — 1.

We now study over which constant field L is regular. We have the following
cases:
case 1: a = 0. In this case, [L : k(z)] = [kL : k(x)] = dim(V') = m and the
extension L|k is regular.
case 2: o # 0. Since the sum over all n-th roots of unity is 0, (0,«,0) € U'.
Now the extension L|k is regular iff & € P(k), and it is regular over the constant
field extension of degree 2 otherwise.

We calculate the genus of L. We use the following lemma. &

8This idea was pointed out to the author by H. Stichtenoth.
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Lemma 3.11 (Accola; Kani; Garcia, Stichtenoth) Let A be a field, | a prime
number, m a natural number and L|A\(z) a Galois extension, regular over X, with
Galois group isomorphic to (Z/IZ)™. Then L|\(z) has ezactly e := (I —1)/(I—1)
subfields Li|\(z) with [L; : k(z)] =1. We have

g(L) = 3 g(Ly).
i=1

Proof See [GS, Theorem 2.1] with [Kan, Theorem 1]. (The conditions on A stated
in [GS] are not necessary.) O

We apply this lemma with [ = 2, L, m as above and A the Galois closure of &
in L.

Then e = 2™ — 1 and all L;|A\(z) are Artin-Schreier extensions. — They corre-
spond bijectively to cyclic subgroups of V', i.e. to non-trivial elements of V'. Such
an element (B%ci, d;) € V' defines an extension L;|A(z) given by the Artin-Schreier
equation

24 t+ oozt +diz=0.

Thus g(L;) < 1 and we get the following proposition.

Proposition 3.12 FEither L|k is regular or it is reqular over the constant field
extension of degree 2. Let m := dimg,(V'). Then [Lk : k(z)] = 2™, and L has
genus <2 —1 < 22¢2(n) _ 1

We can now apply Theorem 9. We have motivated: ?

Proposition 3.13 Let n be an odd prime number. Let E be an elliptic curve over
Fopony such that E(Fyuymn) contains a prime factor of order ~ 2p2(n)n—pa(n)
Then a geometrically irreducible curve Ct of genus < 22¢92(") — 1 defined over
Foo0y ) with an automorphism of order m can be constructed such that via the
homomorphism (3.2), we expect the DL-problem in E(Fy,, ) to be transformed
into the DL-problem of CI°(C?).

An interesting special case is the following: Let n = 2¢— 1 be a prime number.
Then @9(n) = ¢ since 2° =n + 1 =1 mod n. So:

Let n = 2°— 1, be a prime number, e.g. n = 3,7,31,127. Let E be an elliptic
curve over Foe such that E(Faen) contains a prime factor of order ~ 2"~¢. Then
a geometrically irreducible curve C' of genus < 22¢ — 1 defined over Fyre with
an automorphism of order n can be constructed such that via the homomorphism
(8.2), we expect the DL-problem in E(FFacn ) to be transformed into the DL-problem
of CI°(CY).

We write “motivated” instead of “proven” because the result relies on the fact that we ezpect
the large prime factor in E(K') to be preserved; see Theorem 9 for details.
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In particular, let F be a curve defined over Fys such that E(Fyis5) contains a
prime factor of order 2'°°. Then we have associated to E a geometrically irre-
ducible curve C? of genus < 2'9 — 1, defined over Fyio with an automorphism of
order 31, such that via the homomorphism (3.2), the DL-problem in F(Fyiss) is

expected to be transformed into the DL-problem of CI1°(C?).

char(k) # 2

Let k(H) be a hyperelliptic function field of genus g and let k(H)|k(z) be a degree-
2 extension defined by a Weierstrafl-equation of degree d :=2¢g + 1 or d := 2¢g + 2
(in z). We identify the places of k(z)|k with kU {oco} (via 2).

Then k(E)|k(z) is ramified over d places e, es,...,eq € k and additionally
over oo if d is odd.

There are several different cases depending on whether some ramification
points lie in the same orbit under of the action of the Galois group of k(z)|k(z).
The most generic one is the following:

All e; lie in different orbits of the Galois group of k(z)|k(z).

There are two sub-cases:

case 1: ¢; # 0 for all 4. Then kL|k(z) is ramified at (29 + 1)n 4 1 or (2g +2)n
places (depending on whether the Weierstra$-“equation” (i.e. polynomial) has
odd or even order).

case 2: e; = 0 for some e;. Then kL|k(z) is ramified at 2gn +2 or (2g+1)n+1
places.

In both cases, exactly as in the proof of Lemma 3.7, one sees that L|k(z) is
regular and has degree 2".

Using Abhyankar’s Lemma (Lemma 3.8), we conclude that the ramification
order at the ramified places is always 2. We can calculate the genus of L (which
equals the genera of C' and C') using formula (3.5):

g(L) =2"2(r —4) + 1,

where r is the number of ramified places in L|k(z). Thus 2gn+2 <r < (29 +2)n
and
2" (gn — 1) +1 < g(L) <2"7'((g + D)n — 2).
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Appendix A

Some auxiliary results

A.1 Some results about the Picard scheme

The functor Pic(X) of a non-singular, projective, integral k-variety X with a
k-rational point as well as the group-schemes Pic(X) and Pic’(X), the Picard
scheme, where already introduced in Subsection 1.2.2. Here we give some addi-
tional properties. We are only interested in “geometric” questions like the dimen-
sion of Pic’(X), so we work over an algebraically closed field only.

A.1.1 The dimension of the Picard scheme

Let k& be an algebraically closed field, X a non-singular, projective, integral k-
variety.

The dimension of the Picard scheme Pic’(X) can be calculated via étale co-
homology or via the étale fundamental group.

Lemma A.1 For any prime [ # char(k): !

) ) 1.
dim(Pic’(X)) = Edlle (H (X ,2Z1) @7, Q) =

1.
§d1mQ, (Homeont (m1(X), Z1) @z, Q1)

Proof of the first equation Let n € N with char(k) 1 n. The Kummer exact sequence
(in the étale topology)

0— pp — G, — G, — 0

1We should write the fundamental group relative to some base point. However the fundamental
groups relative to different base points are (non-canonically) isomorphic.
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gives rise to a long exact sequence

0— up(X) — T(X,0x)" = T(X,0x)* —
Hl(Xétalun) — Hl(XétaGm) — Hl(XétaGm) —
[~ [~

Pic(X) N Pic(X)

Since X is projective, -n : I'(X,0x)* — I'(X, Ox)* ~ k* is an isomorphism. We
thus have an isomorphism

H' (Xéta ,Ufn);ﬂ;)ic()()n2
Choosing an isomorphism u, — Z/nZ we get a non-canonical isomorphism
HY(X¢, Z/nZ) = Pic(X),.

Now let I #char(k) be a prime. We can choose isomorphism p;i —Z/I'Z in a way
that is compatible with the projective systems. Taking the limit, we obtain an
isomorphism

H'(Xg, 21)—=T)(Pic(X)).3

It follows

HY (X, Z) @2, Q = Ti(Pic(X)) ®z, Q ~ T)(Pic’(X)) ®z, Q ~
T,(Pic’(X)™") @z, Q

On the other hand, Pic®(X)™ is an abelian variety and with [Mi-A, Theorem
15.1], we can conclude that

dim(Pic’(X)) = dim(Pic®(X)rd)
1, . L.
§d1leTl(Plc(X)) ®z, Q = §d1le H'(Xe,Z) ®z, Q

Proof of the second equation (outline) There is a canonical isomorphism
Homeont (11 (X), Z1) = H' (Xer, Z1)

This follows from the following facts:

\%
- H'(Xg,Z/nZ) ~H' (X¢;,Z/nZ). * [Mi-E, II1.2, Theorem 2.17.]

2For some abelian group G, we denote the kernel of the multiplication of n by G,,. In particular,
if A is an abelian variety over the algebraically closed field k, then A[n](k) ~ A(k)n».

3For an abelian group G and some prime I, we denote lim, _; G;: by T;(G). In particular, if
A is an abelian variety over the algebraically closed field k, then T;(A) = T;(A(k)).

“We use the same notation for a finite group, the corresponding group scheme and the corre-
sponding étale/flat sheaf over some scheme.
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- The set of isomorphism classes of principal homogeneous spaces for Z/nZ

v
over X is in bijection with H'(Xe,Z/nZ). [Mi-E, IIL.4, Corollary 4.7., Remark
48]

- Principal homogeneous spaces for Z/XZ over X correspond to Galois cov-
erings of X with given Galois action of Z/nZ and vice versa, and the set of
isomorphism classes of these is in bijection with Homeont (71 (X), Z/nZ). ([SGA I,
V.2] and definition of the étale fundamental group) O

If Pic(X) is reduced (smooth) — thus an abelian variety — can also be read of
from cohomology:

Lemma A.2
dim(Pic®(X)) < dimy H' (X, Ox)

Equality holds iff Pic®(X) is reduced. In particular, this is the case if char(k) = 0.

Proof See [BLR, 8.4, Theorem 1]. The last statement follows from the fact that
all projective group schemes over fields in characteristic zero are reduced. O

For the following proposition we need the definition:

Definition Let char(k) > 0, let X be a projective k-variety. A smooth proper
global lifting is a separated scheme X defined over the spectrum of a discrete
valuation ring R such that

e The function field of R has characteristic zero and the residue field is &
e The “geometric fiber” Xy := X Qg k is isomorphic to X

e X is smooth and proper over SpecR.

Let X, := X ® Quot(R) be the “generic fiber” of X. Then in particular, X, is
a non-singular, proper, integral Quot(R)-variety. We denote X;, ®quot(r) Quot(R)
be DC_,,

Remark We will use that the Picard-scheme of X, exists and is proper. Since up
to now we have only talked about the Picard-scheme of a projective non-singular
integral variety, we assume furthermore that the generic fiber of X, is projective.
However, the Picard-scheme also exists in the proper case and is proper; see [BLR,
8.2. Theorem 3 ,8.4, Theorem 3].

Lemma A.3 Let k be a field with positive characteristic. Let X have a smooth
proper global lifting. Then Pic®(X) is reduced.

Proof By Lemma A.2 we have to show that dim(Pic’(X)) = dimH'(X,Ox).

Let X be a global lifting for k over the spectrum of the discrete valuation ring
R.
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Let [ #char(k) be a prime. By the above lemmata,
L. — . —
§d1le Hl (fXI,,ét, Zl) ®Zl Ql = dlmQTt(R)Hl (DC,,, Oxn)

We now use the theorems of cohomology and base change to “transfer” this equa-
tion to Xp ~ X.

dimg ey ' (X, Ox, ) = dimquor(ry H' (X, Ox,) = dimy H' (Xo, Ox, )

The first equation is a special case of [Ha, III, Proposition 9.3], and the second
equation follows from [Ha, III, Corollary 12.9].

By [Mi-E, VI, Corollary 4.2],

H' (X, Z/nZ) = H' (Xoss, Z/nZ).

These equations imply

1
dim(Pic’ (X)) = 5dimg, (HY (X, 7)) ®7, Q) = dimp H (X, Ox).

Thus by Lemma A.2, X is reduced. O

A.1.2 The Picard scheme of a product

Let k be an algebraically closed field and let X7, X2 be two non-singular projective
integral k-varieties. Let P; and P, be k-rational points of X;, X5 respectively.
Let ¢; : X1 xx Xo — X; (1 = 1,2) be the projections.

Let Z be a k-scheme. By bull-back, we have morphisms

Pic(X| Xy Z)/Pic(Z) x Pic(X, x, Z)/Pic(Z) — Pic(X| X Xo X, Z)/Pic(Z)
V1, Ms) = ¢ (V) ® g5 (M),

By applying (P; X, idz)* we see that these morphism are injective.

Thus we get an injective natural transformation
u: TlC(Xl) X TlC(Xl) — iPlC(Xl Xk X2)
This induces a morphism

U : Pic’ (X)) x Pic’(X;) — Pic’(X; x; Xy).

Proposition A.4 Ifk has characteristic zero or if X1 and X9 have smooth proper
global liftings, then U is an isomorphism between abelian varieties.

In general, U induces an isomorphism between the corresponding reduced ob-
jects, which are abelian varieties.
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Proof By Lemma A.1,

dim(Pic®(X; x4 X»)) = 2dimg, (Homeons (m1 (X1 X X2),Z1) ®2, Q) =
dimg, (Homeont (11 (X1) % m1(X2),Z)) ®7, Q) =
2 dimg, (Homeon (111 (X1), Z1) X Homeons (11 (X2), Z1)) ®7, Q) =
dim(Pic’(X1)) - dim(Pic®(X7y)).

(A1)

Here we use
Wl(PiCO(Xl) Xk PiCO(XQ)) = ﬂl(PiCO(Xl)) X Wl(PiCO(XQ))

(relative so some base points); see [SGA I, X, Corollaire 1.7].

Alternatively, we could also use the Kiinneth-formula of étale cohomology to
derive (A.1).

Since k is an algebraically closed field, the corresponding reduced objects on

both sides are abelian varieties. U has trivial kernel, thus induces an isomorphism
of abelian varieties.

If X7 and X, have global liftings, so has the product and by Lemma A.3, both
sides are reduced, thus U is an isomorphism. O

Remark If X; and X5 are irreducible non-singular curves, then a smooth global
lifting exists; see [Po, Satz 10.1]. Thus in this case, U is an isomorphism of abelian
varieties.

A.2 Some results about abelian varieties

The results is this section are mostly well-known. Some of the results are discussed
in [Mu] over algebraically closed fields at least implicitly. However, for most of
the results we lack a suitable reference and because of that we include them with
proofs.

A.2.1 TIsogenies

Let K be a field, A, B and C three abelian K-varieties.

Lemma A.5 Let o, : B — C be some morphisms, 1 : A — B an isogeny.
Assume that aw = Brw. Then a = (.

Proof T is surjective on K-valued points, and thus o = 8 : B(K) — C(K). This
impliessa=p: B — C. O

We also have the following analogous result:

Lemma A.6 Let o, : A — B be some morphisms, m : B — C an isogeny.
Assume that ma = wf. Then a = (.
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Proof Since m : b — C' is an isogeny, ker(n) is a closed subscheme of ker([n])
for some n € N. Thus there exists a p : C — B such that pm = nid¢. Thus
[n] @ = [n] B, so a[n] = B[n]. Since [n] is an isogeny, we get & = f by the preceding
lemma. O

For any two abelian varieties A and B, let as usual Hom%(4,B) :=
Hompg (A, B) ®z Q. Hompg (A, B) is a free abelian group (since [n] = nid is an
isogeny), thus Homg (A, B) — Hom% (A, B) is an inclusion.

Ifa:A— B, ¢ €Q, we write qa for a ®q.

The class of abelian varieties with morphisms between two abelian varieties
A and B being HomY%- (A, B) forms a category which is called the “category of
abelian varieties up to isogeny”; cf. [Mu, par. 19].

Lemma A.7 Let m1 : A — B be an isogeny. We want to show that 7 has
a unique inverse in the category of abelian varieties up to isogeny. By this we
mean the following: There exists a p € Hom% (B, A) with pr = ids, mp = idg.
Moreover, p is uniquely determined by wp = ida or pm = idp.

Proof There exists some isogeny p : B — A and some n € N with pm = nid4.
Thus % pm =idy, i.e. % p is the left inverse of 7 in the category of abelian varieties
up to isogeny. Now, %,B is also the right inverse for w. In fact, mpm = nm, and
by Lemma A.5, mp = nidg. Again by the preceding lemmata, the left and right
inverses of 7 in the category of abelian varieties up to isogeny are unique. Thus p

is the unique inverse of 7 in the category of abelian varieties up to isogeny. O

We will denote the inverse of the isogeny 7 by 7.

The next lemma is now obvious.

Lemma A.8 Let w: A — B be an isogeny of abelian varieties. Then End%(A)

— End%(B) o+ war~! is an isomorphism.

|

Remark Let the kernel of 7 : A — B be contained in ker([n]) for some n € N.
For example, A and B might be elliptic curves and 7 an isogeny of degree n.

Then the above lemma may be strengthened in the following way: For some
ring A and an element f € A, let A ;) be the localization of A at the multiplicative
set {f'|i > 0}. Then 7 induces an isomorphism End(A) s — End(B)y).

A.2.2 The Néron-Severi group and polarizations

Let k be a field and let A be an abelian k-variety, A the dual variety. Let L be
an invertible sheaf on A. Let ¢p : A — A be the morphism which is associated
to the natural transformation Hom(—, A) — Pic’(A), given for Z-valued points
Pby P Tpqy(L) ® q(L) L, where gz : A X Z — A is the projection. The
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-~

map ¢ : Pic(A) — Homp (A, A) itself is a group homomorphism. The kernel of
¢ is Pic’(A), the group of classes of invertible sheaves on A being algebraically
equivalent to O 4.

The group Pic(A)/Pic?(A) is called the Néron-Severi group of A, denoted
NS(A). As usual, we denote NS(A4) ®7z Q by NS°(A). If z € NS(A) is given
by some sheaf M on A, we denote ¢y also by ¢,. By construction, the map

¢ : NS(A) — Homy(A, A) is an injective group homomorphism. It extends to an
injective group homomorphism ¢ : NS°(A) — Hom (A4, A).

Let K|k be an algebraic field extension. Let A’ be an abelian K-variety. As
usual, any k-morphism o : Spec(K) — Spec(K) induces an isomorphism o* :
Pic(A’') — Pic(o~!'(A4’)). This isomorphism corresponds to the isomorphism
o 1(...)=(...)7 : Pic(A') — Pic(o }(4")). (For K|k Galois and A’ = A this
is a special case of Lemma 1.16, if one forgets the last equality of the proof of
Lemma 1.16, this proof also implies the general case.)

Lemma A.9 Let o be a k-automorphism of Spec(K), let L be an invertible sheaf
on A'. Then

G0y =0 Lpro =0 L) = ¢L 0 H(A) — o L(A)).

Proof Let o'* be a k-automorphism with o/#|K = o#. This defines a K-

automorphism ¢’ of Spec(K). Denote the pull-back of L to A’? again by L.
Applying the base change K|K to the above equality, we get the following equal-
ity of morphisms of abelian K-varieties, which is equivalent to the equality in the
statement of the lemma.

Gor(c) = 0" pro’ =" (pe).

We show that this equality holds for K-valued points. This implies the equality
in the statement of the lemma.

Let P be a K-valued point of a_l(A’?) o~ a’_l(A’)f. We use that o'Tpo’ ™" =
O'I(Tp) = Tg’(P) : Alf — Alf

Now, ¢,=(cy o P (which is a K-valued point of o' !(A'%)) corresponds to the
class of sheaves T (0" (L)) @0" (L) ! = (¢'Tp)* (L)®0" (L) ! = (T (pyo’')* (L) ®
o (L)t = a’*(T:,(P) (L) ® Z_l). This sheaf in turn corresponds to o'~ (¢ o
o'(P)) = o to ¢ o0’ oP oo’ tog = g’fl((pn) oP. O

Galois extensions

Now let K|k be Galois. Let A be an abelian k-variety, A’ = Af.

Then the last lemma implies in particular that Pic’(Af) is invariant under
pull-back by o. (This follows for example also from the fact that the operation of
G on Pic(Ag)(K) restricts to an operation on Pic®(Ax)(K) = A(K).)
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Since Pic?(A4) = Pic?(Ax)NPic(A), NS(A) is naturally a subgroup of NS(Ag).
Because Pic(A) is invariant under the Galois-operation, G' operates on NS(Af).

With the notations as in the lemma, £ defines an element in NS(Ax )¢ iff ¢
is invariant under G, i.e. iff it is defined over k.

We want to study the cokernel of the injective group homomorphism
NS(A) < NS(4x)C. (A.2)
Lemma A.10 The cokernel of (A.2) has exponent 2.

Proof This is a special case of [Mu, 20, p.188, Theorem 2]:
Let © € NS(Ax)®. This induces the morphism ¢, : A — A

Choose a prime [ #char(k). The bilinear form e;(., ¢, (.)) on T;(Aj) is skew-
symmetric since ¢, ® idxr = ¢ on Ag. Let P be a universal divisional cor-
respondence on A x A, and let M := (id, ¢;)*(P). Then one calculates that
2e1(.s 92(1) = e(-, dm(.)). It follows that 2¢, = ¢ because of the non-degeneracy
of er.

This implies that M is class of 2z in NS(A4x)¢. O

Warning The proof of the remark following [Mu, par. 20, p.188, Theorem 2]
(i.e. [Mu, par. 23, p.231, Theorem 3]) does not hold since it is assumed that
Pic(A) is divisible. Thus one cannot conclude that the cokernel of (A.2) is trivial.

Now we study the cokernel of (A.2) with a cohomological approach.

By definition of the Néron-Severi group we have a short exact sequence
1 — Pic®(Ag) — Pic(Ax) — NS(Ag) — 1.

Taking invariants under the action by the Galois group G, we get a long exact
sequence

1 — Pic®(A) — Pic(A4) — NS(Ag)Y —
H'(G,Pic’(Ax)) — H'(G,Pic(Ax)) — ---

Thus coker(Pic(A) — NS(Ax)%) = ker(H' (G, Pic’(Ag)) — H'(G,Pic(Ag))).

Lemma A.11 If the order of G is finite and odd then NS(A) — NS(Ax)“ is an
isomorphism.

Proof We already know that the cokernel has exponent 2. On the other hand,
since (G is a finite group and the order of G odd, so are the orders of its Tate-
cohomology groups; see [Se, VIII, 2, p.130, Corollary 1]. Thus the cokernel has to
be trivial. O
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Lemma A.12 Let k be finite. Then H'(Gal(k|k), A(k)) = 0 and thus NS(4) —
NS(Az) k) s an isomorphism.

Proof We only have to show the result for all finite subextensions. Let K|k be
such a subextension with Galois group G.

Every 1-cocycle (P;)seq defines by o — Tp, (= translation by P,) a twist of
Ak. Such a twist is isomorphic to A iff (Py),cq is a 1-coboundary, i.e. if there
exists a Q € A(K) with 071(Q) —Q = P, forall o € G, i.e. iff 071 (Q) = Tp, 0 Q,
ie. if Q =00Tp, oQoo '. And this means that Q is invariant under the
Galois-operation of G on Ax and thus is a k-rational point of A.

Now, a theorem by S.Lang says that over a finite field &, all k-schemes which are
“geometrically” abelian varieties have a rational point; see [Mu, p.205, Theorem
3].

So (P,)seq is a 1-coboundary and thus H' (G, Af) is trivial.

Note: The argument can be reformulated by saying that all principal homoge-
neous spaces of A are equivalent, or — what is the same — that the Weil-Chatelet-
group of A is trivial; see [Si, X, 3] for details, the results formulated there hold for
general abelian varieties. O

The Néron-Severi group as functor

Lemma A.13 Let vy : A — B be a morphism of abelian k-varieties, x €
NSO (Bysen ) CEPIE) - given by some L € Pic(Bysen). Then

¢¢*(L) = ’lZ@k idksep [¢] QSL (¢] ’l,b ®k idksep . Aksep — A\ksep.

The proof is analogous to the one of Lemma A.9.
We can assume that k = k.
Let P be a k = k-valued point of A. We use that ¢ Tp = Tyop 9.

-~

Now, ¢y-(cy o P (which is a k-valued point of A) corresponds to the class of
sheaves T (1)*(£)) @™ (L) 7! = (¢Tp)* (L)Y (L)™' = (Tyory)" (L) @¢* (L) " =
¢*(T$0P(Z) ® Zil). This sheaf in turn corresponds to ¢ ¢ o P. O

In particular, Pic’(A) is invariant under ¢*. Thus NS is a contravariant functor
from the category of abelian k-varieties to the category of abelian groups. (And
so are NSO, NS((.)gsep) FAE"PIF) and NSO((.) gsep ) GaUETPIR) )

If v : A — B, the corresponding homomorphism between Néron-Severi
groups will also be denoted by *.

Polarizations and the category of polarized abelian varieties

Definition [Mi-A, 13] A polarization of A is a morphism ¢ : A — A such that
Y ®pidy = ¢p : Ay — A for some ample sheaf L on Az. A principal polarization
is a polarization with trivial kernel.
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By Lemma A.9, ¢ induces a bijection between the subset of element of
NS (Aysen ) SEPIE) defined by ample sheaves and the set of polarizations on A.

Definition The category of polarized abelian varieties over k consists of the
following;:

Objects are abelian varieties A with some element x € NS(Az) where z is
defined by an ample sheaf and — after the choice of a dual abelian variety A-
¢y 2 Ay — flz is defined over k. (If k is perfect, this is the same as saying that
z € NS(Ag) G FIk) )

The morphisms between two objects (A, z) and (B, y) are morphisms « : A —
B with a*(z) = y. °

Analogously, one defines the category of polarized abelian varieties with polar-
izations defined by sheaves over k. Here, the objects are abelian varieties A with
some z € NS(A). The morphisms are defined as above.

There is a forget-functor from the category of polarized abelian varieties with
polarizations defined by sheaves over k to the category of polarized abelian vari-
eties varieties. This functor is fully faithful.

And there is a forget-functor from the category of polarized abelian varieties
to the category of abelian varieties. This functor is also faithful and for a fixed
abelian variety A, the preimages under this functor correspond in a natural way
to the polarizations on A.

The results about the Néron-Severi group translate to results of polarizations.
For example, if ¢ : A — A is a polarization, then 2¢ is defined by a sheaf on A.
And if k is finite, every polarization is defined by a sheaf on A.

The proof is [Mu, 20, p.188, Theorem 2] again plus the fact that “ample” is a
geometric property and depends only on the class of a sheaf in the Néron-Severi
group.

For the next two lemmata, let k be perfect.

Lemma A.14 Let p : A — A be a polarization. This polarization induces
an injective group homomorphism NS®(Az)CkIk) s End)(A). The image of
this inclusion consists of the elements of Endg(A) which are fized by the Rosati
involution (with respect to ).

Now let ¢ be a principal polarization. Then we have an injective group homo-
morphism NS(Az) 8 kk) — Endg(A). Again, the image of this inclusion consists
of the elements which are fized by the Rosati involution (with respect to ).

Proof Both statements follow from the corresponding statements over algebraically
closed fields by taking Galois-invariants. Thus we restrict ourselves to algebraically
closed fields.

*With this definition for the category of polarized abelian varieties we avoid the (simultaneous)
choosing of a dual abelian variety for every abelian variety.
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Let k be algebraically closed. The first statement is well-known; see [Mu,
p.190 (3)]. For the second statement, let A\ € End(A). By the first statement,
there exists an n € N and sheaf M on A such that o~ "¢yt = n, i.e. gy = npA.
Since ¢ is an isomorphism, ker(¢$y¢) contains A[n|, the group scheme of n-torsion
points of A. Since we assumed k to be algebraically closed, by [Mu, par. 23, p.231,
Theorem 3], there exists a sheaf N on A such that N = M, and the class of this
sheaf in the Néron-Severi group is mapped to A. O

Lemma A.15 Let ¢ be a polarization on A. With respect to this polarization, let
(...)" denote the Rosati involution.
Let z € NS(AE)Gal(k‘k) corresponding under the polarization ¢ to the endomor-

phism m on A. Let 1) be an endomorphism on A. Then *(zx) corresponds — again
under ¢ — to 'mip € End(A).

Proof The element in End?(A) we are looking for is go_l@p*(x), and this equals
¢ Mhbatp = o Mppp hatp = 'myp. O

A.2.3 Products and the Rosati involution

Let k be a field, let B; for i = 1,...,n and A; for j = 1,...,m be abelian k-
varieties. Let A :=[[,, . A, B:=1][;; ,Bi Let L;‘ : Aj — A be the
inclusions and let p;‘ : A — Aj be the projections. (Similar definitions for B.)
Then, since a finite product of abelian varieties is also the sum of the these abelian
varieties in the category of abelian varieties,

HOmk(A, B) — ®i,j Homy (Aj, BZ)

A3
(0 > (pz'BwL;‘)i:l,...,n,j:l,...,m (A-3)

is an isomorphism. (The same is true for the corresponding groups Hom{(...,...)
of both sides.)

Thus every morphism from A to B is uniquely determined by its “matrix”,
and conversely, every “matrix” determines a morphism. Further, the composition

of morphisms corresponds to the usual composition of matrices.

In particular, under (A.3), Endg(A) is isomorphic to the “matrix ring”
®’i,j Homk(Aj, Az)

There is a notational difficulty: For j = 1, a morphism ¢ = (¢1,...,%,) :
A — B =1, , Bi is represented by the column vector

(1
o
¥n
We now want to study how the Rosati involution with respect to a product

polarization operates on the “matrices”. It is convenient to generalize the concept
of a “Rosati involution” first.
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Let X and Y be abelian k-varieties with fixed polarizations px : X —
X, ¢y : Y — Y. Then for every ¢ € Hom(X,Y), we denote w;(lfﬁ\(py €
Homg(Y,X) by 4" and call it the Rosati involution with respect to the polariza-
tions px and py.

Now fore=1,...,n, 5 =1,...,m, let pp, : B; —>Eand<p,4j DA —>1/4;be
polarizations. Let w4 : A — A and ¢p : B — B be the corresponding product
polarizations.

Lemma A.16 Let ¢ € Homg(A,B) be by the “matriz” (vVij)i=1,.n, j=1,.,ms
Pij € Homg(Aj,Bi). Then with respect to pa and pp, the Rosati involution
of 1 is given by the “matriz” ( ;’i)izl,m,m’jzl,m,n with 1/19’2 € Homg(Bj,Ai).

Proof Under the identification of A with | P ;1\]-, pf equals (by definition)

Lf. Analogously, p]’fz = ng = Lj‘ and thus p;-T = L;‘. Further, @Lf = ng(ij and
- . i

pap =pite, ie. ployt = lpt.

We have to show that p{‘w’Lf = 1 ;. Now,

-17 ~1, A7 B “1 A7 B
pi'ef = ples bopll = wuipiin e = pa ] s, =
!

oa, PP B, = 0 Viaes; =V,

A.2.4 Orthogonal complements and the Complete Reducibility
Theorem

In this subsection, let k be a perfect field. Let X be an abelian variety over k.
Let Ak be a subfield of k|k, £ an an ample sheaf on X defining a polarization
p: X — X. Let Y be an abelian subvariety of X, let 1ty : ¥ — X be the
inclusion, and let 7y : X — Y be the corresponding dual morphism.

The sheaf ¢} (L) is again ample (this is true for any pull-back of an ample
sheaf), and by Lemma A.13, the polarization defined by ¢3-(L) can be calculated
as follows:

Lemma A.17 iypiy ® idy = ¢,z (c)- In particular, K (L) = ker(iy piy) ® idy.

Definition Let Z be the reduced connected component of the zero of
¢~ (ker(iy)) = ker(iyp). With other words, it is reduced induced closed sub-
scheme associated to the connected component of the zero of ker(iy¢). (Thus
there exists a natural closed immersion Z < ker(iyp).) We call Z the orthogonal
complement of Y in X with respect to L. The reduced and irreducible sub-group
scheme Z of X is geometrically irreducible by lemma A.28 and geometrically re-
duced because we assumed k to be perfect, thus Z is an abelian variety. From
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this it also follows that “orthogonal complement” commutes with base extension
(of fields). Since ¢,; is surjective, 7y is surjective.

Let [ #char(k) be a prime. Let E® be the Riemann form associated with £
and [; c¢f. [Mu, p.186]. The term “orthogonal complement” is justified by the
following lemma.

Lemma A.18 7 is the largest abelian subvariety Z% of Xt with the property that
BN (Y, Z) = 1.

Proof Let P € T)(X%), Q € Ti(Y). Then

Ex (Ti(tv)(Q), P) = erx (Ti(1v) (@), Ti($2) (P)) = ey (Q, Ti(v)) Tu($) (P)).-
So,

Ex (Ti(yYy), P) = 1 = e (Ti(Yy), Ti(i¢2) (P)) = 1 — Ti(ige)(P) = 1.
Especially, the orthogonal complement Z; of Y7 has the desired property. On the
other hand, if Z% is any abelian subvariety with E*(Y, ZIE) = 1, then Tl(Z'E) C
Ty(¢. " (ker(z))). This implies Ty(ZL) C Ty(Z).

[Assume P € Tl(Z%),P ¢ T)(Zz). Let i > 0 such that I'P = 0. For all m € N,
let Q,, € TZ(Z'E) with ['™Q,,, = P. Then for m; < ma, Qum, —Qm, ¢ T)(Zz) because
otherwise P = 1""2(Qy, — Qm,) € Ti(Z). So all sets Qm, + Ti(Z), Qm, + T1(Z)
are disjoint. By construction they are also contained in Tj(¢, ' (ker(7))), thus this
set has infinitely many elements, a contradiction.]

Now the result follows by the injectivity of the [-adic representation. O
Lemma A.19 YNZ:=Y xx Z =: 1 (Z) is a closed subscheme of ker(iy pty).

Proof The closed immersion Z < ker(iyy) induces a closed immersion
151(Z) = 15! (ker(ivp)) = ker(iyepry). (“Closed immersion” is “stable under
base extension”.) O

Since (3 (L) is ample, so K (¢3; (L)) is finite, and so is Y x x Z. This implies
the “Complete Reducibility Theorem”.

Proposition A.20 [Mu, p.173] Let (X, ¢) be a polarized abelian k-variety and Y
an abelian subvariety, Z the orthogonal complement of Z with respect to L. Then
dim(X) = dim(Y') + dim(Z) and X is isogenous to 'Y Xy Z.

Remark Let::Y x;Z — X be the isogeny, defined by ¢ x and ¢y. Then under
this isogeny, ¢ becomes a product polarization, i.e. 7ip¢ is a product polarization.
This is obvious since by definition of Z, izpty = 0 and similarly with Y and
Z interchanged, since the definition is “orthogonal complement” is symmetric by
Lemma, A.18 for example.
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Already assuming the Complete Reducibility Theorem, one can easily proof

Lemma A.21 Let X and Z be abelian k-varieties, p : X — Z a surjective
morphism. Then p: X — Z has finite kernel.

Proof Let Y be the reduced connected component of the zero of the kernel of
p: X — Z, 1z : Z' — X the orthogonal complement of Y with respect to
some polarization. Then the kernel of piyz : Z' — Z is immersed in Z' N ker(p)
which is finite since Z' NY is finite. So pity : Z' — Z is an isogeny, and so is
tzp: Z — Z'. Thus p has finite kernel. O

This implies:

Lemma A.22 Let (X, ), (X, ©) be a principally polarized abelian k-varieties, let
f: X — X and = Nflﬁp the “Rosati involution” of f with respect to ¢ and
¢, Y :=1im(f). Then the orthogonal complement of Y is the reduced connected
component of the zero of ker(f’).

Proof Let f = 1yg, where g : X — Y is surjective. The orthogonal complement
is given as the reduced connected component of the kernel of 7y, which by the
last lemma is the same as the reduced connected component of the zero of the
kernel of o~ 'giy o = o liyge = f. O

Lemma A.23 Let (X,p) be a principally polarized abelian k-variety, f an en-
domorphism, f' the Rosati involution with respect to p. Assume that ker(f') is
reduced and irreducible. Let Y = im(f) and Z = ker(f'). ThenYNZ :=Y X, Z =
ker(zy pry ).

Proof As above, let f = 1yg. Since by assumption ker(f’') = ker(¢ 'giyy) is
reduced and irreducible, so is ker(iy'p). Thus Z = ker(iy'p) and YNZ = 15" (Z) =
1yt (ker(iy @) = ker(iy puy). O

A.2.5 The decomposition of the endomorphism ring of an abelian
variety

Let A be an abelian variety over a perfect field k.

Let A® < A i =1,... be abelian subvarieties such that the induced mor-
phism [[; A®) — A is an isogeny. Let e(), i = 1,... be the elements of Endy(A)
which correspond under the isogeny to the projections on the left hand side. Then
1 =5 el and the e are idempotent. Now if a() € N such that a;e® are
morphisms, then A®) = a(e(A4) and A® is the reduced connected component
of the zero of the kernel of () (1 — e(?)).

Conversely, if a decomposition of the unity 1 =",

potent is given, define Ay := a®e(A) for suitable o) € N. Then again
IL A ~ A and the e correspond to the projections on the left hand side.

e() where the e; are idem-
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Now fix a polarization ¢ on A. With the help of the Complete Reducibility
Theorem, A can be decomposed into a product of simple abelian varieties.

There exist simple abelian subvarieties ¢;; : A;; < A with A;; ~ Ay ;v iff
i =14’ such that the ¢; ; induce an isogeny

s kj
III[4,~4 (A4)

i=1j=1

and such that A}, :=( abelian variety generated by Ay ;o for (4,5) # (i,j")) is
orthogonal of A;; with respect to ¢. Under this isogeny, ¢ becomes a product
polarization on the left-hand side. In particular, the projections on the left-hand
side are invariant under the Rosati involution. As above, let ¢; ; be the idempo-
tents in Endg (Ax) which correspond to these projections. Then also the e; ; are
invariant under the Rosati involution, e;’j = ¢;,j, and thus by Lemma A.22, A;-’j
is the orthogonal complement of A; ;.

Let A; be the abelian subvariety generated by the A;,...,A;;,. Then the
A;s are independent of the particular decomposition chosen. We call them the
isotypic components of the abelian variety A (over k).

S
A~TJ A (A.5)
i=1

Let A} := abelian subvariety in A generated by the A;, j # i.

Decomposition (A.4) induces an isomorphism
S
Endj(A) ~ [ ] Endf(4,). (A.6)
i=1

The End)(A;) are simple rings (simple meaning that they do not have a proper
two sided ideal) with End®(4;) ~ My, (D;), where D; ~ End)(A A;,;) 1s a division
ring.

It is a fact from the theory of semisimple rings that (A.6) is the unique way to
decompose End%-(Af) into a product of simple rings (i.e. the if a decomposition
End% (Axk) ~ [[, R; is given, the R; are uniquely determined inside End}(A) up
to a permutation); see [FD, Theorem 1,13].

Now let e; be the image of the unity of End?(A;) in End?(A) under the above
isomorphism. Then the e; are central and idempotent and 1 = Y ]_, e;, and again
e, = e; and A; is orthogonal to Al.

Now all polarizations of []7_, A; are multiples of product polarizations and, in
particular, e; = €, and the A; are orthogonal with respect to any polarization.

Proof End)([15, A;) =~ [1;_, End}(A;). This implies NSO([]¢_, A;7) ! klk) ~
[T, NS%(AiE)Gal(k‘k). (Use the characterization [Mu, p.208, application ITI] with
the product polarization ¢ on the left-hand side and the ¢; on the right-hand side;
see also Proposition A.9.)
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Now, classes of ample sheaves on the left hand side correspond to tuples of
classes of ample sheaves on the right hand side. These classes on the left hand
side define multiples of polarizations, and on the right hand side, they define
multiples of product polarizations. O

A.2.6 Ample sheaves

Let K be a field and let A be an abelian K-variety of dimension n with an ample
sheaf L.

Recall the Vanishing Theorem:

Proposition A.24 [Mu, par. 16, p.150] Let M be a non-degenerate invertible
sheaf on A, i.e. K(M) is finite.

Then there exists a unique integer i(M),0 < i(M) < n, called the index of M,
such that HP(X,M) = 0 for p # i(M) and H'™) (X, M) # 0.

The index can be calculated as follows:

Proposition A.25 [Mu, par. 16, p.155] With L and M as above, the function
z = x(LF @ M) is a polynomial function of degree n whose roots are all real and
non-zero. The index 1(M) is the number of positive roots.

This implies:

Lemma A.26 Let M be a non-degenerate invertible sheaf on A. The following
are equivalent:

1. M is ample, i.e. a power of M is very ample.

2. M is defined by an effective divisor.

3. The index i(M) is 0, i.e. HO(X,M) # 0 and HP(X,M) =0 for p # 0.
4. The polynomial x(L* @ M) has only negative roots.

Proof 2. +— 3. +— 4. follows from the Vanishing Theorem.

1. — 3.: By the Vanishing Theorem applied to the ample sheaf M (!) and the
non-degenerate sheaf M, the index i(M) is equal to the number of positive roots of
the polynomial defined by z — x(M? ® M) = x(M*+1) Riemape-Roch (z 4+ 1)"x(M).
The roots of this polynomial are all at —1 < 0, so the index is zero.

2. — 1.: see [Mu, p. 60, application 1]. O

A.2.7 Principally polarized abelian surfaces

The following proposition is due to A.Weil. Because Weil uses in his proof his own
language which is out of fashion today, we include a proof.
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Proposition A.27 (A.Weil) [We-T, Satz 2] Let A be an abelian surface over
an algebraically closed field k. Let L be an ample sheaf on A which defines a
principal polarization. Then L is defined by an effective divisor D which is unique
up to translation.

Either D is a non-singular geometrically irreducible proper curve of genus 2,
and if 1 : D — A is the inclusion, t* : A — J(D) is an isomorphism.

Or A is isomorphic to the product E X, E' of elliptic curves, and via this
isomorphism, D has the form E X a+a' X a' where a,a’ are two points on E, E’
respectively.

Before we come to the proof of this proposition, we show how the arithmetic
genus of a curve on an abelian surface A can be calculated from the Euler-
characteristic of the sheaf it defines on A.

Let D be a (not necessarily irreducible) curve on A. Then we have the exact
sequence
0— L(-D) — L(A) — Op — 0.

Here, we make the usual identification of Op with ¢,(Op) where ¢ : D — A is
the inclusion. [Ha, Remark 2.10.1] This identification is justified by the fact that
H(D,0p) = H(A,1,0p). [Ha, ITI,Lemma 2.10]

By the additivity of the Euler-characteristic we get
x(£(=D)) + x(0p) = x(04) = 0.

Because of the Riemann-Roch Theorem, x(£(—D)) = 3(D,D) = x(£(D)) and
thus

x(Op) = —x(L(D)).
In particular, if D is connected, H'(D,Op) = x(L(D)) + 1.

proof of the proposition Let D be an effective divisor defining L, unique up to
translation on A. Let D = 22:1 n;D;, where n; > 1 and D;, i = 1,...,] are
irreducible proper curves. Then by the Riemann-Roch Theorem

2=(D,D)=> nin;(Di,D;).
(]

We claim that there are only two cases:

I =1,n1 =1, (D1,D;1) =2, and D; is a non-singular geometrically irreducible
proper curves of genus 2

l=2,n1 =mny=1, (D1,D1) =0,(Dy,D3) =0,(Dy,Ds) =1, and Dy, Dy are
elliptic curves

Without loss of generality, we can assume that (Dq,D1) # 0 or (Dq, D) # 0.

Assume that (Dq, D7) # 0. Since again by the Riemann-Roch Theorem, the
self-intersection of any divisor on an abelian surface is divisible by 2, (D, D1) = 2,
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thus ny = 1 and (D, D;) = 0 for ¢ > 1. Now D is an ample divisor, and by the
criterion of Nakai-Moishezon [Ha, V,Theorem 1.10], £ = 1. By the remarks before
the proof of the proposition, the arithmetic genus of D is 2. The geometric genus
of the normalization of D is also 2, and so D itself is non-singular. For assume
that the genus of the normalization would be 0 or 1. It cannot be zero because
there exist no rational curves on abelian varieties, and it cannot be 1 because
then than the map from the normalization of D to A would be the inclusion of
an elliptic curve combined with a translation in A. In particular, D would be an
elliptic curve and its arithmetic genus would be 1, not 2.

Now assume that (D1, Ds) # 0. Then (D, Dy) = 1,n1 =ns =1 and D1 + D>
is ample. Now (Dy + D9, D;) = 0 for any ¢ > 2 and by the criterion of Nakai-
Moishezon, k = 2. By the remarks before the proof, the arithmetic genera of
Dy, D5 are 1. The geometric genera can again not be 0, so D1 and D5 are elliptic
curves.

In the case | = 2, D; and D, intersect in one point and A has the universal
property of the sum of D{ and Dy in the category of abelian varieties.

We come back to the case k = 1. We want to proof that t* : A — J(D) is
an isomorphism. Let P € D(k), f* : D — J(D) be the canonical immersion
defined by P +— 0. By a translation of A, we can assume that «(P) = 0 on A. By
the universal property of the Jacobian, there exists a morphism of : J(D) — A
with af o fF = .

We already know that o is an isogeny and claim that it is in fact an isomor-
phism. Then @& and also +* are isomorphisms.

fF induces a morphism ¢ : D x, D — J(D), given on .-valued points by
(Q,R) — P+ Q. This factors through D x7 D, the symmetric product. The
induced morphism D x¥ D —s J(D) is birational, thus the degree of ¢ is 2.

The composition af o ¢ is given by (Q,R) — 10 Q + 10 R. We claim that
the degree of a’ o ¢ is 2, thus the degree of o is 1.

The divisor D is algebraically equivalent to (—id4)~'(D) (see [Mu, par. 8,
p.75, (iv)]), and this divisor is algebraically equivalent to (—id4) (D) + T for all
T € A(k).

Thus the equation (D,D) = 2 implies (D, (—ids)~"(D) + T) = 2 for any
T € A(k). There exists an open subset U C A such that for T € U(k), D and
(—id4)~'(D) + T intersect transversely. Thus for T' € U(k), there exist exactly 2

points (P, Q) € (D xy D)(k) with ¢ o (P,Q) =toP+10Q ="T.
Since U is dense in A, the degree of the morphism ¢: D X, D — Ais 2. O

Remark Let the conditions be as in the proposition but let £ be an arbitrary
field. Then again L is defined by an effective divisor D, unique up to translation.

Now, D is a geometrically reduced proper curve. There are two cases: Either
D is geometrically irreducible, non-singular and has genus 2 or it is geometrically
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the pointed union of two elliptic curves. In the first case, A is again isomorphic
to J(D) (over k).

A.3 Some results about schemes and varieties

In this section we present some results from various sources as well as some other
rather technical results.

A.3.1 Regular function fields and geometrically irreducible
varieties

Definition Let K|k be an algebraic extension, let L|k be any extension. Then
K and L are linearly disjoint over k iff K ®;, L is a field.

Assume that this is the case and let K and L be included in some common
overfield. Then the compositum KL of K and L in this overfield together with
the inclusions K — KL and L — KL is (canonically isomorphic to) the tensor
product of K and L over k, K Q; L ~ K L.

Again let K and L be included in some common overfield and assume that
K|k is Galois. Then K and L are linearly disjoint iff K N L = k; see [La, VII, par.
3,4]. ©

An function field L|k is called regular over k, if L and k are linearly disjoint
over k. An extension L|k(x) is called regular iff L|k is regular or — what is the
same — if L and k(z) are linearly disjoint over k(z).

Let K|k be an algebraic field extension. A regular extension L'|K(z) is said to
be defined over k, if there exists a subextension L|k(z) of L'|k(z) which is linearly
disjoint from K (z)|k(z) with LK = L'. (This implies that L|k(z) is regular.)

A regular extension L'|K(z) is said to be defined over k with its Galois group,
if there exists such a subextension L|k(z) which is Galois.

All the above statements can easily be translated into statements about vari-
eties. For example, Let X’ be an irreducible k-variety. Then X is geometrically
integral iff the function field k(X)|k is regular.

Lemma A.28 Let X be a connected k-scheme with a k-rational point. Then X
is geometrically connected. If additionally X is smooth (and thus irreducible) it is
geometrically irreducible.

Proof We have to show that X ®j k%P is irreducible.

Let K|k be some finite Galois extension with Galois group G. Then so is
X ®r K — X. (Galois is stable under base extension.) So (X ®; K)/G ~ X.

SCaution! The notation KL does not mean that K and L are necessarily linearly disjoint.
It can also just be the compositum in a common overfield. We write KL ~ K ®;, L if K and L
are linearly disjoint.
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This means in particular that the underlying topological space of X is the quotient
of the underlying topological space of X ®; K by G. Thus G operates transitively
on the components of X ®; K.

Let P : Speck — X be a k-rational point. By base change, P defines a K-
rational point of X ®; K which we also denote by P. Let X be the component
of the image of P in X ®; K.

Now assume that X ®; K has more than one component.

Let 7 € G°PP such that 7 moves Xy to another component. Then the image
of 7P is not in Xy, and so is the image of 7 0 P = 7P7~ !, a contradiction, since
also P = 7(P).

Since K|k was arbitrary finite Galois, X ®; k°°P is connected.

If X is smooth, so is X ®; k%P, and thus is is connected. O

A.3.2 Pull-back of effective divisors

Let k be a field and let X be a non-singular connected (irreducible) k-variety.
Then the group of Weil-divisors and Cartier-divisors on X are isomorphic. [Ha,
Proposition 6.11.] Under this isomorphism, effective Weil-divisors correspond to
effective Cartier-divisors, and they correspond to closed subschemes of X of pure
codimension 1.

We will now discuss the last isomorphism in greater detail.

Let D be a closed subscheme of pure codimension 1. Then there exists an
open covering U; of X such that on every U;, D is defined by a single element
fi € T(U;, 0p;,). Let 0 denote the k-rational point of A} corresponding to k[z] —
k, © + 0. Then f; defines a morphism U; — A} and D|y, = fi_l(O). " Now

the covering (U;); and the (f;); define the corresponding Cartier-divisor which we
denote by D¢.

Now let Y be another non-singular connected k-variety and let a : Y — X be
a morphism. Then a '(D)|,-1 1,y = a ' f71(0) = (fia)~'(0). (The last equality
is equivalent to a_l(Ui) X, (UZ XAllc 0) = a_l(Ui) XAllc 0)

Assume that a(Y) € D as sets. (Since we assumed that Y is irreducible this
is equivalent to that the inverse image of D in Y is not the whole space.) This
condition is especially fulfilled if ¢ is an immersion and the support of D (i.e. the
corresponding reduced subscheme) does not contain Y or if a is surjective.

Then f;a # 0 and o~ ' (D) is again a subscheme of pure codimension 1, and the
corresponding Cartier-divisor is defined by the open covering a~!(U;) of Y and the
set (f;a);. This divisor is usually denoted by a*(D?). Thus (D) = a* (D).

The groups of Weil-divisor classes, Cartier divisor classes and classes invertible
sheaves are also naturally isomorphic.

"Recall that for a closed immersion of schemes ¢ : X < Y, and some morphism a : Z — Y,
by a~'(X) we always mean the scheme-theoretic preimage, i.e. a ' (X) := X xy Z where the
product is taken relative to ¢ and a.
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Furthermore, again under the condition a(Y) ¢ D, we have a*(L(D%)) ~
L(a*(DY)). Thus

Lemma A.29 Let X, Y be nonsingular connected varieties, a : Y —» X a mor-
phism. Let D be a subscheme on X, purely of codimension 1, let D€ be the
associated Cartier divisor. Assume that the support of D does not contain the set
a(Y).

Then a='(D)¢ = a*(D®) and a*(L(DY)) ~ L(a"1(D)®).

Remark If X is an abelian variety and ¥ — X is a closed immersion, then
the condition of the proposition can always be fulfilled by translating D.

A.3.3 Galois-operation and descent

Let X and Y be schemes and let 7 : X — Y be a Galois covering with Galois
group G. For any quasi-coherent Ox-sheaf L and o € G, choose a pull-back via
o:Y — X. As usual, denote this sheaf by o*(L).

Now let £ be a quasi-coherent O x-module on X.

For any 0,7 € G and any morphism a : L — 77'"(L), denote by 7(a) the
composition ¢ (L) — o (77 (L)) ~ (o7) (L), where the first morphism
is defined by base-change.

Then a 1-cocycle datum of L is a map G € 7 — a,, where a, is an Ox-
morphism £ — (071)*(L) such that for all 0,7 € G, ayr = o(a;) 0 a, : L —
(07) (L)

A quasi-coherent O x-module £ on X with a 1-cocycle datum is called a quasi-
coherent G-sheaf.

Proposition A.30 The functor F — 7*(F) is an equivalence of categories of
quasi-coherent Oy -modules and that of quasi-coherent G-sheaves on X. Coherent
sheaves correspond to coherent sheaves and locally free sheaves correspond to locally
free sheaves of the same rank.

Proof This is a special case of the “faithfully flat descent” of Ox-modules; see
[BLR, par. 6.1]. O

Caution! The proposition would be wrong if one would call an Oy-module a
G-sheaf if its class is invariant under pull-back by elements of G. Note however
that the following proposition is a special case of formula (1.16):

Proposition A.31 Let K|k be a Galois field extension. Let'Y be a projective k-
variety with a k-rational point. Let L be an invertible free sheaf on Y ® K, such
that for every o € Gal(K|k), 0*(L) =~ L. Then L is isomorphic to the inverse
image of a sheaf on'Y .
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Remark A 1-cocycle-datum on a Ox-sheaf can be interpreted as follows:

By definition, (0=)*(L) = (071) 7 (L) @, 1)-1(6) Ox- Now, (071) 7 (0x) is
canonically isomorphic to o,(Oy), and the same is true for £. Thus (¢~ 1)" (L) ~
0+(L) ®¢, (0x) Ox, where 0,(Ox) — Ox is given by o#~". This means that £ is
canonically isomorphic to o,(£) regarded as Ox module via 0% : Ox — 7.(Ox).
Under this identification, the O y-morphism a, : L — o 1*(L) corresponds to
a morphism a, : L — 0, (L) with a,(A\z) = 0% (N)as(z) for X\ € Ox(U), = €
L(U), U open in X.

Now, m.(L) = m0.(L) and a, becomes an automorphism of m, (L), which
we denote by ¢#. This morphism satisfies 0% (\z) = o#(\)o# (), where A €
T(0y)(U), = € m(L)(U), U open in Y. We thus have a G-operation on (L)
which “covers” the G-operation on 7,(Ox). Taking invariants, we get a presheaf
7,(L)% which is in fact a sheaf because 0% () = « is a local property.

If M is a Ox-sheaf on X, (m,(7*(M)))¥ ~ M. If L is a Oy-sheaf on Y
with a 1-cocycle datum, and M is a Ox-sheaf on X such that 7*(M) ~ L such

that under the isomorphic the cocycle-data of the two sheaves agree, then M ~
(e (m* (M) = 1, (L), Thus L = 7*(M) ~ m*(m (L) %).

A.3.4 Schemes over finite fields

Definitions Let ¢ be the power of a prime number p, k the finite field with
g elements, K|k an algebraic extension of fields. We identify the Galois group
Gal(K|k) with its dual and denote its elements with usual letters. The Frobenius
automorphism of K|k is denoted by o.

There exist two (or even three) different concepts of Frobenius morphisms for
K-schemes. We want to distinguish between them carefully.
Let X' be a K-scheme.

The k-automorphism o of K induces an automorphism of Spec(K) which
we again denote by 0. We call the automorphism o : a,f_l(X’) — X' the
arithmetic Frobenius isomorphism.

Let FkK be the automorphism of X’ which is defined as follows: FkK is the
identity on the underlying topological space and it is given by f +— f? on Ox.

By definition, we have a commutative diagram

K
Fk

X' X'

.

o

Spec(K) —> Spec(K).

In particular, if the extension K|k is non-trivial, F} is not a Spec(K)-morphism.

Now define the geometric Frobenius morphism by 7y := 0571 o FkK X —

a,é(_l(X’) — this is a K-morphism.
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Let X' be affine and of finite type, K[z1,...,2n]/(f1,...,fi) a presentation
of the coordinate ring of X’. Then the coordinate ring of o '(X’) is given by

Klzy,... ,wm]/(a,f#(fl), e ,a,f#(fl)), and 7y is given by the identity on K and
z; — z!. For a general K-scheme X' of finite type, m is defined like this locally.

The definition of 7 behaves well with respect to base-change: If L|K is
some algebraic field extension, then (05_1 o F) ®k id;, = oL o FL: X' —
oK N X @Kk L~ ol (X' @k L).

Note In [Ha], the morphism FJ is called “Frobenius morphism” and the geo-
metric Frobenius morphism 7y, is called “K-linear Frobenius morphism”; see [Ha,
IV, 2, p. 301].

In [Mi-A], the “Frobenius morphism” is only defined for the case that k = K,
and under this assumption, a,ﬁ( is trivial and FkK and 7 agree; see [Mi-A, par.
20].

In [Mu], the “Frobenius morphism” is first defined for £ = K and then gen-
eralized to k-schemes which are defined over k. Again it equals the geometric
Frobenius morphism 7.

From now on, we restrict ourselves to the case K = k. We write o, for the
arithmetic Frobenius automorphism a’,z and denote F,f by Fj.

Let P be a k-valued point of X’. Then Fj, 0o P oa/,;1 = P. In fact, the left-hand
side is also a k-valued point of X’ and its image coincides with the one of P.

The equation Fj, o P = P o o}, implies wkoP:olgl oFkoP:alzloPoak =
o '(P) = P%*.

Lemma A.32 Let X' be a k-scheme. Then for all k-valued points P of X',
mro P =0, '(P)=P% € o, ' (X").
If X' is an irreducible variety, the field extension k(op(X'))|k(X') is purely
inseparable. If X' is an abelian variety, then . is an isogeny of p-power degree

whose kernel is connected (local in the language of [Mu]).

a

Lemma A.33 Let V' and W' be k-varieties, A\ : V! — W' a k-morphism. Then
ANk =me A VI — o (W),

Proof We only have to show this for k-rational points. Let P € V'(k). Then

A*omoP =A% oP% =(\oP)’* =mpo0loP.

This implies:
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Lemma A.34 Let VW be k-varieties, X : Vi — Wy a morphism. Then X is
defined over k iff mp A = A mp.

|

Using Lemma A.8, we also get

Lemma A.35 Let A' be an abelian k-variety, A € End%(A’). Then A7+ =
Tinle End%(ak_l(A’)).

a

Remark A consequence of Lemma A.32 is that for an abelian k-variety A, the
operation of the two Frobenius morphisms 73, and o, on the Tate-module (for some
prime /) are equal (where oy operates by (...)7%). Because of this, we speak of the
operation of the Frobenius on the Tate-module and the characteristic polynomial
of this operation.
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