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ZusammenfassungF�ur eine feste endli
he, separable K�orpererweiterung Kjk kann manjeder quasi-projektiven K-Variet�at auf funktorielle Weise eine quasi-projektive k-Variet�at h�oherer Dimension, die sogenannte Weil-Restrik-tion, zuordnen.Diese Arbeit ist dem Studium vers
hiedener Aspekte dieser Variet�atengewidmet. Der S
hwerpunkt liegt zuerst auf Resultaten rein theoreti-s
her Natur. Sp�ater werden diese Resultate angewandt, um potentielleAngri�e auf das diskrete Logarithmus-Problem in Klassengruppen vonKurven �uber endli
hen Ni
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Foreword
For a �xed �nite, separable extension of �elds Kjk, one 
an atta
h in afun
torial way to every quasi-proje
tiveK-variety a higher-dimensionalquasi-proje
tive k-variety, the so-
alled Weil-restri
tion.This work is devoted to the study of various aspe
ts of these varieties.At �rst, the emphasis is on purely theoreti
al results. Later these re-sults are applied to outline potential atta
ks on the dis
rete-logarithmproblem in 
lass groups of 
urves over �nite non-prime �elds.

Histori
al ba
kground and motivationLet Kjk be a �nite Galois extension of �elds, X 0 a quasi-proje
tive K-variety. 1Then there exists a quasi-proje
tive k-variety W whi
h has in parti
ular theproperties that X 0(K) ' W (k) and WK = W 
k K is a produ
t of Galois-
onjugates of X 0. Within the framework of arithmeti
 algebrai
 geometry, W isde�ned by the property that for all k-s
hemes Z, there exists a fun
torial bije
tionW (Z) �= X 0(Z 
k K).To prove the existen
e of W one 
an for example de�ne a 
ertain 1-
o
y
ledatum for a produ
t of Galois-
onjugates of X 0 and then apply \des
ent" as inA.Weil's paper \The �eld of de�nition of a variety"; see [We-F℄. Although Weildoes not state it expli
itly, his paper even 
ontains a 
onstru
tion of W as asubvariety of some 
on
rete proje
tive spa
e; see proof of [We-F, Proposition 1℄.In honor of him,W is often 
alled theWeil-restri
tion of X 0 (with respe
t to Kjk).(Here, the word \restri
tion" refers to the fa
t that the base-�eld is \restri
ted"from K to k.) We follow this terminology.Weil-restri
tions of abelian varieties were studied to solve various problems ofarithmeti
 algebrai
 geometry and thus also number theory. Prominent examples1Throughout this work, if we are given an extension of �elds Kjk, we will denote varietiesover k by X;Y , et
., and varieties over K by X 0; Y 0, et
.iii



iv Forewordare Milne's proof that the 
onje
tures of Bir
h and Swinnerton-Dyer for abelianvarieties over the rationals imply the 
onje
tures for abelian varieties over allnumber �elds and Honda's theorem about the 
lassi�
ation of isogeny 
lasses ofabelian varieties over �nite �elds; see [Mi-AA℄ and [Ho℄ respe
tively.With the rise of arithmeti
 algebrai
 geometry, Weil-restri
tions were shownto exist in a mu
h a more general 
ontext. A 
onstru
tion of the Weil-restri
tionin a very general setting 
an be found in the book \N�eron Models" by Bos
h,L�utkebohmert and Raynaud; see [BLR, 7.6℄.After Weil-restri
tions where su

essfully studied to solve problems of \puremathemati
s" for de
ades, a new dire
tion of resear
h was shown by Frey in a talkin 1998; see [Fr℄. He suggested to use Weil-restri
tions of ellipti
 
urves both as atool to 
onstru
t as well as to break dis
rete-logarithm problems.The general idea for the use of Weil-restri
tions as a means to 
onstru
t atta
kson the dis
rete-logarithm problem in the group of rational points of an ellipti

urve over a �nite non-prime �eld is that as an abelian variety of dimension greaterthan 1, a Weil-restri
tion has \more stru
ture" than the original ellipti
 
urve.In parti
ular, Frey noted that for a �xed ellipti
 
urve and a �xed 
onstant�eld extension, it should be possible to transform the DL-problem in the group ofrational points into DL-problems in 
lass groups of 
urves on the Weil-restri
tion.Thus it should in prin
iple be possible to transform the original DL-problem intoDL-problems in 
lass-groups of 
urves of higher genera over a smaller �eld. If one�nds a suitable 
urve on the Weil-restri
tion whose genus is not too high, it shouldbe more eÆ
ient to solve the DL-problem in this 
urve than in the original ellipti

urve. This is suggested by the results of Gaudry and Enge; see [En℄, [EG℄, [Gau℄.As dis
rete-logarithm problems are one of the bases of publi
-key 
ryptography(another one being the fa
torization problem), this shows that Weil-restri
tion maybe relevant from an applied point of view as well.The �rst results in this dire
tion were obtained by Galbraith and Smart, andthe �rst major paper in this new dire
tion was written by Gaudry, Hess and Smart;see [GHS℄.Introdu
tionIn this work we study Weil-restri
tions of varieties both from a pure as well as froman applied point of view. In parti
ular, we show how questions on Weil-restri
tionsof abelian varieties motivated by the 
ryptoanalyti
al appli
ations outlined above
an often be proven dire
tly from the de�ning fun
torial properties.Conversely, the problem of �nding 
urves of low genus on Weil-restri
tionsof a (non-singular, proje
tive, geometri
ally integral) 
urve X 0 is by the de�ningfun
torial property equivalent to �nding 
ertain 
overings of X 0. Most of the timeit is probably easier to �nd these 
overings of X 0 (where one 
an use Galois theory)



Introdu
tion vthan to �nd 
urves on the Weil-restri
tion using hyperplane-se
tions.Thus when trying to transform the DL-problem in the 
lass group of 
urveX 0 over a non-prime �nite �eld into a potentially easier DL-problem in a 
lassgroup of a 
urve de�ned over a smaller �eld, we emphasis on a Galois-theoreti
approa
h. We would like to regard the Weil-restri
tion as being only a tool provid-ing the ne
essary ba
kground to motivate that we indeed transform the originalDL-problem into an equivalent problem.The work 
onsists of three 
hapters and an appendix. Ea
h 
hapter has its ownintrodu
tion. The main results are mostly stated in or around a \theorem". 2Whenever stating a theorem, we have tried to in
lude all ne
essary 
onditions tounderstand the 
ontext properly.In the 
hapter one, we �rst give basi
 de�nitions related to Weil-restri
tions ofvarieties and s
hemes. After having given two 
onstru
tions of the Weil-restri
tionin rather abstra
t settings, we study its �rst properties. Then we restri
t ourselvesto a proje
tive variety X 0=K with a rational point and study the Weil-restri
tionof X 0 with respe
t to a Galois �eld extension Kjk. We analyze the Pi
ard fun
torof the Weil-restri
tion W and relate it to the restri
tion of the Pi
ard fun
torof X 0. In the third se
tion we �rst give an introdu
tion to Weil-restri
tions ofabelian varieties. Then we derive the stru
ture of the endomorphism ring of Weil-restri
tions of an abelian variety over �nite �elds.For the se
ond 
hapter, let Kjk be a Galois �eld extension of perfe
t �eldsand let A be an abelian k-variety, 3 W the Weil-restri
tion of AK with respe
t toKjk. In the �rst se
tion, we give a des
ription of Endk(W ) as a skew-group-ringover EndK(AK). We then restri
t ourselves to the 
ase that A is an ellipti
 
urveE. Then W is isogenous to the produ
t of E and an abelian variety N 
alled itstra
e-zero-hypersurfa
e. We study the N�eron-Severi group of N and in parti
ularthe polarizations of N . As a �rst step towards the determination of the N�eron-Severi group of N we in
lude a study of the N�eron-Severi group of a produ
t ofellipti
 
urves. In the last se
tion of this 
hapter, we study an aÆne open part ofN with expli
it equations for the parti
ular 
ase that the extension degree [K : k℄equals 3.The third 
hapter is entirely devoted to 
ryptoanalyti
al appli
ations. Let kbe a �nite �eld, Kjk a �eld extension of prime degree n. Let X 0 be a non-singular,geometri
ally irredu
ible 
urve over K. Assume that X 0 has \
ryptographi
allygood" properties. In parti
ular, the group Cl0(X 0) of 
lasses of divisors of degree0 should have a large prime fa
tor. Let C be a non-singular, geometri
ally irre-du
ible 
urve over k with a 
overing C
kK �! X 0. Using this 
overing, we have2A Less important result is 
alled \proposition", a smaller or more te
hni
al result is 
alled\lemma". The reader should keep in mind however that when we 
ite a result and 
all it \propo-sition" or \lemma" it may in fa
t be a theorem deeper and more important than the \theorems"in this work.3In our terminology, AK is an old abelian variety. Thus the title of the 
hapter.



vi Forewordan expli
it morphism from Cl0(X 0) to Cl0(C). The hope is that if the genus of Cis not \too large", perhaps the dis
rete-logarithm problem in the group Cl0(C) is\easier" than the dis
rete-logarithm problem in the original group Cl0(X 0). Apply-ing results of the previous two 
hapters, we will give theoreti
al results predi
tingwhen the large prime fa
tor to be preserved under the morphism to Cl0(C). Thenwe use Galois theory to 
onstru
t rather expli
itly some examples.A
knowledgmentsFirst and foremost, I thank my supervisor, Prof. Dr. Dr. h.
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Notations vii� Morphism (3.1) is due to F. Hess; see [GHS℄.� The example in Subse
tion 3.2.2 is due to S.Galbraith, F.Hess and N. Smartfor 
hara
teristi
 2; see [GHS℄.� The idea to use Lemma 3.11 in the proof of Proposition 3.12 was pointedout to the author by H. Sti
htenoth.
NotationsIsomorphismsWe use three di�erent signs to denote isomorphisms: If we merely want to indi
atethat two obje
ts X and Y are isomorphi
 with some isomorphism we write X � Y .Most of the time, the isomorphism will be in a 
ertain (obvious) sense \
anoni
al".If this is the 
ase, we write X ' Y . If we want to stress that an isomorphism isin a 
ertain sense fun
torial, we write \�=". { Thus if we are given two 
ategoriesC;D, two fun
tors F;G : C �! D, an isomorphism of fun
tors F � G and X aC-obje
t, we write F(X) �= G(X).Let C be a 
ategory, Ens the 
ategory of sets, F : C �! Ens a 
ontravariantfun
tor. Let F be a C-obje
t, u 2 F(F). Then by' : Hom(�;F) �! F; '(�) := F(�)(u)a natural transformation is de�ned. Re
all that if ' is an isomorphism, one saysthat F with the universal element u represents F.Now assume that we know that F is representable. Then the representingobje
t F with u is unique up to a unique isomorphism. 4 We think of F and u asbeing �xed. Thus, if F0 with u0 is some obje
t representing F, we write F ' F0.Rings and S
hemesAll rings and s
hemes 
onsidered in this work are assumed to be 
ontained in some�xed universe.If k is a �eld, we �x an algebrai
 
losure and denote it by k. The separable
losure of k inside k will be denoted by ksep.All s
hemes will assumed to be lo
ally Noetherian, i.e. we will work entirelyin the 
ategory of lo
ally Noetherian s
hemes whi
h are 
ontained in some �xeduniverse.Fix some s
heme S and let X be an S-s
heme. Then for any S-s
heme T ,we 
all the S-morphisms from T to X T -valued points of X. Let Y be another4One speaks of \the" representing obje
t. Note however that if one speaks of \the" or \a"representing obje
t one always means an obje
t with a �xed universal element.



viii ForewordS-s
heme. Any S-morphism X �! Y indu
es by \push-forward" a fun
torialmorphism (in T ) from the T -valued points of X to the T -valued points of Y .Conversely, any su
h fun
torial morphism determines an S-morphism from X toY . 5 We will often use this fa
t to 
onstru
t morphisms from X to Y . When wedo so we speak of :-valued points for T -valued points for some T .If X and Y are S-s
hemes, then the T -valued points of produ
t X �S Y willbe be denoted by (P;Q), where P 2 X(T ), Q 2 Y (Q) (analogous notation forprodu
ts 
onsisting of more fa
tors).If X and Z are S-s
hemes, we denote the produ
t X �S Z also by XZ . If weuse this notation, we think of X as being �xed and Z as being variable.In the 
ontext of s
hemes, all rings will automati
ally assumed to be 
om-mutative. Let A be a (
ommutative) ring. Let X be an A-s
heme, by whi
hwe mean a s
heme over Spe
(A). Let B be an A-algebra. Then we denoteSpe
(X) �Spe
(A) Spe
(B) by X 
A B or simply by XB .Let � : X ,! Y be a 
losed immersion, � : Z �! Y some morphism. Then by��1(X) we always mean the s
heme-theoreti
 preimage, i.e. ��1(X) := X �Y Zwhere the produ
t is taken relative to � and �. If � is also a 
losed immersion, wedenote X �Y Z also by X \ Z.Following [Ha, II,4,p.103℄, a quasi-proje
tive morphismX �! Y is a morphismwhi
h fa
tors into an open immersion followed by a proje
tive morphism. Likewise,an immersion is a morphism whi
h fa
tors into an open immersion followed by a
losed immersion.Let k be a �eld. A k-variety X is a separated and redu
ed s
heme of �nitetype over k. Note that we do not assume X to be irredu
ible or geometri
allyredu
ed. Similarly, a k-
urve is a separated and redu
ed s
heme of �nite type overk whi
h is equidimensional and of dimension 1.IfX is an irredu
ibleK-variety, we denote its fun
tion �eld by k(X). Note thatX is geometri
ally integral (i.e. geometri
ally redu
ed, geometri
ally irredu
ible)i� k(X)jk is regular.Galois 
overingsLet h : S0 �! S be a Galois 
overing of s
hemes with Galois group G (in thesense of [SGA I, V℄). This means by de�nition (in parti
ular) that there is a �xedinje
tive anti-homomorphism G ,! AutS(S0).This anti-homomorphism indu
es a homomorphism Gopp ,! AutS(S0). Weidentify Gopp with its image.We denote the elements of G by bold letters. The 
orresponding operatorsof h are usually denoted by the same symbol in \usual" letters, i.e. we have aninje
tive anti-homomorphism � 7! �.5This is a trivial fa
t from 
ategory theory: For any 
ategory C, the fun
tor X 7! Hom(�; X)is a full and faithful. A less trivial fa
t is that it suÆ
es to de�ne a morphism of s
hemes onring-valued points.



Notations ixIf G is 
ommutative, we identify G with Gopp and denote the elements of Galso by \usual" letters.Now let S0 = Spe
(K) and S = Spe
(k) be spe
tra of �elds. Then h isdetermined by the �eld homomorphism h# : k ,! K.The extension Kjk given by h# is �nite and Galois with Galois group G, thegalois group of h. (In parti
ular, we denote the automorphisms of the extensionKjk also by bold letters.) The anti-homomorphism G �! AutS(S0) is given by� 7! � where � is given by � = �# 2 G = Aut(Kjk).The Pi
ard groupLet X be a s
heme. Sheaves on X are denoted by L;M, et
.The Pi
ard group is the group of isomorphism 
lasses of invertible sheaves onX, denoted Pi
(X). Its elements are denoted by L;M, et
.A morphism  : X �! Y indu
es a group-homomorphism  � : Pi
(Y ) �!Pi
(X).Let k be a �eld and let X be a non-singular, geometri
ally redu
ed, geomet-ri
ally irredu
ible, proje
tive k-variety with a k-rational point. Let Pi
(X) bethe Pi
ard fun
tor Z 7!Pi
(X �k Z)=p�ZPi
(Z), where pZ : X �k Z �! Z is theproje
tion. We denote the elements of Pi
(X)(Z) by L;M, et
. Under our as-sumptions on X, the Pi
ard-fun
tor is representable, and we denote a representingobje
t of Pi
(X) by Pi
(X) and the universal element by P. The Pi
ard-s
heme,Pi
0(X), is the 
onne
ted 
omponent of the zero of Pi
(X). We still denotethe universal element by P. Under the isomorphism Hom(�;Pi
(X)) ' Pi
(X),Hom(�;Pi
0(X)) 
orresponds to a fun
tor whi
h we denote by Pi
0(X).Let X, Y be k-varieties as above,  : X �! Y a morphism. Then the\pull-ba
k" Pi
(Y ) �! Pi
(X) indu
ed by  is denoted by  � and so is the
orresponding morphism between the Pi
ard s
hemes. 6Abelian varietiesLet k be a �eld. An abelian k-variety is a geometri
ally integral, proje
tive k-group-variety. The addition on A is denoted by \+".Let A be an abelian k-variety.If we speak of the endomorphism ring of A we mean the ring of endomorphismsof A over k, i.e. the endomorphisms of Ak de�ned over k. It is denoted by Endk(A).Likewise, the endomorphism algebra of A is the ring End0k(A) := End0k(A)
ZQ .If we say that two abelian k-varieties are isogenous or isomorphi
, we meanisogenous or isomorphi
 as abelian k-varieties. We denote isogeny by �.The same applies also to 
omplex multipli
ation: By saying that an ellipti
k-
urve has 
omplex multipli
ation, we mean that Ek has 
omplex multipli
ation6A brief expos�e of the Pi
ard fun
tor and the Pi
ard s
heme 
an be found in subse
tion 1.2.2.



x Forewordand the 
omplex multipli
ation is de�ned over k.Let Z be some k-s
heme, P a Z-valued point of A. Then the translation byP is the morphism TP = idAZ + P Æ pZ : AZ �! AZ , where pZ : AZ �! Z is theproje
tion.A dual abelian variety is denoted by bA, the universal divisional 
orresponden
eby P. By de�nition, Pi
0(A)(Z) �= bA(Z) where Z is a k-s
heme.If � : A �! B is a morphism, the dual morphism is denoted by b�. With otherwords, b� : bB �! bA is just another notation for �� : Pi
0(B) �! Pi
0(A).Let M be an invertible sheaf on A. Then �M : A �! bA is the morphismasso
iated to the natural transformation Homk(�; A) �! Pi
0(A) with is givenon Z-valued points by P 7! T �P p�Z(M) 
 q�Z(M)�1, where qZ : AZ �! A is theproje
tion.Following [Mi-A℄, a polarization of A is a morphism ' from A to its dual bAsu
h that '
k idk = �M : Ak �! bAk for some ample sheaf M on Ak.The group NS(A) := Pi
(A)=Pi
0(A) is 
alled N�eron-Severi group.For any natural number n, we denote the (s
heme-theoreti
) kernel of �n :A �! A by A[n℄.Let Kjk be a �nite �eld extension, A0 an abelian K-variety. Then, if A0 isde�ned over k, i.e. if there exists an abelian k-variety A su
h that A0 � A
k K,we say that A is an old abelian variety (relative to Kjk). If A0 is not isogenous toan abelian variety de�ned over k or some proper intermediate �eld � of Kjk, thenwe 
all A0 a new abelian variety (relative to Kjk).Note that if the extension degree [K : k℄ is prime, every abelian K-variety iseither a new abelian variety or it is isogenous (not ne
essarily isomorphi
) to anold abelian variety.



Chapter 1Basi
 properties ofWeil-restri
tions
Introdu
tion and resultsLet k be a �eld, Kjk a �nite separable �eld extension and X 0=K a quasi-proje
tivevariety. The base-restri
tion of X 0 with respe
t to Kjk is the fun
tor ResKk (X 0)de�ned by ResKk (X 0)(Z) := X 0(Z 
k K) for any k-s
heme Z. It 
an be shownthat the fun
tor ResKk (X 0) is represented by a k-variety ResKk (X 0), the so-
alledWeil-restri
tion of X 0; see Proposition 1.4.In the �rst se
tion of this 
hapter we give two 
onstru
tions of the Weil-restri
tion in a more general situation and show basi
 properties of it.In the se
ond se
tion we \pull-ba
k" the invertible sheaves on X 0 to invertiblesheaves on the Weil-restri
tion. It follows in parti
ular that the Weil-restri
tionof a quasi-proje
tive variety with a �xed immersion into some proje
tive spa
eis in a 
anoni
al way immersed in some higher dimensional proje
tive spa
e; seeProposition 1.13.Let Kjk be a �nite Galois extension, let X 0 be a non-singular, proje
tive K-variety with a K-rational point. We show that under 
ertain 
onditions on X 0,the Weil-restri
tion of the Pi
ard s
heme of X 0 is an abelian variety whi
h is
anoni
ally isomorphi
 to the Pi
ard s
heme of the Weil-restri
tion of X 0. Thisis rather obvious for abelian varieties where the Pi
ard s
heme is nothing but thedual abelian variety; see Proposition 1.20. It is also true if 
har(k) = 0 or X 0Khas a \smooth, proper global lifting"; see Theorem 1, p. 25. (This assumptionis always ful�lled if X 0 is a 
urve.) The proof relies on the fa
t that the Pi
ards
heme of a produ
t of varieties over an algebrai
ally 
losed �eld is { under ourassumptions { redu
ed and isomorphi
 to the produ
t of the Pi
ard s
hemes ofthe fa
tors.In the third se
tion, we begin with the study of the Weil-restri
tion of abelianvarieties. Using the results of the previous se
tion, we show how the Weil-restri
tion of X 0 inherits the polarizations of X 0. In parti
ular, if X 0 is prin
ipally1



2 Chapter 1. Basi
 Properties of Weil-Restri
tionspolarized, so is the Weil-restri
tion.We then derive the stru
ture of the endomorphism algebra of the Weil-restri
-tion of an abelian variety with respe
t to an extension of �nite �elds (see Theorem2, p. 29) and show that for prime extension degree [K : k℄, the Weil-restri
tion ofan abelian K-variety whi
h is not isogenous to an abelian variety de�ned over kis simple (see Theorem 3, p. 31).The study of the Weil-restri
tion of abelian varieties will be 
ontinued in thenext 
hapter where we 
onsider the Weil-restri
tion of an abelian variety whi
h isde�ned over k. (Su
h abelian varieties will be 
alled old abelian varieties.)1.1 De�nition and 
onstru
tion ofWeil-restri
tionsIn this se
tion, we give the de�nition of \base-restri
tion" of a fun
tor. Thenwe show how to 
onstru
t the Weil-restri
tion of a quasi-proje
tive s
heme withrespe
t to a �nite and lo
ally free morphism via \restri
tion of s
alars". Here, wefollow [BLR, 7.6℄. In the 
ase that the base-morphism is �etale, we show how to
onstru
t the Weil-restri
tion via a \geometri
al approa
h". We then restri
t our-selves to the 
ase that the base-morphism is Galois and show how the \geometri

onstru
tion" is related to the 
onstru
tion via \restri
tion of s
alars". Finallywe show how the arithmeti
 operation of the Galois group indu
es a geometri
operation on the Weil-restri
tion.We start more abstra
tly with an abstra
t 
ategory instead of a sub
ategoryof the 
ategory of lo
ally Noetherian s
hemes. This abstra
t setting is in no waymore diÆ
ult.In order to de�ne base-restri
tion properly, we �rst de�ne the fun
tor \base-
hange". This is done in the �rst subse
tion.1.1.1 Base-extension and base-
hangeWe �x some universe U and denote the 
ategory of sets whi
h are 
ontained inthis universe by Ens.Let C be a 
ategory whose obje
ts are 
ontained in U.Let D be another 
ategory whose obje
ts are 
ontained in U. Then for somefun
tors F;G : C �! Ens, the natural transformations between F and G form aset. Thus the 
ovariant fun
tors from C to D form a 
ategory, denoted Hom(C;D).Analogously, the 
ontravariant fun
tors form a 
ategory, denoted Homopp(C;D).If X and Y are two obje
ts of C, we denote the set of morphisms between Xand Y by Hom(X;Y ). An S-obje
t is a morphism � : X �! S, and a morphismbetween S-obje
ts � : X �! S and � : Y �! S is a morphism ' : X �! Y su
hthat � Æ ' = �.



Definition and 
onstru
tion of Weil-restri
tions 3As usual, we write X for X �! S and HomS(X;Y ) for the set of morphismsof S-obje
ts X and Y . For any S 2 C let C=S be the 
ategory of S-obje
ts.De�nition Let F;G : C �! Ens be 
ontravariant fun
tors, � : F �! G a naturaltransformation, T some obje
t of C and t 2 G(T ). Then idT 7! t de�nes a naturaltransformation � : Hom(�; T ) �! G; 
 2 Hom(Z; T ) 7! G(
)(t) 2 G(Z).F�
��Hom(�; T ) �id 7!t // GNow let F�G T : C=T �! Ens be de�ned as follows:F�G T (Z) = F�G T (
) := ff 2 F(Z)j�Z(f) = �Z(
)g; 
 : Z �! T a T -obje
tand for a morphism f : Y �! Z of T -obje
ts byF�G T (f) := F(f)jF�GT (Y )Assume that in C �ber produ
ts exist, i.e. for all S 2 C, produ
ts exist in the
ategory C=S. Let F be represented by (F; u) with u 2 F(F), G by (G; v) withv 2 G(G). Let F �G T be the �ber produ
t of the morphism F �! G whi
his asso
iated to � : F �! G and the morphism T �! G whi
h is asso
iated to� : Hom(�; T ) �! G, let x : F�G T �! F; y : F�G T �! T be the stru
turalmorphisms. Then F �G T is represented by (F �G T;F(x)(u)), where we regardF�G T as a T -s
heme via y.De�nition Let F : C=S �! Ens be a 
ontravariant fun
tor. The base-extensionof F with respe
t to a morphism T �! S is the fun
tor F�ST = FT : C=T �! Ensde�ned by FT (Z) := F(Z); Z a T -obje
tand for a morphism f : Y �! Z of T -obje
ts byFT (f) := F(f) : F(Y ) �! F(Z)Note that this de�nition 
an be regarded as a spe
ial 
ase of the pre
eding de�ni-tion with C=S instead of C and with G the trivial fun
tor whi
h assigns to everyobje
t the set of one element.(�)T is a 
ovariant fun
tor from the 
ategory Homopp(C=S;Ens) to the 
ate-gory Homopp(C=T;Ens). The images of group-obje
ts are group-obje
ts.Again assume that in C �ber produ
ts exist. Let T �! S be a morphism andlet X be an S-obje
t. If Z is a T obje
t, then HomS(Z;X)T = HomS(Z;X) 'HomT (Z;X �S T ), i.e. HomS(�;X)T is represented by some produ
t X �S T(regarded as T -obje
t) with the stru
tural morphism X �S T �! X.



4 Chapter 1. Basi
 Properties of Weil-Restri
tionsSin
e by assumption the obje
ts of C form a set, we 
an apply the axiom of
hoi
e. For every X, we 
hoi
e produ
ts X �S T (together with the stru
turalmorphisms).Now let f : X �! Y be an S-morphism. Then we de�ne f �S T to be theunique morphism su
h that the diagramHom(�;X �S T )HomT (�;f�ST )
��

� // Hom(�;X)THomS(�;f)T
��Hom(�; Y �S T ) � // Hom(�; Y )Tis 
ommutative.We obtain the fun
tor base-
hange ��ST : C=S �! C=T , and by 
onstru
tion,we have a natural isomorphismHomT (�;X �S T ) �= HomS(�;X)T :By 
onsidering the image of idX�ST , we see that the diagramX �S T //f�ST

��

Xf
��Y �S T // Yis 
ommutative. Sin
e by de�nition f �S T is also a T -morphism,f �S T = f �S idT :1.1.2 Base-restri
tionLet C be again a 
ategory whose obje
ts are 
ontained in the universe U and inwhi
h �ber produ
ts exist. Let h : S0 �! S be a morphism in C. Let F0 : C=S0 �!Ens be a 
ontravariant fun
tor.De�nition The base-restri
tion of F0 with respe
t to h is the following 
on-travariant fun
tor ResS0S (F0) = Resh(F0) : C=S �! Ens:Resh(F0)(Z) := F0(Z �S S0); Z an S-obje
tand for a morphism f : Y �! Z of S-obje
ts byResh(X 0)(f) := F0(f �S idS0) : F0(Z �S S0) �! F0(Y �S S0):In parti
ular Resh(F0)(S) = F0(S0). Resh is a 
ovariant fun
tor from the 
ategoryHomopp(C=S0;Ens) to the 
ategory Homopp(C=S;Ens).The images of group-obje
ts are group-obje
ts and Resh restri
ts to a 
ovariantfun
tor from the 
ategory Homopp(C=S0;Ens) to the 
ategory Homopp(C=S;Ens).Note In [BLR℄ base-restri
tion is 
alled \dire
t image" and is denoted by h�F.



Definition and 
onstru
tion of Weil-restri
tions 5Let X 0 2 C=S0. Then X 0 indu
es the fun
tor HomS0(�;X 0) : C=S0 �! Ens.We denote Resh(HomS0(�;X 0)) by Resh(X 0) = ResS0S (X 0). So Resh(X 0)(Z) =HomS0(Z �S S0;X 0) = X 0(Z �S S0)With this de�nition, Resh is a 
ovariant fun
tor form the 
ategory C=S0 to the
ategory Homopp(C=S;Ens).\Base-extension" 
ommutes with \base-restri
tion":Lemma 1.1 Let T �! S be a morphism, T 0 := T �S S0. Then(ResS0S (F0))T �= ResT 0T (F0T 0):(Fun
torially in F0.)Proof Let Z be a T -s
heme. ThenResT 0T (F0T 0)(Z) Def= F0T 0(Z �T T 0) = F0(Z �T T 0) �=F0(Z �S S0) = ResS0S (F0)(Z) = (ResS0S (F0))T (Z):2Lemma 1.2 Let T �! S; T 0 := T �S S0. Let � : X 0 �! T 0. ThenResT 0T (X 0) = ResS0S (X 0)�ResS0S (T 0) T:Here the right-hand side is de�ned by Res(�) and id 2 ResS0S (T 0)(T ) (whi
h de�nesthe natural transformation HomS(�; T ) �! ResS0S (T 0)).Proof Let 
 : Z �! T 0 be some T 0-s
heme. ThenResT 0T (Z) = HomT 0(Z �T T 0;X 0) =f� 2 HomS0(Z �T T 0;X 0)j � Æ � = 
 �T T 0; i.e. ResS0S (�)(�) = 
 �T T 0g =ResS0S (X 0)�ResS0S (T 0) T (Z):2 Let F : C=S �! Ens be a fun
tor. Then the morphisms F(Z) �! F(Z�S S0) =FS0(Z �S S0) indu
e a natural transformationF �! ResS0S (FS0):This is natural in F. Thus we get a natural transformationid �! ResS0S ((:)S0);where id is the identity fun
tor on the 
ategory Homopp(C=S;Ens).
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 Properties of Weil-Restri
tionsLet X be an S-s
heme. Then by this 
onstru
tion we get a natural transforma-tion HomS(�;X) �! ResS0S (X �S S0):given by � 7! ��S idS0 . It is de�ned by mapping the identity on X to the identityon X �S S0, and it is natural in X.Lemma 1.3 If the morphism S0 �! S is faithful (i.e. if the fun
tor � � S0 :C=S �! C=S0 is faithful), then the natural transformation Hom(�;X) �!ResS0S (X �S S0) is inje
tive.21.1.3 Weil-restri
tions of s
hemesIn the following and in the rest of the paper we will use the above de�nitionsonly for the 
ategory S
h of lo
ally Noetherian s
hemes whi
h are 
ontained inthe �xed universe U.We will see that within this 
ategory for spe
ial h and quite general X 0, thebase-restri
tion Resh(X 0) is representable. We 
all a representing obje
t the Weil-restri
tion of X 0 with respe
t to h : S0 �! S and denote it by ResS0S (X 0).Idea of the 
onstru
tion by restri
tion of s
alarsAssume that S =Spe
(A), S0 =Spe
(B), where B = A�1 � � � � � A�n is a �niteand free n-dimensional A-module. Let X 0 =Spe
(B[X1; : : : ;Xm℄=(f1; : : : ; fl)) beaÆne and of �nite type. The 
oordinates Xi de�ne a 
losed immersion X 0 �!A mB = Spe
(B[X1; : : : ;Xm℄). We use this immersion to de�ne a s
heme W whi
hrepresents ResS0S (X 0), the Weil-restri
tion of X 0 with respe
t to S0 �! S. It 
anbe 
onstru
ted by \restri
tion of s
alars":Fix some A-algebra C. The idea is to express the m 
oordinates of someC 
A B-valued point P of A mA in the basis (�1; : : : ; �n) of the A-algebra B. Thisgives a point p in A nmA , and expanding out the \equations" fi in the new variablesgives equations fi;j; i = 1; : : : ; l; j = 1; : : : ; n. Now P satis�es the fi i� p satis�esthe fi;j. One then proves that the s
heme 
onstru
ted in this way has the 
orre
tproperty not only for every A-algebra C but for any S-s
heme Z.An exampleWe give a small example to present the idea:Let Kjk be a quadrati
 �eld extension with K = k(�) where �2 = a 2 k.Let V 0 be the aÆne variety in A 2K given by XY = 1. We are interested inthe C 
k K-valued points of this variety (for any k-algebra C). Let P be anarbitrary C 
k K-valued point of A 2K with 
oordinates X = X(P ), Y = Y (P ),



Definition and 
onstru
tion of Weil-restri
tions 7X = x1
k 1+x2
k�, Y = y1
k 1+y2
k�. (With xi; yi 2 k.) Then the de�ningequation XY = 1 be
omes(x1y1 + ax2y2 � 1)
k 1 + (x1y2 + x2y1)
k � = 0:This equation is satis�ed i� (x1; x2; y1; y2) satis�esx1y1 + ax2y2 = 1; x1y2 + x2y1 = 0Let W be the k-s
heme de�ned by these equations. From the 
onstru
tion,W (C) �= V 0(C 
k K) for all k-algebras C. From a general argument (whi
hwe will formalize below), it follows that one 
an generalize this fun
torial iso-morphism from aÆne k-s
hemes to arbitrary s
hemes. It follows that W is theWeil-restri
tion of X 0 with respe
t to Kjk.We will now formalize these ideas and prove that the variety W 
onstru
tedin this way has indeed the 
orre
t properties for any S-s
heme Z.Formal 
onstru
tionLet S =Spe
(A), S0 =Spe
(B) where the ring B is a free A module on the bases�1; : : : ; �n as above. Let also X 0 be as above. For ea
h i = 1; : : : ; l, let fi;j 2A[x1;1; : : : ; xm;n℄ be de�ned byfi;1�1 + � � � + fi;n�n = fi(x1;1�1 + � � � + x1;n�n; : : : ; xm;1�1 + � � � + xm;n�n)2 B[x1;1; : : : ; xm;n℄;where the right-hand side is the image of fi under the mapB[X1; : : : ;Xm℄ �! B[x1;1; : : : ; xm;n℄; Xi 7! xi;1�1 + � � � + xi;n�n:Let W :=Spe
(A[x1;1; : : : ; xn;m℄=(fi;j)i=1;:::;l; j=1;:::;l).Now, if C is any A-algebra, then C 
A B = C 
A �1 � � � � � C 
A �n, and itis immediate that a C 
A B-valued point of X 0 (i.e. a solution of fi; i = 1; : : : ; nin C 
A B) 
orresponds under \restri
tion of s
alars" to exa
tly one C-valuedpoint of W (i.e. to a solution of the fi;j; i = 1; : : : k; j = 1; : : : ; n in C). This
orresponden
e is fun
torial in C. Thus W (with the natural transformation\restri
tion of s
alars") represents ResS0S (X 0) in the 
ategory of aÆne s
hemes.Now let Z be an arbitrary S-s
heme and let Z�SS0 �! X 0 be an S0-morphism.Then any open aÆne part Za of Z indu
es a morphism Za�S S0 �! X 0 and thusa morphism Za �! W . If Zb is another open aÆne part of Z, then we also geta morphism Zb �! W and from the fun
toriality of the 
onstru
tion, it followsthat both morphisms agree on the interse
tion Za \ Zb (be
ause they agree onall open, aÆne subsets of the interse
tion). Thus by glueing we get a morphismZ �! W . This 
onstru
tion is again fun
torial in Z. Moreover, any morphismZ �! W determines again by fun
toriality and by glueing a unique morphismZ �! X 0. So, W is indeed a representing obje
t for the fun
tor ResS0S (X 0).
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 Properties of Weil-Restri
tions[The last step follows from fa
t that ResS0S (X 0) has the \sheaf property withrespe
t to the Zariski topology" i.e. one 
an glue morphisms (see [BLR, p.194℄)and the general fa
t that if an aÆne s
heme represents a fun
tor in the 
ategory ofaÆne s
hemes and the fun
tor has the sheaf property with respe
t to the Zariskitopology than the s
heme represents the fun
tor in the full 
ategory of s
hemes.℄With this 
onstru
tion, the Weil-restri
tion of an aÆne s
heme regarded as
losed subs
heme of m-dimensional aÆne spa
e is 
anoni
ally a 
losed subs
hemeof m � n-dimensional aÆne spa
e.Proposition 1.4 ([BLR, 7.6, Theorem 4℄) Let S; S0 be s
hemes, h : S0 �! Sa morphism whi
h is �nite and lo
ally free. Let X 0 be an S0-s
heme (lo
ally)of �nite type. Assume that for ea
h s 2 S and ea
h �nite set of points M �X 0 �S Spe
(�(s)) (where �(s) is the residue 
lass �eld at s), there is an aÆneopen subs
heme U 0 of X 0 
ontainingM . (E.g. X 0 is a quasi-proje
tive S0-s
heme.)Then the base-restri
tion is representable by an S-s
heme (lo
ally) of �nite type,i.e. the Weil-restri
tion of X 0 with respe
t to h exists and is (lo
ally) of �nitetype. 1proof (outline) We 
an assume that S and S0 are aÆne and that S0 �! S is �niteand free. For aÆne X 0, one 
an 
onstru
t the Weil-restri
tion by \restri
tion ofs
alars". For general X 0, one glues the representing obje
ts of the open aÆneparts of X 0 to get a s
heme W . This 
an be done sin
e the Weil restri
tion of anopen in
lusion is an open in
lusion. Then one 
onstru
ts a natural transformationHom(�;W ) �! ResS0S (X 0) using the fa
t that W has the \sheaf-property withrespe
t to the Zariski-topology". Now one uses the assumption to show that thisnatural transformation is a bije
tion. 2For the rest of this subse
tion, let S0 �! S be �nite and lo
ally free and let X 0be an S0-s
heme whi
h ful�lls the assumptions of the proposition.We denote an S-s
heme whi
h represents Resh(X 0) by ResS0S (X 0). We willoften abbreviate it by W . By de�nition as a representing obje
t of ResS0S (X 0),there is a universal morphism u = uX0 : ResS0S (X 0) �S S0 �! X 0 su
h that ifY is any S-s
heme and 
 : Y �S S0 �! X 0 is a morphism, there is a uniquemorphism b : Y �! W su
h that 
 = u Æ (b�S idS0) : Y �S S0 �! X 0. As usual,1In [BLR℄, the proposition is stated without the assumption \lo
ally of �nite type". That theWeil-restri
tion is lo
ally of �nite type if X 0 is follows easily from the 
onstru
tion. That theWeil-restri
tion is of �nite type if X 0 is, is a more diÆ
ult result. { It follows from [BLR, 7.6,Proposition 5 (e)℄ and our general assumption that all s
hemes 
onsidered be lo
ally Noetherian.Further properties of the Weil-restri
tion depending on properties of X 0 and the base-morphismS0 �! S are given in [BLR, 7.6, Proposition 5℄. In the subsequent parts of this work, we willrestri
t ourself to the 
ase that S is 
onne
ted, X 0 is quasi-proje
tive over S0 and the base-morphism is �etale. Under these assumptions, we will proof all properties of the Weil-restri
tionwe need.



Definition and 
onstru
tion of Weil-restri
tions 9(ResS0S (X 0); u) is unique up to unique isomorphism.Y �S S0 

**b�S idS0 //

��

ResS0S (X 0)�S S0 u //

��

X 0
Y 9! b // ResS0S (X 0)

(1.1)
If S; S0 and X 0 are aÆne (with notations as above) and ResS0S (X 0) is 
onstru
tedby \restri
tion of s
alars" as above, then u is given byB[X1; : : : ;Xm℄=(fi)i=1;:::;l �! B[x1;1; : : : ; xm;n℄=(fi;j)i=1;:::;l;j=1;:::;n;Xi 7! �1xi;1 + � � �+ �nxi;n: (1.2)Let Y 0 be another S0-s
heme whi
h ful�lls the assumptions of the proposition.As said above, every S0-morphism 
 : X 0 �! Y 0 indu
es a natural transforma-tion ResS0S (
) : ResS0S (X 0) �! ResS0S (Y 0) whi
h is given by \push-forward". Thisnatural transformation 
orresponds to a morphism ResS0S (
) : ResS0S (X 0) �!ResS0S (Y 0). By the universal property of ResS0S (Y 0), the morphism in the lowestline of the following 
ommutative diagram exists, is unique and equal to ResS0S (
).X 0 
 // Y 0ResS0S (X 0)�S S0

��

uX0 88pppppppppppp

// ResS0S (Y 0)�S S0
��

uY 0 88ppppppppppppResS0S (X 0) ResS0S (
)
// ResS0S (Y 0)

(1.3)
Let S = Spe
(A), S0 = Spe
(B) be aÆne, where B is a free A-module on thegenerators �1; : : : ; �n. Let X 0 = Spe
(B[X1; : : : ;Xm℄=(f1; : : : ; fl)), Y 0 = Spe
(B[Y1; : : : ; Y em℄=(g1; : : : ; gel)). Let 
 : X 0 �! Y 0 be given by Yi 7! hi(X1; : : : ;Xm).Then 
 uX0 is given by Yi 7! hi(�1x1;1 + � � �+ �nx1;n; : : : ; �1xm;1 + � � �+ �nxm;n).Let hi;j be de�ned by hi(�1x1;1 + � � � + �nx1;n; : : : ; �1xm;1 + � � � + �nxm;n) =hi;1�1 + : : :+ hi;n�n. Then ResS0S (
) is given by yi;j 7! hi;j .Let S be 
onne
ted. Let X be an S-s
heme and let X 0 := X �S S0. (Againassume that X 0 �! S0 ful�lls the assumptions of the proposition.) By assumption,the morphism S0 �! S is 
at and surje
tive, thus it is faithfully 
at. In parti
ular,it is faithful, i.e. the fun
tor � �S T is faithful. By Lemma 1.3 the naturaltransformation Hom(�;X) ,! ResS0S (X) is inje
tive. We get a morphism � :X �! ResS0S (X 0) whi
h is uniquely de�ned byidX0 = u Æ (��S idS0) (1.4)
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tionsand whi
h is inje
tive on .-valued points.Lemma 1.5 Let S be 
onne
ted and let X �! S be separated su
h that X �SS0 �! S0 ful�lls the assumptions of the proposition. Then � : X �! ResS0S (X �SS0) is a 
losed immersion.Proof Sin
e X �! S is separated, so is ResS0S (X 0) �! S0; see [BLR, 7.6, Propo-sition 5℄, under the assumption that X 0 is quasi-proje
tive over S0 and S0 �! Sis �etale, this follows also from the 
onstru
tion of W in the next subse
tion.Now (1.4) implies that ��S idS0 is a 
losed immersion:The morphism (of topologi
al spa
es) ��SidS0 is inje
tive. Sin
eResS0S (X 0) �!S0 is separated, the subset U 0 := fx 2 ResS0S (X 0)j (� �S idS0) Æ u(x) = xg ofResS0S (X 0) is 
losed. If C 0 is a 
losed subset ofX 0, then ��S idS0(C 0) = U 0\u�1(C 0),and sin
e U 0 is 
losed, this is also 
losed in ResS0S (X 0)�S S0. Thus ��S idS0 is aninje
tive, 
losed morphism of topologi
al spa
es.For all x0 2 X 0, (1.4) indu
es an isomorphism of lo
al ringsOX0;x0 u# // OX0;(��S idS0)(x0) (��S idS0) // OX0;x0 :Thus �# : OResS0S (X0)�SS0 �! ��(OX0) is surje
tive.This means that ��S idS0 is a 
losed immersion. Sin
e the morphism S0 �! Sis faithfully 
at, we obtain that � : X �! ResS0S (X 0) is a 
losed immersion; see[SGA I, VIII, Corollaire 5.5.℄. 21.1.4 The �etale 
aseNow let S be 
onne
ted and let S0 �! S be an �etale 
overing, i.e. a �nite, 
at andunrami�ed morphism; see [SGA I, I℄ for details. (For example, S0 and S 
ouldbe spe
tra of �elds, and S0 �! S 
ould be indu
ed by a �nite separable �eldextension.)Let X 0 be a quasi-proje
tive S0-s
heme. We will give an alternative 
onstru
-tion of the Weil-restri
tion in this 
ase. In this 
onstru
tion we will de�ne aT 0-s
heme W 0 for some Galois 
overing T 0 �! S and a Galois-operation on W 0.By [SGA I, V℄, the quotient s
heme of W 0 under the Galois-operation exists. Thisquotient s
heme will be the Weil-restri
tion.Note that under our assumption that all s
hemes 
onsidered be lo
ally Noethe-rian, \�nite and 
at" is equivalent to \�nite and lo
ally free"; see [Ha, III, Propo-sition 9.2. (e)℄. Thus we will 
onsider a spe
ial 
ase of the situation in Proposition1.4.Base-
hange by �etale 
overingsBefore we 
ome to the 
onstru
tion of the Weil-restri
tion via Galois-operation,we �rst �x some notation.



Definition and 
onstru
tion of Weil-restri
tions 11Let T 0 be an S-s
heme and let � : T 0 �! S0 be an �etale 
overing of S-s
hemes. 2Then let ��1(X 0) be the T 0-s
heme de�ned by the following Cartesian diagram 3��1(X 0) //

��

X 0
��T 0 � // S0: (1.5)

We denote the morphism ��1(X 0) �! X 0 in the �rst row of (1.5) by �.Let � : T 0 �! S0, � : T 0 �! T 0 be S-morphisms. Then (��)�1(X 0) and��1(��1(X 0)) are naturally isomorphi
 as S0-s
hemes. We denote the 
omposition(��)�1(X 0) ' ��1(��1(X 0)) ��! ��1(X 0) also by � .If � is an isomorphism, we denote (��1)�1(X) also by �(X).By base-
hange, an S0-morphism � : X 0 �! Y 0 indu
es an S0-morphism �� :��1(X 0) �! ��1(Y 0). If � is an isomorphism, then �� = ��1��. In this 
ase, wedenote ���1 also by �(�).With this de�nition, p� : ��1(X 0) �! S0 is the left hand side morphism in(1.5).Let S = Spe
(A), S0 = Spe
(B) and T 0 = Spe
(C) be aÆne. Let X 0 =Spe
(B[x1; : : : ; xm℄=(f1; : : : ; fl)) be aÆne and of �nite type. Then � : T 0 �! S0 isgiven by an A-morphism �# : B �! C.Let � : T 0 �! S0 be as above and extend the morphism �# : B �! Cto an \arithmeti
" A-morphism �# : B[x1; : : : ; xm℄ �! C[x1; : : : ; xm℄ given byB 3 b 7! �#(b); xi 7! xi. Then the diagramC[x1; : : : ; xm℄=(�#(f1); : : : ; �#(fl)) B[x1; : : : ; xm℄=(f1; : : : ; fl)�#ooCOO B�#oo

OO

is 
o-Cartesian and thus de�nes the underlying ring of ��1(X 0). If S; S0; T 0 or X 0are not aÆne, ��1(X 0) and the morphisms of diagram (1.5) 
an be de�ned likethis lo
ally.2The morphism � : T 0 �! S0 might also be a pro-�etale 
overing, i.e. a proje
tive limit of �etale
overings (provided T 0 is still lo
ally Noetherian). For example, S0 �! S might be de�ned by a�nite separable extension of �elds Kjk, and � : T 0 �! S0 might 
orrespond to an in
lusion of Kinto ksep.3The S0-s
heme ��1(X 0) with the morphisms as in the diagram is unique up to a uniqueS0-isomorphism. In the following we will assume that for all S-s
hemes S0 and T 0, S0-s
hemesX 0 and S-morphisms � : T 0 �! S0 we have 
hosen su
h a ��1(X 0).
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 Properties of Weil-Restri
tionsNote that in the 
ase that � : T 0 �! S0 is an isomorphism, the following diagramis Cartesian. X 0
��

X 0
��

S0��1��T 0 � // S0: (1.6)
Thus ��1(X 0) is (
anoni
ally isomorphi
 to) X 0 regarded as T 0-s
heme via thestru
ture morphism X 0 �! S0 ��1�! T 0.Constru
tionWe now 
onstru
t the Weil-restri
tion of X 0 with respe
t to S0 �! S via Galois-operation. If S0 �! S is itself Galois, the 
onstru
tion is relatively easy and willbe des
ribed in the next subse
tion. Here we 
ontinue with the general 
ase.We �rst need the following lemma whi
h is a generalization of the fa
t that forevery �nite separable �eld extension Kjk there exists a splitting �eld. This meansthat there exists a �nite Galois �eld extension Ljk, in
luded in k, su
h that theimage of all in
lusions of Kjk into k is 
ontained in L.Lemma 1.6 There exists a 
onne
ted Galois 
overing f : T 0 �! S su
h that:Fixing a geometri
 point P0 of S and a geometri
 point Q0 of T 0 over P0, everygeometri
 point P 0 of S0 over P0 de�nes by Q0 7! P 0 a unique morphism T 0 �! S0over S.Proof This follows from the 
onstru
tion of the �etale fundamental group �1(S; P0);see [SGA I, V,4,g)℄. [If S0 is 
onne
ted, in the terms of the �etale fundamentalgroup, S0 �! S 
orresponds to a 
onjuga
y 
lass in �1(S; P0) of subgroups of�nite index. T 0 
orresponds to the interse
tion of all subgroups in the 
onjuga
y
lass. This is a normal subgroup of �1(S; P0) of �nite index.℄ 2Fix su
h a T 0 with Galois group G. This means by de�nition that there is a�xed inje
tive anti-homomorphism G ,! AutS(T 0). [Sin
e T 0 is 
onne
ted, this isan isomorphism.℄ 4This anti-homomorphism indu
es a homomorphism Gopp ,! AutS(T 0), whereGopp is the opposite group of G (i.e. there is an anti-isomorphism G ��! Gopp).We identify Gopp with its image.We denote the elements of G by bold letters and the 
orresponding elementsof the opposite group Gopp by usual letters, i.e. we have an inje
tive anti-homo-morphism � 7! �.4In [SGA I, V℄, the Galois group operates from the right. Writing all homomorphisms fromthe left, we obtain an anti-homomorphism G ,! AutS(T 0).



Definition and 
onstru
tion of Weil-restri
tions 13Let W 0 := Y�:T�!S0 ��1(X 0): 5For future appli
ation, we �x the notation that p� : W 0 �! ��1(X 0) is theproje
tion to the \�-th" fa
tor.Now de�ne a Galois-operation of W 0 whi
h is 
ompatible with the operationof G on f : T 0 �! S as follows:For � 2 G, let e� : Q�:T 0�!S0 ��1(X 0) �! Q�:T 0�!S0 ��1(X 0) be de�ned on.-valued points by (P�)� 7! (� Æ P�� )�, i.e.p� Æ e� = � Æ p�� : (1.7)Lemma 1.7 The map Gopp �! AutS(W 0); � 7! e� is a group-homomorphism.Proof e�1 Æ (e�2 Æ (P�)�) = e�1 Æ (�2 Æ P��2)� =(�1�2 Æ P��1�2)� = g�1�2 Æ (P�)�2 Sin
e we assumed that X 0 is quasi-proje
tive, so isW 0 and the quotient s
hemeW := W 0=G under this operation exists; see [SGA I, V, Proposition 1.8℄. More-over, sin
e the operation is 
ompatible with the Galois-operation on f : T 0 �! S,the quotient s
heme is an S-s
heme with W �S T 0 'W 0.We now show that W is the Weil-restri
tion of X 0 with respe
t to S0 �! S.Let Z be some S-s
heme. We will establish a fun
torial bije
tion between theZ�S S0-valued points of the S0-s
heme X 0 and the Galois invariant Z�S T 0-valuedpoints of the T 0-s
heme W 0. (These points are fun
torially in bije
tion with theZ-valued points of W .)We start with the Z �S S0-valued points of X 0. If P is su
h a point, then(P �)� is Galois-invariant. (In fa
t, for � 2 G, e� Æ (P �)� Æ ��1 = (�P �� ��1)� =(P ����1)� = (P �)�.)Lemma 1.8 The map P 7! (P �)� is an bije
tion between the Z �S S0-valuedpoints of X 0 and the Galois-invariant Z �S T 0-valued points of W 0.Proof The map is obviously inje
tive. We now show that all Galois-invariantZ �S T 0-valued points of W 0 have this form.Let (P�)� be a Z�S T 0-valued point of W 0. Then this point is Galois invarianti� (�P�� ��1)� = (P�)� for all � 2 G, i.e. P�� = P �� for all � 2 G. Assume thatthis is the 
ase.5Here and for the rest of the subse
tion, morphisms are always assumed to be S-morphisms.
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 Properties of Weil-Restri
tionsLet S0i; i = 1; : : : be the 
onne
ted 
omponents of S0, �i : S0i ,! S0 the immer-sions. Let �(0)i ; �(1)i ; : : : be the S-morphisms T �! S0i. The sets f�i�(j)i j j = 0; : : :gare the orbits of the operation of G on the set of � : T 0 �! S0.Fix some i. We will show that there is some Z �S S0i-valued point Pi ofX 0i := ��1i (X 0) with P�i�(j)i = P �(j)ii for all j. By the universal property of thedisjoint union, the �iPi de�ne a morphism P : Z �S S0i �! X 0 with P � = P� forall � : T 0 �! S0.Now, �(0)i : T 0 �! S0i is a 
onne
ted Galois 
overing, let Hi � G be its Galoisgroup. Then �(0)i �1(Xi) �! X 0i and Z �S T 0 �! Z �S S0i are also Galois with thesame Galois group.For all � 2 Hi, P ��i�(0)i = P�i�(0)i � = P�i�(0)i . Thus P�i�(0)i = P �(0)ii for someZ �S Si-valued point Pi of X 0i. Be
ause G operates transitively on the �(j)i , wealso have P�i�(j)i = P �(j)ii for all j. 2We have thus seen thatW is the Weil-restri
tion of X 0 with respe
t to S0 �! S.The Weil-restri
tion is again quasi-proje
tive, and if X 0 is proje
tive, it is alsoproje
tive. In Subse
tion 1.2.1, we will show that if we �x some immersion ofX 0 into a proje
tive spa
e, W is immersed in some 
on
rete higher-dimensionalproje
tive spa
e, the immersion being 
anoni
al up to an isomorphism of thesurrounding proje
tive spa
e.After we have 
onstru
ted W , equation (1.7) 
an be reinterpreted byp�� = p�� (1.8)or { what is the same { �(p�) = p���1 : (1.9)Let u : W �! X 0 be the universal morphism. Then by de�nition, u 
orre-sponds to the identity on W , whi
h is of 
ourse given by (p�)� : W 0 �! W 0. Itfollows that u� = p� : (1.10)By 
onstru
tion, W is quasi-proje
tive and in parti
ular separated. Many otherproperties of X 0 
arry over to W 0 and then to W :Lemma 1.9 Let S be 
onne
ted and let h : S0 �! S be �etale. Let X 0 be a quasi-proje
tive S0-s
heme and let W be the Weil-restri
tion of X 0 with respe
t to h.Then� If X 0 is proje
tive, so is W .� If X 0 is of �nite type, so is W .



Definition and 
onstru
tion of Weil-restri
tions 15� If X 0 is redu
ed, so is W .� If X 0 is 
at, so is W .� If X 0 is smooth, so is W .Lemma 1.10 Let h : S0 �! S be given by a separable �nite extension of �elds.Then� If X 0 is geometri
ally irredu
ible, so is W .� If X 0 is geometri
ally redu
ed, so is W .2We now review the Weil-restri
tion as a fun
tor. Let 
 : X 0 �! Y 0 be anS0-morphism. By diagram (1.3), ResS0S (
) : ResS0S (X 0) �! ResS0S (Y 0) is themorphism whi
h 
orresponds to the ResS0S (X 0)�S S0-valued point 
u of X 0.By the above 
onstru
tion, espe
ially (1.10), this is given byResS0S (
) �S T 0 = ((
u)�)� = (
�p�)� :Y� ��1(X 0) �!Y� ��1(Y 0): (1.11)Let h : S0 �! S still be �etale. Let n be the degree of h (i.e. the number ofgeometri
 points over some geometri
 point of S).Let X be a quasi-proje
tive S-s
heme, X 0 := X �S S0.The quasi-proje
tive S-s
heme X is in parti
ular separated, and by Lemma1.5, the inje
tive natural transformation HomS(�;X) ,! ResS0S (X 0) 
orrespondsto a 
losed immersion � : X �! ResS0S (X 0). After a base 
hange T 0 �! S asabove, ResS0S (X 0) is isomorphi
 to XnT 0 , and � �S idT 0 = (id)ni=1 : XT 0 �! XnT 0 .This shows again that ��S idT 0 is a 
losed immersion, and as S0 �! S is faithfully
at, so is � : X �! ResS0S (X 0).1.1.5 The Galois 
aseWe now restri
t ourselves to the 
ase that the base-morphism S0 �! S is Galois.Let h : S0 �! S be Galois with Galois group G. Again let X 0 be a quasi-proje
tive S0-s
heme. Then the \geometri
 
onstru
tion" of the Weil-restri
tionbe
omes mu
h easier:Let W 0 := Q�2Gopp ��1(X 0). As above, de�ne a Galois-operation on W 0 by� 7! e� where e� : (P�)�2Gopp 7! (� Æ P�� )�2Gopp .Sin
e by assumption X 0 and thus also W 0 is quasi-proje
tive, the quotients
heme W := W 0=G exists; see [SGA I, V, Proposition 1.8℄. We will now showthat W whi
h universal element u := oid is the Weil-restri
tion of W 0 with respe
tto S0 �! S.
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tionsFix some S-s
heme Z. Then the Z �S S0-valued points of W 0 whi
h areGalois-invariant are exa
tly the points of the form (P�)�2Gopp = (P �)�2Gopp =(��1(P ))�2Gopp , where P is a Z �S S0-valued point of X 0.Thus P 7! (��1(P ))�2Gopp is a bije
tion between the Z �S S0-valued pointsof X 0 and the Galois-invariant Z �S S0-valued points of W 0. On the other hand,by Galois theory the Galois-invariant Z�S S0-valued points of W 0 are in bije
tionwith the Z-valued points of W .The bije
tion between the Z�S S0-valued points of X 0 and the Z-valued pointsof W is natural in Z. Moreover, the identity of W 
orresponds to the proje
tionpid from W 0 to X'.So, W = W 0=G with universal element u = pid is the Weil-restri
tion for X 0with respe
t to S0 �! S.Remark This 
onstru
tion is of 
ourse 
losely related to the 
onstru
tion in the�etale 
ase. For example, equations (1.7) to (1.11) still hold. However, the two
onstru
tions are only equal if S0 is 
onne
ted.ComparisonAgain let S0 �! S be Galois with Galois group G and let X 0 be a quasi-proje
tiveS0-s
heme. We show how the �rst 
onstru
tion arises in a natural way if one triesto �nd W starting from W 0 and the Galois a
tion.Sin
e a Galois 
overing is by de�nition �etale and �nite, it is also lo
ally free(�nite and 
at is equivalent to �nite and lo
ally free [Ha, III, Proposition 9.2.℄).Assume that S = Spe
(A), S0 = Spe
(B) and X 0 are aÆne and that B is freeover A, B = �1A � � � � � �nA and X 0 =Spe
(B[X1; : : : ;Xm℄=(f1; : : : ; fl)) as inthe \Formal 
onstru
tion" of Subse
tion 1.1.3. This presentation of X 0 de�nesa 
losed immersion X 0 ,! A mB , and if we �x this immersion, ��1(X) is also im-mersed in A mB , and W 0 = Q�2Gopp ��1(X 0) is a 
losed immersion of A mB Gopp =Spe
(B[fxi;�gi=1;:::;m; �2Gopp ℄). The 
losed immersion of W 0 is de�ned by thepresentation B[fxi;�gi=1;:::;m; �2Gopp ℄=((�#(fi))(x1;� ; : : : ; xm;�)i=1;:::;l; �2Gopp) ofSpe
(W 0).We try to �nd an aÆne A-s
heme W and a B-isomorphism � :W 
A B �W 0where under the isomorphism �, the Galois-operation on W 0 
orresponds to thenatural operation of W 
A B indu
ed by the operation G on B. If we have su
han isomorphism, W with pid Æ � as universal element is the Weil-restri
tion of X 0with respe
t to S0 �! S. (Unique up to a unique isomorphism.)We think of W 0 with its 
on
rete representation as immersed in A B mGopp .We are sear
hing for a 
losed subs
heme W � of some aÆne B-spa
e whi
h is as
losed subs
heme de�ned over A and an isomorphism between W � and W 0 whi
his Galois-invariant. (Where the Galois-operation on W � is the one indu
ed by the
anoni
al one of the aÆne spa
e.)We know already that ResBA(X 0) 
A B as 
onstru
ted in Subse
tion 1.1.3 is
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onstru
tion of Weil-restri
tions 17su
h an aÆne s
heme. It is embedded in A mnB . The 
oordinate ring of A mB Gopp isthe free B-algebra on xi;�, i = 1; : : : ;m; � 2 Gopp and the 
oordinate ring of A mnBis the free B-algebra on x1;1; : : : ; xm;n.The invertible matrix 0B� �#(�1)...�#(�n) 1CA�2Goppde�nes an isomorphism�# : B[fxi;�gi=1;:::;m; �2Gopp ℄ �! B[fxi;jgi=1;:::;m; j=1;:::;n℄xi;� 7! �#(�1)xi;1 + � � �+ �#(�n)xi;n:And this indu
es an isomorphism� : A mnB �! A mB Gopp :Let i = 1; : : : ; l. Then under �#, �#(fi)(x1;�; : : : ; xm;�) is mapped to�#(�1)fi;1 + � � � + �#(�n)fi;n, where the fi;j are de�ned as in Subse
tion 1.1.3.As the matrix (�i;�)i;� is invertible, the ideal generated by these elements for all� 2 Gopp equals the ideal generated by fi;1; : : : ; fi;n. Therefore, the ideal gener-ated by (�#(fi))(x1;� ; : : : ; xm;�) for i = 1; : : : ; l; � 2 Gopp is mapped to the idealgenerated by fi;j for i = 1; : : : ; l; j = 1; : : : ; n.Thus � identi�es the Weil-restri
tion W 0 with ResBA(X 0)
A B as 
onstru
tedin Subse
tion 1.1.3. It is also Galois invariant, as 
an be seen as follows:�#e�#(xi;�) = �#(xi;�� ) = �#�#(�1)xi;1 + � � � + �#�#(�n)xi;n = �#�#(xi;�)Arithmeti
 be
omes geometri
 operationLet S0 �! S be Galois with Galois group G. 6Let X be a quasi-proje
tive S-s
heme, X 0 := X �S S0. For � 2 Gopp, lets� : W 0 = X 0Gopp �!W 0 = X 0Goppbe given on .-valued points by(P�)�2Gopp 7! (P�� )�2Gopp :Then the Galois-operation onWS0 =W 0 = X 0Gopp is given by � 7! e� = �s� = s��:where � : X 0Gopp �! X 0Gopp is the \
anoni
al" arithmeti
al operation indu
ed bybase-
hange from S0 �! S.For any S-s
heme Z, G operates on ResS0S (X 0)(Z) = HomS0(Z �S S0;X �S S0)by �(P ) = �P��1:6For the moment and the next Lemma, S0 �! S might also be a pro-Galois 
overing.
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 Properties of Weil-Restri
tionsThese operations de�ne an automorphism of the fun
tor ResS0S (X 0) whi
h we de-note again by � , and Gopp �! Aut(ResS0S (X 0)) is a group-homomorphism. LetResS0S (X 0)(Z)G be the set of Galois-invariant elements, and let ResS0S (:)G be thefun
tor de�ned by ResS0S (X 0)G(Z) := ResS0S (X 0)(Z)G.Lemma 1.11 The in
lusion HomS(�;X) ,! ResS0S (X 0) indu
es a bije
tionHomS(�;X) �= ResS0S (X 0)G;natural in X.2 The automorphism � of the fun
tor ResS0S (X 0) de�nes an S-automorphism ofthe representing obje
t ResS0S (X 0) whi
h we denote by a� .We want to 
al
ulate how a� operates on ResS0S (XS0)�S S0 �=Q�2Gopp XS0 =XGoppS0 .We have �(u) = �(pid) = p��1 by (1.8). The S-morphism a� of ResS0S (X 0) isthe ResS0S (X 0)-valued point of ResS0S (X 0) whi
h 
orresponds to �(u). So a� =(�(u)�)�2Gopp = ((p��1)�)�2Gopp = (p��1�)�2Gopp (The last equation is again(1.8).)Lemma 1.12 a� operates on :-valued points by (P�)�2Gopp 7! (P��1�)�2Gopp . Inparti
ular, the group-homomorphism G �! Aut(ResS0S (X 0)) ' AutS(ResS0S (X 0))is inje
tive.Compare this operation with the operation of s� !Let X be a group-s
heme. Then the map P 7!P�2Gopp �(P ) de�nes a naturaltransformation ResS0S (X 0) �! ResS0S (X 0)(:)G and thus by Lemma 1.11 a morphismResS0S (X 0) �! HomS(�;X); (1.12)whi
h is natural in X. The 
omposition HomS(�;X) ,! ResS0S (X 0) �!HomS(�;X) is given by multipli
ation with jGj.1.2 Pull-ba
k of sheaves to the Weil-restri
tion1.2.1 Pull-ba
k of modulesLet S be 
onne
ted and S0 �! S �etale, X 0 a quasi-proje
tive S0-s
heme, W =ResS0S (X 0). Let T 0 be as in Lemma 1.6 so that WT 0 'Q� ��1(X 0).
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k of sheaves to the Weil-restri
tion 19Let L be an quasi-
oherent OX0 -module on X 0. Then LWT 0 :=N� p����(L) isan OWT 0 -module withe��1 � O� p����(L) 'O� e��1 �p����(L) (1:7)' O� p����1��1 ���(L) 'O� p����1(���1)�(L) 'O� p����(L):Let w� be the isomorphism from right to left. Then � 7! w� de�nes a 1-
o
y
le-datum for the OWS0 -module LWS0 . Thus LWS0 is a G-sheaf. Now, by PropositionA.30, it \des
ends" to an OX0 -module LW on W .This module is (up to unique isomorphism) independent of the 
hoi
e of T 0.For, assume the 
onstru
tion was performed with two di�erent f1 : T 01 �! S,f2 : T 02 �! S. Call the resulting sheaves L(1)W and L(2)W . Then there exists af3 : T 03 �! S (again Galois and 
onne
ted) su
h that f3 fa
tors through f1 andf2. Now the pull-ba
ks of L(1)W and L(2)W to W �S T 03 are naturally isomorphi
 andthus so are L(1)W and L(2)W .Let S and thus S0 be aÆne. By 
onstru
tion, if L is a very ample invertiblesheaf, then LWT 0 = N� p����(L) is very ample and so is LW . Sin
e a sheaf isample, if some power is very ample, LW is ample, if L is ample.The 
anoni
al embeddingNow let S0 �! S be de�ned by a �nite, separable extension of �elds Kjk of degreen, let LjK be a splitting �eld ofKjk, and denote the Galois group of Ljk by G. LetX 0 be a separated quasi-proje
tive K-s
heme with a �xed immersion X 0 �! PmK .Then for � : Spe
(L) �! Spe
(K) (over Spe
(k)), ��1(X) is immersed in PmL ,and via the Segre-embedding, WL is immersed in P(m+1)n�1L . { We want to showthat W is also immersed in (m+ 1)n � 1-dimensional proje
tive spa
e. 7The immersionX 0 �! PmK 
orresponds to a very ample sheaf L with global se
-tions M0; : : : ;Mm whi
h generate L. The ring �(X;L) is in
luded in�(��1(X); ��(L)). If we identify �(X;L) with its image, the Mi are again globalse
tions whi
h generate ��(L).Let i run through all maps(Spe
(L) �! Spe
(K) (over Spe
(k)) �! f0; : : : ;mg; � 7! i�:Then the Mi are global se
tions of ��(L) whi
h generate the sheaf. The Segre-embedding is de�ned by the (m+1)n global se
tions 
�Mi� of LWL =N� ��(L),whi
h generate the sheaf.7The following argumentation is inspired by A.Weil's original use of the Weil-restri
tion in[We-F℄.
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tionsNow, �(W;LW ) is in
luded in �(WL;LWL), and we want to �nd (m + 1)nglobal se
tions of LW su
h that all 
�Mi� are linear 
ombinations of these (andvi
e versa).The L-module LWL is isomorphi
 to the pull-ba
k of LW to WL. For thefollowing argumentation we will identify these two sheaves on WL. There is aGalois-operation on �(WL;LWL) and�(WL;LWL)G = �(W;LW ):(See the remark following Proposition A.30 for details.) Conversely,�(WL;LWL) ' �(W;LW )
k LHere we use that \taking global se
tions 
ommutes with 
at base-
hange", i.e
ohomology 
ommutes with 
at base-
hange" for the spe
ial 
ase of 0-dimensional
ohomology groups; see [Ha, III, Proposition 9.3℄.More generally, if H is any subgroup of G and LH the 
orresponding �xed�eld, �(WL;LWL)H ' �(W;LW )
k LH : (1.13)Call the (m + 1)n global se
tions 
�(Mi�) of LWL Pl, l = 1; : : : ; (m + 1)n. TheGalois group G operates on the set of Pl.For some l, let Gl be the stabilizer of Pl in G, kl the �xed �eld of Gl in L,let [kl : k℄ = d. Choose a basis �1; : : : ; �d of kljk. Then by (1.13), there existQ(l)1 ; : : : ; Q(l)d 2 �(W;LW ) with Pl = dXj=1 �j Q(l)j :For � 2 G, let �# denote the 
orresponding operation on LWL . The orbit of Plunder G has exa
tly d elements and �#(Pl) =Pdj=1 �#(�j)Q(l)j for all � 2 G.Choose from every orbit of the operation of G on the set of Ll one represen-tative. Call this set Pl1 ; Pl2 ; : : :. Then the Q(li)j are (m+1)n global se
tion of LWwhi
h span the same linear spa
e in �(WL;LWL) as the Pl do.We obtain an immersionW �! P(m+1)n�1k whi
h is 
anoni
al up to an isomor-phism of P(m+1)n�1k . Moreover, after base-
hange and identi�
ation of WL withQ�2G ��1(X), this immersion is up to an isomorphism of P(m+1)n�1k the Segreembedding.Proposition 1.13 Let Kjk be a �nite separable extension of �elds. Let X 0 be aseparated quasi-proje
tive K-s
heme with a �xed immersion X 0 �! PmK . Thenthe Weil-restri
tion of X 0 with respe
t to Kjk is immersed in P(m+1)n�1k . Thisimmersion is 
anoni
al up to an isomorphism of P(m+1)n�1k .
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tion 21Pull-ba
k of Weil-divisorsLet Kjk be a separable �eld extension, let Ljk be a splitting �eld. Let X 0 be anonsingular k-variety. Then Weil-divisor 
lasses 
orrespond to 
lasses of invertiblesheaves. Let the invertible sheaf L by de�ned by the e�e
tive Weil divisor B whi
hwe regard as (not ne
essarily redu
ed) 
losed subs
heme of X 0. Then by Proposi-tion A.29, the sheaf LWL is de�ned by the 
losed subs
heme D :=P� p�1� ��1(B).The operation of e� on W 0L indu
es an operation on D. The immersion D �! WLis now invariant under this operation, and D des
ends. It de�nes the sheaf L(B)Won W .1.2.2 The Pi
ard fun
tor and the Pi
ard s
hemeWe in
lude the following subse
tion mainly for notational reasons.Let k be a �eld, let X be a geometri
ally integral non-singular proje
tive k-variety with a k-rational point P0.De�nitions We denote the isomorphism 
lass of an invertible sheaf L on somek-s
heme by L. For any s
heme Y , the isomorphism 
lasses of invertible sheaveson Y form a set, and with the operation of the tensor produ
t, this set is anabelian group, the so-
alled Pi
ard group of Y , denoted Pi
(Y ).Let Pi
(X) be the 
ontravariant group-fun
tor whi
h is de�ned as follows:For any k-s
heme Z, let pZ : X�kZ �! Z be the proje
tion. Let Pi
(X)(Z) :=Pi
(X �k Z)=p�ZPi
(Z). We will denote this quotient by Pi
(X �k Z)=Pi
(Z) andits elements by L;M, et
.For any morphism � : Y �! Z, Pi
(X)(�) is de�ned by (idX �k �)� :Pi
(X �k Z)=Pi
(Z) �! Pi
(X �k Y )=Pi
(Y ). (Consistently, we would haveto write (idX �k �)� or even more a

urately (idX �k �)� but we omit the bar.)Note that pZ Æ (P0 �k idZ) = idZ implies that (P0 �k idZ)� Æ p�Z = idPi
(Z).Thus Pi
(X �k Z)=p�ZPi
(Z) is fun
torially isomorphi
 to the subgroup of M 2Pi
(X �k Z) su
h that (P0 �K idZ)�(M) = 0.The asso
iation X 7! Pi
(X) de�nes a 
ontravariant fun
tor from the 
ate-gory of pun
tured geometri
ally integral proje
tive k-varieties to the 
ategory of
ontravariant fun
tors from the 
ategory of k-s
hemes to the 
ategory of abeliangroups. If � : X �! Y is a morphism, we denote Pi
(�) : Pi
(Y ) �! Pi
(X) by��.Proposition 1.14 Under the above 
onditions on X, Pi
(X) is represented by ak-group-s
heme Pi
(X) whi
h is lo
ally of �nite type.Proof First see [BLR, 8.1, Proposition 4℄ and then [BLR, 8.2, Theorem 3℄. 2Let P 2 Pi
(X �k Pi
(X)) be a representative of the universal element P 2Pi
(X �k Pi
(X))=Pi
(Pi
(X)).
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 Properties of Weil-Restri
tionsLet Pi
0(X) be de�ned by: For any k-s
heme Z, let Pi
0(X)(Z) be the subgroupof M 2 Pi
(X)(Z) for whi
h there exists a 
onne
ted k-s
heme T with two Z-rational points �; � : Z �! T and an N 2 Pi
(X)(T ) su
h that (idX�k�)�(N) = 0and (idX �k �)�(N) =M.De�nition The Pi
ard s
heme Pi
0(X) is the identity 
omponent of Pi
(X).It is immediate that Pi
0(X) with the restri
tion of P represents Pi
0(X). Wedenote the restri
tion of P still by P.Be
ause Pi
0(X) has a k-rational point, it is also geometri
ally 
onne
ted; seeLemma A.28.Proposition 1.15 Again under the above 
onditions on X, Pi
0(X) is a proje
-tive k-group-s
heme.Proof See [BLR, 8.4, Theorem 3℄. 2In the 
ase that X is a 
urve, the Pi
ard s
heme is geometri
ally redu
ed, thusit is an abelian variety, 
alled the Ja
obian variety of X, denoted in this work byJ(X); see [Mi-J℄ for a detailed a

ount about the Ja
obian variety.Base 
hangeLet k �! � be a morphism of �elds. Then X� has a �-rational point, and for all�-s
hemes Z, Pi
(X� �� Z)=Pi
(Z) ' Pi
(X �k Z)=Pi
(Z), therefore Pi
(X�) 'Pi
(X)�.Let P 2 Pi
(X �k Pi
(X)) be the representative of the universal elementde�ned above, let P� be the pull-ba
k of P to Pi
(X�kPi
(X)
k �) ' Pi
(X���Pi
(X)�). This represents an element P� 2 Pi
(X� �� Pi
(X)�)=Pi
(Pi
(X)�).With this element, Pi
(X�) is represented by Pi
(X)�.An important spe
ial 
ase of this is the following:Let Kjk be a Galois �eld extension, � 2 Gal(Kjk). Let X 0 be a non-singularproje
tive K-variety with a K-rational point. ConsiderX 0=K and the 
orrespond-ing automorphism � : Spe
(K) �! Spe
(K) as a spe
ial 
ase of the above result.It follows that Pi
(��1(X 0)) is represented by (��1(Pi
(X 0)); ��(P)), and analo-gously, Pi
0(��1(X 0)) is represented by ��1(Pi
(X 0)0).1.2.3 The Pi
ard fun
tor of the Weil-restri
tionIn this subse
tion we study the relationship between the Pi
ard-fun
tor and theWeil-restri
tion.Let Kjk be a �nite Galois �eld extension, X a geometri
ally integral, non-singular, proje
tive k-variety with a k-rational point.
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tion 23Sin
e Pi
(X) is the disjoint union of proje
tive s
hemes, its Weil-restri
tionexists. By Lemma 1:11, we have a natural transformationHomk(�;Pi
(X)) ' ResKk (Pi
(X)K)G ' ResKk (Pi
(XK))G; (1.14)and by (1:12) we have a morphismResKk (Pi
(XK)) �! Homk(�;Pi
(X)) (1.15)We de�ne a Galois-operation on the fun
tor ResKk (Pi
(XK)): For � 2 G, let� : X �k Z 
k K ' (X 
K �KZK) be the \natural" operation indu
ed by base-
hange, i.e. � = idX�kidZ�k� or { what is the same { � = (idX�k�)�K(idZ�k�).Now let � 2 G operate on Pi
(X �k Z 
k K))=Pi
(Z 
k K) ' Pi
((X 
k K)�K(Z 
k K))=Pi
(Z 
k K) by ��1�.Lemma 1.16 The Galois-operation on ResKk (Pi
(XK)) 
orresponds to the Ga-lois-operation on the fun
tor ResKk (Pi
(XK)).Proof Let PK 2 Pi
(XK �K Pi
(X)K) be the representative of the universalelement of Pi
(XK) 
onstru
ted above. Then PK by 
onstru
tion is invariantunder the Galois-operation.Let � : Z 
k K �! Pi
(XK) be a K-morphism, � 2 G. Then by de�nition,idXK �K �(�) = � Æ (idXK �K �) Æ ��1. Thus(idXK �K �(�) )� (PK) = ��1� (idXK �K �)� �� (PK) =��1� (idXK �K �)� (PK)2 Let qK : XK �! X be the proje
tion. Then it follows from (1:14) that q�Kindu
es an isomorphismq�K : Pi
(X) ~�!ResKk (Pi
(XK))G: (1.16)Note that this means in parti
ular that every sheaf on XK whose isomorphism
lass is invariant under G des
ends to a sheaf on X. This is a stronger statementthan Galois-des
ent of quasi-
oherent modules.Let M0 2 ResKk (Pi
(XK))(Z) = Pi
(XK)(Z �k K). Then P�2Gopp ��(M0) 2ResKk (Pi
(XK))G, thus there exists anM 2 Pi
(X)(Z) with (qK�kidZ)�(M) =M0.De�nition We 
all the element M just de�ned the norm of M0 and denote itby N(M0). 8We get a natural transformationN : ResKk (Pi
(XK)) �! Pi
(X);whi
h we also 
all norm.Via the representing obje
ts, this natural transformation 
orresponds to (1:15).8In [EGA II, 6.5℄, the norm of an invertible sheaf is de�ned in a more general situation. Notehowever that our de�nition applies for 
lasses of sheaves.
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 Properties of Weil-Restri
tionsNow let X 0 be any geometri
ally integral, non-singular, proje
tive K-varietywith a K-rational point P0, let W = ResKk (X 0) be the Weil-restri
tion of X 0 withrespe
t to Kjk. By de�nition of W , it has a k-rational point.Consider the natural transformationT : ResKk (Pi
(X 0)) ResKk (u�)
// ResKk (Pi
(WK))M0 7!N�2Gopp ��(M0)

��N
''

ResKk (Pi
(WK))G� q�K�1
��Pi
(W ):

(1.17)
Lemma 1.17 T is inje
tive.Proof Let Z be a k-s
heme. Then � 2 G operates on Pi
(WK�KZK) ' Pi
(W�kZ 
k K) by ��1�. (Where � is the \natural" operation on W �k Z 
k K.)Now (W �k Z)K ' Q� ��1(X 0 �K ZK). Under this isomorphism, � operateson Pi
(Q� ��1(X 0 �K ZK)) by e��1�, where e� is the \twisted" operation as in the
onstru
tion of the Weil-restri
tion in the Galois 
ase.Under the identi�
ation of (W�kZ)K withQ� ��1(X 0�KZK); P�2Gopp ��(:)ÆResKk (u�) : ResKk (Pi
(X 0))(Z) �! ResKk (Pi
(WK))G(Z) is given byPi
(X 0 �K ZK)=Pi
(ZK) �! (Pi
( Y�2Gopp ��1(X 0 �K ZK))=Pi
(ZK))GM 7! X�2Gopp e��(p�id(M)) = X�2Gopp p��(��(M)):By assumption X 0 has a K-rational point P0, and ��1(P0) is a k-rational pointof ��1(X 0). These rational points de�ne a 
losed immersion � = (��)� : X 0 �!Q� ��1(X 0), given by �id = idX0 ; �� = ��1(P ) for � 6= id. Now (� �k idZ)� ÆP�2Gopp ��(:) Æ (u�k idZ)� is the identity on ResKk (Pi
(X 0))(Z). 2The fun
tor T restri
ts to a natural transformation T : ResKk (Pi
0(X 0)) �!Pi
0(ResKk (X 0)), and this indu
es a morphism between the 
orresponding repre-senting obje
ts. T : ResKk (Pi
0(X 0)) �! Pi
0(ResKk (X 0))After the base 
hange Kjk, T be
omes the 
anoni
al morphismU : ( Y�2Gopp ��1(Pi
0(X 0)) �! Pi
0( Y�2Gopp ��1(X 0)));indu
ed by p�� : ��1(Pi
0(X 0)) �! Pi
0(Q� ��1(X 0)).
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tions of abelian varieties 25We are interested whether T or { what is the same { T is an isomorphism. Weonly have to 
he
k this for U or U
K idK .The phrase \smooth proper global lifting" used in the following theorem isde�ned in Subse
tion A.1.1. Under this 
ondition, U 
K idK is an isomorphismof abelian varieties; see Proposition A.4. It thus follows the following theorem.Theorem 1 Let Kjk be a �nite Galois �eld extension, let X 0 be an integral non-singular proje
tive K-variety with a K-rational point. Assume that 
har(k) = 0or that X 0K has a smooth proper global lifting. Then T : ResKk (Pi
0(X 0)) �!Pi
0(ResKk (X 0)) is an isomorphism of abelian varieties.Corollary 1.18 Let X 0 be a geometri
ally integral non-singular proje
tive K-
urve with a K-rational point. Then T is an isomorphism of abelian varieties.Proof If 
har(k) > 0, every su
h 
urve has a smooth, proper global lifting; see[Po, Satz 10.1℄. 2Corollary 1.19 Let X 0 be a 
urve as above. Then N Æ u� : Pi
0(X 0) �!Pi
0(ResKk (X 0)) is an isomorphism.1.3 Weil-restri
tions of abelian varietiesIn this se
tion, we study �rst properties of the Weil-restri
tion of abelian varietieswith respe
t to a �nite separable �eld extension. In the next 
hapter, we willstudy the Weil-restri
tion of old abelian varieties { i.e. abelian varieties whi
h arede�ned over k { more in depth.Let Kjk be a separable extension of �elds, A0 an abelian K-variety. Let W bethe Weil-restri
tion of A0 with respe
t to Kjk. ThenWksep ' Y� : Spe
(ksep) �! Spe
(K)(over Spe
(k)) ��1(A0);thus W is also an abelian variety.1.3.1 Weil-Restri
tions and dual abelian varietiesLet Kjk be Galois, A0 an abelian K-variety.Sin
e the produ
t of a dual abelian variety of a produ
t of abelian varieties isthe produ
t of the duals, the morphismU on the previous page is an isomorphism.Thus the morphism T de�ned in the last subse
tion is an isomorphism.Proposition 1.20 Let Kjk be a �nite Galois �eld extension, let A0 be an abelianvariety. Then T : ResKk (
A0) �! \ResKk (A0) is an isomorphism of abelian varieties.2
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 Properties of Weil-Restri
tions1.3.2 The Galois-operation on geometri
 pointsThe following Proposition is well known; see for example [Mi-AA, par. 1℄.Proposition 1.21 Let k be perfe
t. The Galois-operation on ResKk (A0)(K) is theindu
ed representation of the one of A0(K)ResKk (A0)(K) ' IndZ[Gal(Kjk)℄Z[Gal(KjK)℄(A0(K))and the same is true for the Tate-moduleTl(ResKk (A0)(K)) ' IndZl[Gal(Kjk)℄Zl[Gal(KjK)℄(Tl(A0K))for every prime l.In parti
ular, if Kjk is an extension of �nite �elds, the 
hara
teristi
 polyno-mials of the relative Frobenius morphisms are related by�ResKk (A0)=k(X) = �A0=K(Xn):Proof We only show the �rst isomorphism, the proof of the se
ond is analogous.The Galois-operation of Gal(Kjk) on ResKk (A0)(K) 'Q� ��1(A0)(K) is givenby � 7! ((P�)� 7! (�(P�� ))�).Let �# : K ,! K be the in
lusion, 
orresponding to � : Spe
(K) �! Spe
(K).The immersion ��1(A0) ,!Q� ��1(A0) 'WK to the fa
tor \�" indu
es an inje
tionA0(K) ,! Q� ��1(A0)(K) ' WK(K) whi
h is 
ompatible with the operation ofZ[Gal(KjK)℄. By the universal property of the indu
ed representation, we have aZ[Gal(Kjk)℄-module-homomorphismIndZ[Gal(Kjk)℄Z[Gal(KjK)℄(A0(K)) �! ResKk (A0)(K): (�)Now for every in
lusion �# : K ,! K (over k), let �0 be a 
ontinuation to aK-automorphism (i.e. �# = �0�# : K �! K or { what is the same { � = ��0 :Spe
(K) �! Spe
(K)).On the left-hand side of (*), every element has a unique representation in theform P� �0(P�) with P� 2 A0(K). Su
h an element is mapped to the element(�0(P�))� . Also every element of the left-hand side has this form for unique P� .We thus have an isomorphism. 21.3.3 The fun
tor \Weil-restri
tion"We have already seen that ResKk is a fun
tor and so is ResKk . It restri
ts toa fun
tor from the 
ategory of abelian K-varieties to the 
ategory of abelian k-varieties whi
h respe
ts the addition.For abelian K-varieties A0, B0, the homomorphism of abelian groups ResKk :HomK(A0; B0) �! Homk(ResKk (A0);ResKk (B0)) extends 
anoni
ally to a homo-morphism ResKk : Hom0K(A0; B0) �! Hom0k(ResKk (A0);ResKk (B0)). Thus the
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tions of abelian varieties 27fun
tor ResKk extends to a fun
tor from the \
ategory of abelian K-varietiesup to isogeny" to the 
ategory of abelian \
ategory of abelian k-varieties up toisogeny". 9In parti
ular, ResKk is a ring-homomorphism from EndK(A0) toEndk(ResKk (A0)) and from End0K(A0) to End0k(ResKk (A0)).Let Kjk be Galois. Let A0; B0 be abelian K-varieties. ThenHomK(ResKk (A0)K ;ResKk (B0)K) ' HomK( Y�2Gopp ��1(A0); Y�2Gopp ��1(B0)) 'M�;�2GoppHomK(��1(A0); ��1(B0));see equation (A.3) in Subse
tion A.2.3.Let � : A0 �! B0 be a morphism. Then by (1.11), ResKk (�)
k idK is given bythe diagonal \matrix" (��1(�)Æ�;� )�;�2Gopp 2L�;�2Gopp HomK(��1(A0); ��1(B0)).Now let � : A0 �! B0 be an isogeny. Then ResKk (�) : ResKk (A0) �!ResKk (B0) is also an isogeny.For every k-s
heme Z, we have the 
ommutative diagram0 // ker(�)(Z 
k K) //� A0(Z 
k K) //� B0(Z 
k K)�0 // ResKk (ker(�))(Z) // ResKk (A0)(Z) // ResKk (B0)(Z):Sin
e the �rst row is exa
t (in the 
ategory of abelian groups), so is the last. Thusthe kernel of the isogeny ResKk (�) is ResKk (ker(�)).1.3.4 Weil-restri
tions of a polarized abelian varietiesLet Kjk be a Galois �eld extension, A0 an abelian K-variety, 
A0 the dual abelianvariety. By Proposition 1.20, ResKk (
A0) is (
anoni
ally isomorphi
 to) the dualabelian variety of ResKk (A0).Let ' : A0 �!
A0 be a polarization of A0, de�ned by an ample sheaf L on A0K ,i.e. '
K idK = �L : A0K �!
A0K . 10 As above, this indu
es an isogenyResKk (') : ResKk (A0) �! ResKk (
A0) ' \ResKk (A0)whi
h has by the above remarks kernel ResKk (ker(')). We show now that thismorphism is again a polarization.9The 
ategory of abelian k-varieties up to isogeny 
onsists of all abelian k-varieties, where fortwo abelian k- varieties A and B, the set of morphisms is Hom0k(A;B); 
f. [Mu, par. 19℄, see alsoSubse
tion A.2.1.10For a polarization ' of A0, we do not require that there exists a sheaf de�ned over K whi
hde�nes '; see Subse
tion A.2.2 for details.
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 Properties of Weil-Restri
tionsLet � 2 Gopp. As at the end of Subse
tion 1.2.2, we regard ��1(
A0) as thedual abelian variety of ��1(A0).Let �0 be a Spe
(K)-automorphism with �0#jK = �#. Then by Lemma A.9,'� 
K idK = ��0L = ��0�(L). (In parti
ular, the 
lass of �0�(L) in the N�eron-Severigroup is independent of the 
hoi
e of �0.)After base-
hange, we getResKk (')
k idK = ('� Æ p�)�2Gopp : Y�2Gopp ��1(A0) �! Y�2Gopp ��1(
A0):This is a \produ
t polarization" de�ned by the ample sheafLWk :=O� (p� 
K idK)��0�(L) =O� e�0�(pid 
K idK)�(L)on Wk.If one starts with an ample sheaf L on A0, then the polarization ResKk (') isde�ned by the ample sheaf LWK :=N� e��p�id(L) on WK . The 
lass of LWK in thePi
ard group is invariant under the Galois-operation and thus this 
onstru
tionde�nes an ample sheaf on W . (This follows also dire
tly from the results inSubse
tion 1.2.1.)Proposition 1.22 Let Kjk be a �nite Galois �eld extension, A0 an abelian varietyover K. If ' is a (prin
ipal) polarization on A0 (de�ned by a sheaf over K), thenResKk (') is a (prin
ipal) polarization on ResKk (A0) (de�ned by a sheaf over k).Thus \Weil-restri
tion" is a fun
tor from the 
ategory of polarized abelian K-varieties (with polarizations de�ned by a sheaf over K) 11 to the 
ategory of polar-ized abelian k-varieties (with polarizations de�ned by a sheaf over k). The imagesof prin
ipally polarized abelian K-varieties are prin
ipally polarized.1.3.5 Weil-restri
tions of abelian varieties over �nite �elds 12Let Kjk be a �nite extension of �nite �elds of degree n. Let A0 be an abelianvariety over K of dimension d, W the Weil-restri
tion of A0 with respe
t to Kjk.We now study the endomorphism algebra 13 and the isogeny de
omposition ofW . In the next 
hapter, we will study the same question for Weil-restri
tions ofabelian varieties with respe
t to an arbitrary Galois extension Kjk under theassumption that the abelian K-variety A0 is de�ned over k.11For de�nition of the 
ategory of polarized abelian varieties see Subse
tion A.2.2 in the ap-pendix.12This subse
tion is joint work with N.Naumann.13Re
all the following de�nitions: The endomorphism ring of an abelian variety A over a �eldk is the ring of endomorphisms of A over k, i.e. the endomorphisms of Ak de�ned over k. It isdenoted by Endk(A). The endomorphism algebra of A is the ring End0k(A) := Endk(A)
ZQ.



Weil-restri
tions of abelian varieties 29In the following, we make use of various 
on
epts of \Frobenius morphisms";see Subse
tion A.3.4 for details.Identify Gal(Kjk) with its dual and denote by �Kk 2 Gal(Kjk) the Frobeniusautomorphism, de�ning a Spe
(k)-automorphism �Kk of Spe
(K). By base-
hange,this indu
es the arithmeti
 Frobenius isomorphism �Kk : �Kk �1(A0) �! A0.We also have the geometri
 Frobenius endomorphism �k : A0 �! �Kk �1(A0)whi
h is an isogeny of p-power degree whose kernel is 
onne
ted. Just as for everyisogeny, there exists a ��1k 2 Hom0k(��1k (A0k); A0k) whi
h is a left- and right-inversefor �k; see Lemma A.7.Analogously, we have a geometri
 Frobenius endomorphism �k : W �!W .Let �K be the geometri
 Frobenius endomorphism of A0. Then the image of �Kunder the ring-homomorphismResKk equals the endomorphism �nk ofW . (In fa
t,after base-
hange, ResKk (�K) as well as �nk is represented by the diagonal matrix�KI.) Thus the ring-homomorphism ResKk : EndK(A0) �! Endk(W ) restri
ts toan in
lusion Z[�K℄ �! Endk(W ), given by �K 7! �nk . This ring-homomorphismextends to a ring-homomorphism Z[�K℄[X℄=(Xn � �k) �! Endk(W ), given byX �! �k.The geometri
 Frobenius endomorphism �k of W 
ommutes with all endo-morphisms of W . Thus by the universal property of the tensor produ
t (see[FD, proposition 3.2℄), the ring-homomorphisms EndK(A0) �! Endk(W ); � 7!ResKk (�) and Z[�K℄[X℄=(Xn � �K) �! Endk(W ); X 7! �k indu
e a ring-homomorphismEndK(A0)
Z[�K℄ Z[�K℄[X℄=(Xn � �K) �! Endk(W ); � 7! ResKk (�); X 7! �k:Theorem 2 Let Kjk be an extension of �nite �elds of degree n. Let A0 be anabelian K-variety, W the Weil-Restri
tion of A0 with respe
t to Kjk. ThenEnd0K(A0)
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) �! End0k(W ); � 7! ResKk (�); X 7! �kis an isomorphism.Proof By the de�ning property of the Weil-restri
tion, as abelian groups,Hom0k(W;W ) ' Hom0K(n�1Yi=0 �Kk �i(A0); A0) via a 7! pid Æ (a
k idK): (1.18)We show that the homomorphism of abelian groupsHom0K(A0; A0)
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) �! Homk(W;W ) 'Hom0K(Qn�1i=0 �Kk �i(A0); A0) 'Ln�1i=0 Hom0K(�Kk �i(A0); A0) (1.19)>from left to right is an isomorphism.Let �k 2 Gal(kjk) again be the Frobenius automorphism. Again by base-
hange, this indu
es the arithmeti
 Frobenius automorphism �k :Wk �!Wk.
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 Properties of Weil-Restri
tionsThe morphism �k : W �! W is uniquely determined by the fa
t that itoperates on k-valued points P of Wk as the inverse of the arithmeti
 Frobeniusisomorphism: �k Æ P = ��1k (P ) = P �k ; see Lemma A.32.Let P = (Pi)n�1i=0 be a k-valued point of Wk ' Qn�1i=0 �Kk �i(A0)K . Then byde�nition of the Galois-operation on Wk, �k(P ) = (�(Pi+1))n�1i=0 (where Pn = P0).Thus �k Æ P = ��1k (P ) = (��1k (Pi�1))n�1i=0 = (�k Æ Pi�1)n�1i=0 .Thus under the isomorphism WK ' Qn�1i=0 �Kk �i(A0), the geometri
 Frobeniusendomorphism �k of W is given by the \matrix"0BBBB� 0 � � � � � � �k�k 0 � � � 00 . . . . . . ...0 . . . �k 0
1CCCCA :For some � 2 End0K(A0), ResKk (�) is given by the diagonal \matrix"0BBB� � �Kk �1(�) . . . �Kk 1�n(�) 1CCCA :Let x be the image of X in Q [�K ℄[X℄=(Xn � �K). Let �1x+ �2x2 + � � �+ �nxn 2Hom0K(A0; A0)
Q[�K ℄Q [�K ℄[X℄=(Xn��K) where �i 2 End0K(A0). Su
h an elementis mapped under the homomorphism of in the theorem to an endomorphism of Wwhi
h is represented by the \matrix"0BBBBBBB� �n �nk �n�1 �n�1k � � � �2 �2k �1 �k�Kk �1(�1)�k �Kk �1(�n)�nk �Kk �1(�3)�3k �Kk �1(�2)�2k... . . . ...�Kk 2�n(�n�2)�n�2k �Kk 2�n(�n�3)�n�3k �Kk 2�n(�n)�nk �Kk 2�n(�n�1)�n�1k�Kk 1�n(�n�1)�n�1k �Kk 1�n(�n�2)�n�2k � � � �Kk 1�n(�1)�k �Kk 1�n(�n)�nk

1CCCCCCCA :
The elements of Hom0K(A0; A0) 
Q[�K ℄ Q [�K ℄[X℄=(Xn � �K) have a uniquerepresentation as �1x + �2x2 + � � � + �nxn where �i 2 End0K(A0). Under ho-momorphism (1.19), this element 
orresponds to the �rst row in the above ma-trix, i.e. to the row ve
tor ( �n�nk �n�1�n�1 � � � �1�k ). Now, every elementof Ln�1i=0 Hom0K(�Kk �i(A0); A0) has this form with unique �i. Thus (1.19) is anisomorphism. 2Remark Sin
e the geometri
 Frobenius endomorphism has degree a power ofp := 
har(k), we obtain in fa
t an isomorphism�EndK(A0)
Z[�K℄ Z[�K℄[X℄=(Xn � �K)�
ZZ[1=p℄ �! Endk(W )
ZZ[1=p℄:



Weil-restri
tions of abelian varieties 31Corollary 1.23 End0k(W ) is 
ommutative i� End0K(A0) is 
ommutative.2 Now assume that A0 is a simple new abelian variety 14 with 
ommutative endo-morphism ring.We are interested in the question whether W is simple. This is the 
ase i�End(W ) ' End0K(A0=K)[X℄=(Xn � �K) ' Q [�K ℄=(Xn � �K) is a �eld, i.e. i�Xn � �K is irredu
ible over End0K(A0) ' Q [�K ℄.So, W is not simple i� Xn � �K is redu
ible over End0K(A0) ' Q [�K ℄. Underthe 
ondition 4 - n, this is equivalent to the existen
e of a � 2 Q [�K ℄ and a primedivisor q of n with �q = �K ; see [Lo, par. 14, Satz 2℄.We 
laim that under the assumptions on A0 and the additional assumption4 - n, W is simple. 15Assume that 4 - n and W is not simple so that �q = �K for some prime qjnand � 2 Q [�K ℄ (so that Q [�K ℄ = Q [�℄). Let �jk be the intermediate �eld of Kjkwith [K : �℄ = q. We 
laim that A0 is isogenous to an abelian variety de�ned over�. Let V be the Weil-restri
tion of A0 with respe
t to Kj�. Then �V=�(X) =�A0=K(Xq), and � is a root of �V=�, the 
hara
teristi
 polynomial of the Frobe-nius of V ; see Proposition 1.21. So V 
ontains a simple abelian variety A su
hthat the 
hara
teristi
 polynomial of the Frobenius of A has � as a root. Theendomorphism ring of A is 
ommutative (sin
e the endomorphism ring of V is)and thus isomorphi
 to Q [�℄ = Q [�K ℄. This is a number �eld of degree 2d overQ , thus A has dimension d. So A 
� K is a d-dimensional abelian subvari-ety of V 
� K ' Qn�1i=0 �K� �i(A0), thus A 
� K � �K� �i(A0) for some i. Now,�K� �i(A0) � A0 via the i-power of the (geometri
) Frobenius endomorphism rela-tive to �. Thus A
� K � A0.We proved:Theorem 3 Let Kjk be an extension of �nite �elds of degree n and assume 4 - n.If A0 is a simple new abelian variety over K with 
ommutative endomorphism ring(i.e. A0 might be a non-super-singular ellipti
 
urve), then the Weil-restri
tion ofA0 with respe
t to Kjk is simple.14We �xed the following de�nition: If A0 is de�ned over k, i.e. if there exists an abelian k-variety A su
h that A0 � A
kK, then we say that A is an old abelian variety (relative to Kjk).If A0 is not isogenous to an abelian variety de�ned over k or some proper intermediate �eld � ofKjk, then we 
all A0 a new abelian variety (relative to Kjk).15The following proof is inspired by the proof of the \arithmeti
al part" of Honda's Theorem;
f. [Ho℄. As stated by Honda, the argument goes ba
k to Tate.



32 Chapter 1. Basi
 Properties of Weil-Restri
tions



Chapter 2Weil-restri
tions of old abelianvarieties
Introdu
tion and resultsIn this 
hapter, we 
ontinue with the study of Weil-restri
tions of abelian varieties.We restri
t ourselves to the following situation:Let Kjk be a �nite Galois �eld extension, A an abelian k-variety. 1 Let W bethe Weil-restri
tion of AK with respe
t to Kjk.We begin with the determination of the ring of endomorphisms of W overk. The result is that this ring is 
anoni
ally isomorphi
 to the so-
alled skew-group-ring of EndK(AK) with the group Gal(Kjk) and the natural operation ofGal(Kjk) on EndK(AK); see Theorem 4, p. 35.We then restri
t ourselves even further to the 
ase that A is an ellipti
 
urveE and Kjk is a 
y
li
 �eld extension of odd degree of perfe
t �elds. In this 
ase,W is isogenous to a produ
t of the ellipti
 
urve E itself and the so-
alled tra
e-zero-hypersurfa
e N . If E has no 
omplex multipli
ation, than N is simple; seeTheorem 5, p. 42. 2Our goal is then to study polarizations of N . In parti
ular, we want to knowif there exist prin
ipal polarizations on N .In order to do so we study in an ex
ursus �rst the N�eron-Severi group of aprodu
t of ellipti
 
urves. For ea
h element of the N�eron-Severi group we give anexpli
it divisor whi
h de�nes the given element; see Theorem 6, p. 48.There exists a 
anoni
al polarization on N , and this polarization has kernelE[n℄ = E \ N . It follows in parti
ular, that after a 
hoi
e of a generator ofGal(Kjk), N is 
anoni
ally isomorphi
 to its dual; see Proposition 2.17.However, the existen
e of this isomorphism does not mean that N is always1A

ording to our terminology, AK is then an old abelian K-variety. Thus the title of this
hapter.2By saying that all ellipti
 k-
urve has 
omplex multipli
ation, we mean that Ek has 
omplexmultipli
ation and the 
omplex multipli
ation is de�ned over k.33
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tions of old abelian varietiesprin
ipally polarized as one sees from the following result:If E has no 
omplex multipli
ation then N is not prin
ipally polarized. If nis prime, it is isogenous to a prin
ipally polarized abelian variety i� the groups
heme E[n℄ 
ontains a non-trivial sub-group s
heme over k; see Corollary 2.26,p. 58 to Theorem 7, p. 57.If E has 
omplex multipli
ation, the situation is more 
ompli
ated. For n = 3,we give an expli
it 
riterion whether the abelian surfa
e N is prin
ipally polarized;see Theorem 8, p. 59.In the last se
tion of this 
hapter, we spe
ialize to the 
ase n = 3 so that N isan abelian surfa
e. We give expli
it equations for an aÆne, open part of N andtry to �nd 
urves of genus 2 on N whose existen
e was predi
ted by the previousresults. The 
urves 
onstru
ted will also serve as examples in the next 
hapter.2.1 The endomorphism ringThroughout this se
tion, let Kjk be a �nite Galois extension of �elds of degree nwith Galois group G, and let A be an abelian k-variety of dimension d. Let W bethe Weil-restri
tion of AK := A
k K with respe
t to Kjk.We want to determine the stru
ture of the endomorphism ring of W , anddetermine in whi
h isogeny fa
tors W splits.2.1.1 The endomorphism ring as skwe-group-ringRe
all that in Subse
tion 1.1.5, we have seen that the arithmeti
 operation ofG on AK indu
es a geometri
 operation on W . If � 2 G, the 
orrespondingk-automorphism of W is denoted by a� .Lemma 2.1 Let � 2 G;� 2 EndK(AK). Then a� ÆResKk (�) = ResKk (�(�))Æa� 2Autk(W ).Proof We 
he
k the relation for the 
orresponding automorphisms of the fun
torResKk (AK). Let Z be a k-s
heme, P 2 ResKk (AK)(Z). Then(a� �)(P ) = � Æ � Æ P Æ ��1 = � Æ � Æ ��1 Æ � Æ P Æ ��1= �(�) Æ � Æ P Æ ��1 = (�(�) a� )(P )2 To formulate the result about the stru
ture of the endomorphism ring of W , weneed a generalization of the 
on
ept of a group ring �rst.



The endomorphism ring 35De�nition 3 Let � be a ring, G a group, t : G �! Aut(�) a group-homo-morphism. The image of � 2 G under t will again be denoted by �. Following[Kar℄, we de�ne the skew-group-ring �t[G℄ to be the following ring: 4 The un-derlying set is �G, i.e. the set of fun
tions (��)�2G : G �! �. The addition isde�ned pointwise, just as for the \usual" group ring. Also as usually, for � 2 G,let � 2 �t[G℄ also denote the fun
tion � 7! Æ�;� 2 �t[G℄. Here, Æ�;� is the \Kro-ne
ker delta", Æ�;� = 1 and Æ�;� = 0 if � 6= � . The multipli
ation is de�ned byP�2G �� � �P�2G �� � =P�;�2G �� �(��)��.Lemma 2.2 �t[G℄ is a ring.Proof We only have to 
he
k the asso
iativity of the multipli
ation. Using thefa
t that t is a group-homomorphism, one 
al
ulates on generating elements (ofthe abelian group �t[G℄)(�� � � �) � 
 � = ��(�)�� � 
 � =��(�)��(
)��� = �� � � �(
) �� = �� � (� � � 
 �)2 �t[G℄ has the following universal property:Lemma 2.3 Let B be a ring, f : � �! B be a ring-homomorphism, and let g :G �! B� be a group-homomorphism. Assume that for � 2 �; � 2 G, g(�) f(�) =f(�(�)) g(�). Then there is a unique ring-homomorphism �t[G℄ �! B with � 7!f(�) and � 7! g(�).2 Now let G be the Galois group as above, t : Gopp �! Aut(EndK(AK)) the nat-ural operation given by � 7! (� 7! �(�) = ����1). From Lemmata 2.1 and 2.3 itfollows thatP�2Gopp �� � 7!P�2Gopp ResKk (��) a� de�nes a ring-homomorphismEndK(AK)t[Gopp℄ �! Endk(W ): (2.1)Theorem 4 Let Kjk be a �nite Galois extension of �elds with Galois group G,A an abelian variety over k, W the Weil-restri
tion of AK with respe
t to Kjk,t : Gopp �! Aut(EndK(AK)) the natural operation. Then EndK(AK)t[Gopp℄ �!Endk(W ) is an isomorphism.Proof Analogously to the proof of Theorem 2, we make use of the isomorphismHomk(W;W ) ' HomK(A GoppK ; AK) ' L�2Gopp HomK(AK ; AK) on the right-hand side.3This de�nition is a spe
ial 
ase of the more general de�nition of a 
rossed produ
t (withrespe
t to some operation); 
f. [Kar, Chapter 10, 2℄.4In [CR℄, the same ring is 
alled twisted group ring. However, in [Kar℄, this word is reservedfor the spe
ial 
ase of a 
rossed produ
t with respe
t to a trivial Galois-operation.



36 Chapter 2. Weil-restri
tions of old abelian varietiesBy (1.9), the image of some � 2 Gopp in HomK(A GoppK ; AK) is p��1 , 
orre-sponding to the row ve
tor whi
h is zero ex
ept at the \�-th" entry where itis 1.Thus the image of P�2Gopp ��� (where �� 2 EndK(AK)) is P�2Gopp ���1 p�,
orresponding to the row ve
tor (���1)�2Gopp .It is thus immediate that we have an isomorphism. 2By tensoring the above isomorphism over Z with Q , we getCorollary 2.4 End0K(AK)t[Gopp℄ �! End0k(W ) is an isomorphism.We know that the ring End0k(W ) is semi-simple. Thus the skew-group-ringEnd0K(AK)t[Gopp℄ is semi-simple.It 
an be proven more generally that every skew-group-ring of a semisimplering in whi
h the group order is (�nite and) invertible is semisimple or even moregenerally that every 
rossed produ
t of a semisimple ring is semisimple; see [Kar,Volume I, Chapter 10, Corollary 2.5℄.We now want to study the ring-homomorphism 5EndK(AK)t[Gopp℄ ��! Endk(W ) ,!EndK(WK) ' EndK(A GoppK ) ' MGopp(EndK(AK)): (2.2)For � 2 Gopp, let �� : AK �! A GoppK be the immersion to the \�-th" fa
-tor, and let p� : Q�2Gopp AK �! AK be the proje
tion to the \�-th" fa
-tor. Now, EndK(AGoppK ) �! MGopp(EndK(AK));  7! (p� ��)�;�2Gopp is a ring-homomorphism; see Subse
tion A.2.3.We denote the matrix 
orresponding to a� by A� and the matrix 
orrespondingto ResKk (�) by J(�).We have already established in Subse
tion 1.3.3 that J(�) is the diagonalmatrix (��1(�)Æ�;�)�;�2Gopp .We want to determine to whi
h matrix the endomorphism a� 
orresponds.First of all, p� : WK ' A GoppK �! AK 
orresponds to the row-ve
tor (Æ�;�)�2G.Re
all that a� = (p��1�)�2G; see Lemma 1.12. ThusA� = (Æ��1�;�)�;�2G = (Æ�;��)�;�2G: (2.3)Before 
ontinuing we want to 
larify the de�nition of the left regular (matrix)representation.5Let � be a ring and � a �nite set. Then by M�(�) we mean the ring 
onsisting of: The setof fun
tions a = (a�;�)�;�2� : � � � �! � with pointwise addition and multipli
ation de�nedby (a � b)�;� :=P
2� a�;
b
;� . After the 
hoi
e of a bije
tion of � with the numbers 1; : : : ; j�j,M�(�) is 
anoni
ally isomorphi
 to Mj�j(�), the matrix ring in j�j variables.



The endomorphism ring 37The left regular (matrix) representationLet � be a ring. If � �! � is a homomorphism of rings, we 
an regard � as�-right module, and if we do so, we write Endr�(�) for the ring of endomorphisms.Now let � �! � be a homomorphism of rings and assume additionally that� is as �-right module free on a �nite set of generators �, i.e. � ' �� as �-right modules. Multipli
ation of elements of � from the left on itself indu
es aring-homomorphism L : � �! Endr�(�) ' Endr�(��); (2.4)the left regular representation.For a �xed basis �, the right-hand side of (2.4) is 
anoni
ally isomorphi
to the matrix ring M�(�). The isomorphism M�(�) ~�!Endr�(��) is given asfollows: To every matrix (a�;�)�;�2� asso
iate the endomorphism (x�)�2� 7!(P�2� a�;�x�)�2�. (This is given on the basis elements � = (Æ�;�)�2� by � 7!P�2� � a�;� .) The inverse isEndr�(��) �! M�(�); a 7! (��;�)�;�2� with ��;� 2 �and a(�) =P�2� � ��;� (2.5)By 
omposition of (2.4) with (2.5), we get the left regular matrix representation(with respe
t to the basis �). l : � �! M�(�):(In parti
ular, for � = � and � = f1g, the left regular matrix representation isthe identity on �.)We now apply these 
on
epts in the 
ontext of the skew-group-ring. Let G bea �nite group, t : G �! Aut(�) be a homomorphism, �t[G℄ the 
orrespondingskew-group-ring.We 
al
ulate expli
itly the left regular representation l : �t[G℄ �!Endr�(�t[G℄) and the left regular matrix representation L : �t[G℄ �! MG(�)with respe
t to the basis G.Let � 2 G. Then l(�) : � 7! �� =P�2G �Æ�;�� and thusL(�) = (Æ�;��)�;�2G:Let � 2 �. Then l(�) : � 7! � � = � ��1(�) and thusL(�) = (��1(�) Æ�;�)�;�2G:So L(X�2G ���) = (X�2G ��1(��)Æ�;��)�;�2G = (��1(����1))�;�2G:



38 Chapter 2. Weil-restri
tions of old abelian varietiesWe are now going to relate these de�nitions and 
al
ulations with our situation.So let � := EndK(AK), G the Galois group and t : Gopp �! EndK(AK) thenatural operation. Let L be the left regular matrix representation of �t[G℄ 'Endk(W ) with respe
t to the basis Gopp. Then L(�) = A� and L(�) = J(�).Thus:Proposition 2.5 Homomorphism (2.2) is the left regular matrix representationof the skew-group-ring EndK(AK)t[Gopp℄ with respe
t to the basis Gopp.2.1.2 The Rosati involution, isotypi
 
omponents and orthogo-nalityThe Rosati involutionLet ' : AK �! bAK be a polarization. Then ResKk (') : W �! 
W is also apolarization; see Subse
tion 1.3.4.We want to 
al
ulate how the Rosati involution ofW with respe
t to ResKk (')is given under the isomorphism of Corollary 2.4.Let us denote the Rosati involution by (: : :)0.First of all, the (de�ning) equation �0 = '�1b�' where � 2 End0K(AK) impliesResKk (�0) = ResKk (')�1 ÆResKk (b�) ÆResKk (') = ResKk (�)0:To 
al
ulate the Rosati involution of a� , we use the in
lusion of End0k(W ) intothe matrix ring MGopp(End0K(A)) and the fa
t that ResKk (')
k idK is a produ
tpolarization, and 
al
ulate the Rosati involution with the help of Lemma A.16.Sin
e a� 
orresponds to the matrix A� = (Æ�;��)�;�2Gopp (see (2.3)), a0� 
or-responds to the matrix (Æ�;��)�;�2Gopp = (Æ��1�;�)�;�2Gopp = (Æ�;��1�)�;�2Gopp =A��1 . Thus a0� = a��1 :Sin
e the Rosati involution is an anti-ring-endomorphism, this implies:Proposition 2.6 Let Kjk be a �nite Galois �eld extension with Galois group G,A an abelian k-variety, W the Weil-restri
tion of AK with respe
t to Kjk. Let' : A �! bA be a polarization. Let � 7! �0 be the Rosati involution asso
iatedto '. Then under the isomorphism of Corollary 2.4, the Rosati involution as-so
iated to the polarization ResKk (') : W �! 
W is given by P�2Gopp �� � 7!P�2Gopp ��1�0� =P�2Gopp ��1(�0�)��1.Dimensions of 
omponentsFrom now on, let k be perfe
t.



The endomorphism ring 39As in the above proposition, let A be an abelian k-variety, Kjk a galois �eldextension of degree n with galois group G, W the Weil-restri
tion of AK withrespe
t to Kjk, let t : Gopp �! EndK(AK) be the natural operation.Let D � End0K(AK) be a subring whi
h is a division ring and whi
h is invariantunder the operation t.Let Lsi=1 �i ' Dt[Gopp℄ be a de
omposition of the Dt[Gopp℄-right moduleDt[Gopp℄, where we regard the �i as submodules ofDt[Gopp℄. This de�nes partitionof unity 1 = Pi ei where the ei are pairwise orthogonal and idempotent andei 2 �i. Now, �i = eiDt[Gopp℄, and 
onversely, if we are given a de
ompositionof the unity 1 =Pi ei with pairwise orthogonal idempotents ei, �i := eiDt[Gopp℄de�nes a de
omposition of the Dt[Gopp℄-right module Dt[Gopp℄.Via the in
lusion Dt[Gopp℄ ,! End0K(AK)t[Gopp℄ ' End0k(W ), we 
an regardthe ei to be elements of End0k(W ). For ea
h i, let 
i 2 N su
h that 
iei 2 Endk(W ).Now let Wi := 
iei(W ). Then Lsi=1Wi � W . (Conversely, su
h an isogenyde
omposition where the Wi are abelian subvarieties of W de�nes a partition ofunity and thus a de
omposition of End0K(AK) as right-End0K(AK) module; seeA.2.5 for details.)Proposition 2.7 Let D � End0K(AK) be a subring whi
h is a division ring whi
his invariant under the operation t on End0K(AK). Let Lsi=1 �i ' Dt[Gopp℄ bea de
omposition of the Dt[Gopp℄-right module Dt[Gopp℄. This 
orresponds to thepartition of unity 1 =Pi ei. Let Wi := 
iei(W ) as above. Then WiK � AniK whereni = dimD(�i):Proof Choose a bije
tion of Gopp with the set f1; : : : ; ng. Then A GoppK ' AnK .Let l and L be the left regular (matrix) representations of End0K(AK)t[Gopp℄,lD and LD the left regular (matrix) representations of Dt[Gopp℄ (both regularmatrix representations with respe
t to the basis Gopp). Let �M : MGopp(D) �!MGopp(End0K(AK)) be the 
anoni
al in
lusion. Then L = �M LD.By 
onstru
tion lD(ei) is the identity on �i and zero on all �j for j 6= i.Let ni be the dimension of the D-module �i. For ea
h i, 
hoose a basis(b(j)i )j=1;:::;ni of the D-module �i. Then all n elements b(j)i de�ne a basis of theD-module Dt[Gopp℄. With respe
t to this basis, the matrix asso
iated to lD(ei) iszero outside a blo
k of size ni where it is the identity matrix.We now have two matrix representations of lD(ei) with respe
t to di�erentbases, and via a base 
hange matrix, we 
an transform one into the other: Thereexists an invertible matrix B su
h that BLD(ei)B�1 is zero outside a blo
k of sizeni where it is the identity matrix. By multiplying B with a 
onstant in N, we 
anassume that all entries of B lie in D \ EndK(AK).Let b be the endomorphism of AGoppK ' AnK whi
h is asso
iated to �M(B). Byour notational 
onventions, the endomorphism asso
iated to the matrix L(ei) =�MLD(ei) is ei
k idK . We see that b�1(ei
k idK)b is the proje
tion of AGoppK ' AnK
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tions of old abelian varietiesto AniK . Thus the image of b�1
i(ei 
k idK)b is AniK , and the image of 
i ei 
k idKis isomorphi
 to AniK . 2Remark Let A be simple, D = End0K(AK). Assume that all ei in the aboveproposition are 
entral. Then all �i as above are rings andLsi=1 �i ' Dt[Gopp℄ isan isomorphism of rings. Further, the Wi = 
iei(W ) are generated by the isotypi

omponents of W and �i ' End0k(Wi). So in parti
ular, the number ni in theabove proposition satis�es ni = dimD(End0k(Wi)).The Rosati involution and representation theoryIn Subse
tion A.2.5, the following is shown:A de
omposition of an abelian variety into isotypi
 
omponents 
orresponds tothe partition of unity 1 = Pi ei into 
entral simple pairwise orthogonal idempo-tents. (The de
omposition of the abelian variety as well as the partition of unityare unique up to a permutation.)Further, the isotypi
 
omponents are orthogonal with respe
t to any polariza-tion. This 
orresponds to the fa
t that for any Rosati involution ei = e0i.We now want to show how for the Weil-restri
tion W the orthogonality of theisotypi
 
omponents is 
losely related to a well-known result from representationtheory.To use this result, we make the assumption, that A is simple, the endomor-phism ring of AK is 
ommutative and all endomorphisms of AK are de�ned overk. Fix a polarization ' on A.Under our assumptions, End0k(W ) is isomorphi
 to the \ordinary" group ringEnd0K(AK)[Gopp℄.We �x an in
lusion of End0K(AK) into Q . Then the Rosati involution operateson End0K(AK) by 
onjugation.Let (: : :)0 be the involution of Q [Gopp℄ given byP�2Gopp��� 7!P�2Gopp����1.Note that by Proposition 2.6, this involution restri
ts to the Rosati involution onEnd0K(AK)[Gopp℄.Let �j; j = 1; : : : be the 
hara
ter maps of Gopp. And let 1 =Pj e(j) be thede
omposition of the unity in the ring Q [Gopp℄. Then by representation theory,e(j) =P�2Gopp 1n�j(1)�j(��1)�; see [La, XVIII, Proposition 4.4.℄.This implies e(j)0 =P�2Gopp 1n��1�j(1)�j(��1) =P�2Gopp 1n�j(1)�j(�)��1 =e(j).The 
entral idempotents ei of the group ring EndK(AK)[Gopp℄ have the formP
 e(i
 ), where all i
 are distin
t. Thus ei = e0i for the Rosati involution withrespe
t to ResKk ('), whi
h is 
onsistent with the result ei = e0i for general abelianvarieties and any polarization.



The endomorphism ring 412.1.3 The 
y
li
 
aseLet k still be a perfe
t �eld. We now apply the above results to the 
ase that Gis 
y
li
.We identifyG withGopp and �x some generator � 2 G. Let a = a� 2 Endk(W )be the automorphism 
orresponding to �. (Sin
e G is 
ommutative, a� = s�1� ; seep. 17)Denote the residue 
lass of X in Q [X ℄=(Xn � 1) by x. Then we have anin
lusion Q [X ℄=(Xn � 1) �! End0K(AK)t[G℄; x 7! �:The polynomial Xn � 1 splits over Z[X℄Xn � 1 =Ydjn �dHere, �d is the d-th 
y
lotomi
 polynomial, a normalized and irredu
ible poly-nomial of degree '(d) whose roots are the primitive d-th roots of unity. SoQ [X℄=�d = Q(�d).Let �0d := (Xn � 1)=�d. By the Eu
lidian algorithm, there exist 	d 2 Q [X℄withPdjn	d�0d = 1. Let Ed := 	d�0d. Then the Ed(x) 2 Q [X℄=(Xn�1) are pair-wise orthogonal idempotents and de�ne a partition of unity. The de
omposition
orresponding to this partition isQ [X℄=(Xn � 1) 'Ydjn Q [X℄=�d =Ydjn Q(�d):(This is nothing but the Chinese Remainder Theorem in this parti
ular 
ase.)Let Wd := 
dEd(a)(W ) for suitable 
d 2 N. We then have an isogeny de
om-position W �YdjnWd;and by Proposition 2.7, the Wd are abelian varieties with WdK � A'(d)K .We also have Wd = �0d(a)(W ). { We only have to show that 
d�0d(a)(W ) �Wd. This follows from �0d(x) = (Pf jn	f (x)�0f (x))�0d(x) = 	d(x)�0d2(x) =Ed(x)�0d(x).It is 
lear thatWd is also the redu
ed identity 
omponent of the kernel of 
d(id�Ed(a)) = 
dPf jn;f 6=d	f (a)�0f (a) = (
dPf jn; f 6=d	f (a)Qgjn; g 6=d;f �g(a))�d(a).It is also the redu
ed identity 
omponent of the kernel of �d(a). { We only haveto show that Wd is 
ontained in this kernel. But sin
e Wd = �0d(a)(W ) and�0d(x)�d(x) = 0, this is obvious.Let W 0d be the abelian subvariety whi
h is generated by the Wf , f jn; f 6=d. Then W 0d = (id � Ed(a))(W ) = (Pf 6=dEf )(W ). Analogously to the abovearguments one shows that W 0d = �d(a)(W ) and that W 0d is the redu
ed identity
omponent of the kernel of �0d(a).



42 Chapter 2. Weil-restri
tions of old abelian varietiesWe now want to study whether the Wd are simple or split further. We makethe following assumptions.AK is a simple abelian variety whose endomorphism are all de�ned over k andwhose endomorphism ring is 
ommutative.Note that if k is �nite, all endomorphisms of AK are automati
ally de�nedover k if we assume EndK(AK) to be 
ommutative.Also if A is a non-super-singular ellipti
 
urve over any �eld and n is odd,then all endomorphism of AK are de�ned over k. This is be
ause under this
ondition, End(AK) is either Z or a quadrati
 order, thus the only possible non-trivial automorphism of EndK(AK) has order 2, and 
onsequently the kernel ofthe representation Gal(Kjk) �! Aut(EndK(AK)) is trivial.Under the assumptions, we have the isomorphismsEnd0k(Ak)[X℄=(Xn � 1) ' End0K(AK)[G℄ ' End0k(W )x 7! � 7! a :Let �d split into the produ
t of the non-trivial irredu
ible polynomials �(1)d ;�(2)d ;: : : ;�(rd)d over End0k(A). Let �(i)d := (Xn�1)=�(i)d . Sin
eXn�1 is in 
hara
teristi
0 a separable polynomial, the �(i)d are all di�erent for all d and i, and there exist	(i)d with PdjnPrd1=i	(i)d �0d(i) = 1. Let E(i)d := 	(i)d �0d(i).Then again by Proposition 2.7, W (i)d := E(i)d (a)(W ) is an abelian varietywith W (i)dK � Adeg(�d(i))K . The abelian subvariety W (i)d is simple and its endo-morphism ring is isomorphi
 to the integral 
ommutative ring Endk(A)[X℄=�(i)d .Sin
e Endk(W ) is 
ommuntative, the W (i)d are pairwise non-isogenous and theyare thus the isotypi
 
omponents of W .As above, one sees that W (i)d = �0(i)d (a)(W ) and that W (i)d is the redu
edidentity 
omponent of the kernel of �(i)d (a).The 
omponentWd is simple i� �d is irredu
ible over End0k(A), i.e. i� End0k(A)and Q(�d ) are linearly disjoint. 6 If we �x an in
lusion of End0k(A) into Q , this isthe 
ase i� End0k(A) \ Q(�d) = Q .It parti
ular, non of the Wd splits if End0k(A) = Q as is the 
ase if A is anellipti
 
urve without 
omplex multipli
ation.We proved:Theorem 5 Let Kjk be a �nite 
yl
i
 �eld extension of degree n of perfe
t �elds.Let A be an abelian variety over a �eld k.Let W be the Weil-restri
tion of AK with respe
t to Kjk. For all djn, W 
on-tains 
anoni
ally an abelian subvariety Wd with WdK � A'(d)K , and W is isogenousto the produ
t of the Wd. Here, W1 = A itself.Assume in addition that AK is simple, End0K(AK) is 
ommutative and allendomorphisms of AK are de�ned over k. Fix an in
lusion of End0K(AK) into Q .6For de�nition of \linear disjoint" see Subse
tion A.3.1 in the appendix.
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omponents of W are all simple, and its endomorphism ringsare all 
ommutative. For ea
h d, Wd is simple i� End0k(A) \ Q(�d) = Q.Let A be a non-super-singular ellipti
 
urve with 
omplex multipli
ation (de-�ned over k). Fix an in
lusion of Endk(A) into Q .Then End0k(A) is a imaginary quadrati
 extension of Q . Now End0k(A) andQ(�d) are not linearly disjoint i� End0k(A) � Q(�d ). If this is the 
ase then �dsplits into two polynomials of degree 12'(d).Let A still be a non-super-singular ellipti
 
urve and let k be �nite. ThenEnd0k(A) = Q [�℄ where � is a root of the 
hara
teristi
 polynomial of the Frobe-nius. Thus �d splits i� � 2 Q(�d).Corollary 2.8 Under the assumptions of the theorem, let A be a non-super-singular ellipti
 
urve with Endk(A) = EndK(AK) (this 
ondition is automati
allysatis�ed over �nite �elds or if n is odd).Then for ea
h d, Wd is not simple i� AK has 
omplex multipli
ation andEnd0k(A) � Q(�d). If this is the 
ase, Wd 
ontains 
anoni
ally two simple non-isogenous abelian subvarieties with dimension '(d)2 , and Wd is isogenous to theprodu
t of these abelian subvarieties. 7The tra
e-zero-hypersurfa
eLet again A be an abelian k-variety.By the above argumentation, W is isogenous to W1 whi
h is isomorphi
 to Aitself and W 01, the abelian subvariety of W generated by Wd for djn and d 6= 0.Now �1 = X � 1 and �01 = Xn�1 + � � � + 1 and thus W1 = (an�1 + � � � + id)(W ),W 01 = (a � id)(W ), and W1 is the redu
ed itentity 
omponent of the kernel ofa� id and W 01 is the redu
ed itentity 
omponent of the kernel of an�1 + � � �+ id.Now both these kernels are in fa
t itself equal to W1, W 01 respe
tively. This isobvious for W1, sin
e ker(a� id) is by de�nition equal to A embedded in W . Butit is also true for W 01:Let N := ker(�01(a)) = ker(an�1 + � � � + id). Let �n := f0; : : : ; n � 1g and
onsider the isomorphism Wk ' EGk ' E�nk where the \�i-th" fa
tor 
orrespondsto the i-the fa
tor. Under this isomorphism,Nk 
orresponds to ker(p0+� � �+pn�1),where for i = 0; : : : ; n� 1, the pi : E�nk �! Ek are the proje
tions. Now ker(p0 +� � �+ pn�1) �! En�1k ; P = (P0; : : : ; Pn�1) 7! (P1; : : : ; Pn�1) is an isomorphism.As W 01 = N = ker(�00(a)) = ker(an�1 + � � � + id), we 
all N the tra
e-zero-hypersurfa
e of W (although this term is not 
ompletely a

urate if dim(A) > 1).Note that W is isogenous to A �k N but not isomorphi
 to it, for N \ A :=N �W A = ker( n timesz }| {idA + � � � + idA) = ker([n℄) = A[n℄.7Over �nite �elds, the dimensions of the simple isogeny-fa
tors of W in Corollary 2.8 were�rst established by N. Naumann using the l-adi
 representation; see [Na℄.
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tions of old abelian varietiesThis fa
t makes the study of N parti
ularly interesting, and we will 
on
entrateon this obje
t for the rest of the 
hapter.The following result gives a 
avor of the 
onsequent results about N .Let ' : A �! bA be a polarization of A, de�ned by the ample sheaf L on Ak.As said above, ResKk (') : W �! 
W is also a polarization, de�ned by the sheafLWk .We are interested in the kernel of the polarization 
�N ResKk (') �N de�ned by��N (LWk).Proposition 2.9 A \ N = A[n℄ is immersed in ker(
�N ResKk (') �N ). If ' is aprin
ipal polarization, they are equal.Proof The �rst statement follows from Lemma A.19, the se
ond from Lemma A.23with f = id� an�1. (It is N = im(f), and further f = f 0 by proposition 2.6 andker(f 0) = ker(f) = A.) 2Let E be a non-super-singular ellipti
 
urve, N the asso
iated tra
e-zero-hyper-surfa
e. We want to study the N�eron-Severi group of N via a \geometri
" ap-proa
h. In order to do so, we now study the N�eron-Severi group of the produ
t ofisomorphi
 ellipti
 
urves.2.2 The N�eron-Severi group of a produ
t ofisomorphi
 ellipti
 
urvesLet E be an ellipti
 
urve over a perfe
t �eld K, let n be a natural number. Inthis se
tion, we want to study the various properties of the endomorphism ringand the N�eron-Severi group of En.In the �rst subse
tion, we put the results of [Mu, p.208-210℄ into more 
on
reteterms. In the se
ond subse
tion, we give a basis for the N�eron-Severi group of En,then in the show the N�eron-Severi group on an abelian variety whi
h is a twistof En (i.e. whi
h is after a base-
hange isomorphi
 to En) 
an (in prin
iple) be
al
ulated. This result will be the basis of the 
al
ulations of the next se
tion.2.2.1 The N�eron-Severi group and the endomorphism ringThe 
anoni
al produ
t polarization of EnLet pi : En �! E be the proje
tions and let �i : E ,! En be the immersions ontothe \i-th fa
tor".Let Di be the divisor 8 p�1i (0) = E � E � � � � �E � 0�E � � �E (0 in the i-thposition), D :=Pni=1Di.8Sin
e abelian varieties are non-singular, e�e
tive (Weil- or Cartier)-divisors are in bije
tion



The N�eron-Severi group of a produ
t of ellipti
 
urves 45Let ' : E �! bE be the 
anoni
al prin
ipal polarization de�ned by the ampledivisor (0). The divisor D de�nes the \
anoni
al" produ
t polarization of En, let'n : En �! 
En denote this polarization. Sin
e (0) de�nes a prin
ipal polarizationof E, 'n is a prin
ipal polarization, i.e. 'n an isomorphism. (Corresponding tothe fa
t that D has Euler-
hara
teristi
 n!.) 9The Galois group Gal(KjK) operates on NS(EnK), and we have an in
lu-sion � : NS(EnK)Gal(KjK) �! HomK(En; 
En); M 7! �M. By 
omposition withthe homomorphism '�1n , NS(EnK)Gal(KjK) be
omes a subgroup of EndK(En) 'Mn(EndK(E)). 10 Its image equals the subgroup of elements whi
h are �xedunder the Rosati involution; see Lemma A.14. 11The Rosati involutionIf � 2 End0K(E), let � denote the 
orresponding 
onjugated element. (If E issuper-singular, let � be the 
onjugated element in the �eld extension Q(�).) Thenthe Rosati involution of E (with respe
t to the ample divisor (0)) is given by� 7! �.The following lemma is a spe
ial 
ase of Lemma A.16:Lemma 2.10 The Rosati involution of En with respe
t to L(D) is given by A 7!A> (transposition and 
onjugation) on Mn(End0K(E)).So if E is non-super-singular, NS(EnK)Gal(KjK) is isomorphi
 to the group ofhermitian matri
es of Mn(EndK(En)).The degree and the Euler-
hara
teristi
Let us state how the degree and the Euler-
hara
teristi
 of a divisor 
an be 
al
u-lated if it is given as an element of Mn(EndK(En)). We follow the ideas of [Mu,p.209℄.First, we need to know how the degree of an endomorphism given as an elementof Mn(EndK(En)) 
an be 
al
ulated. On EndK(E), the degree of � 2 EndK(E)is given by deg(�) = ��.Lemma 2.11 Assume that E is non-super-singular. The degree fun
tion of Enis given on Mn(EndK(E)) by deg(A) = det(A) det(A).with 
losed subs
hemes of pure 
odimension 1. We will also 
all su
h subs
hemes (e�e
tive)divisors. We will use that for some surje
tion a : A �! B of non-singular, 
onne
ted varietiesA, B and some 
losed subs
heme of pure 
odimension 1 D of B, the \pull-ba
k" of the Cartier-divisor asso
iated to D 
orresponds to the s
heme-theoreti
 inverse image a�1(D); see Subse
tionA.3.2.9This se
tion relies on Subse
tion A.2.2 in the appendix.10It it important here that D de�nes a prin
ipal polarization.11We will see that NS(En) ,! NS(EnK)Gal(KjK) is an isomorphism.
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tions of old abelian varietiesProof The equation is true for singular matri
es (whi
h 
orrespond to endomor-phism with non-�nite kernel and thus have by de�nition degree 0).Further, the equation is true for diagonal matri
es (the value on both sidesbeing the produ
t over the squares of the norms of the diagonal elements), forupper/lower triangular matri
es with diagonal elements all 1 (the value on bothsides being 1) and for permutation matri
es (where the value on both sides isagain 1).Let A be non-singular. By the 
omplete Gau�-Algorithm, there exist Bi; i =1; : : : ;m whi
h are diagonal matri
es or upper/lower triangular with diagonal el-ements 1 or permutation matri
es su
h that Bm � � � B1A = aI, where a 2 N.Sin
e the equation is multipli
ative on both sides and true for all Bi and foraI, it is also true for A. 2Remark If E is super-singular, a similar result holds: If we 
hose a quadrati
�eld extension F inside End0K(E), then Mn(F ) is a subgroup of Mn(End0K(E)).On this group, the lemma holds. (To 
al
ulate the degree for the whole groupEnd0K(En), one has to use the so-
alled redu
ed norm.)For any divisor C on En, the degree of C (i.e. the degree of �L(C)) is the degreeof the endomorphism '�1n Æ�L(C) of En. If this endomorphism 
orresponds to thematrix A with entries in a 
ommutative subring of EndK(E), by the Riemann-Ro
h-theorem and the above result, �(L(C))2 = deg(L(C)) = det(A)det(A), thusj�(L(C))j = jdet(A)j.Lemma 2.12 Again let C be a divisor on En. Assume that E is non-super-singular or that C ful�lls the 
onditions of the above remark. Then �(L(C)) =det(A).This follows from the following lemma.Lemma 2.13 Let the notations and the 
onditions on C be as above. Then�(L(D)z 
 L(C)) = det(zI + A) = p�A(z), where p�A is the 
hara
teristi
 poly-nomial of the matrix �A.Proof For any z 2 Z, j�(L(D)z 
 L(C))j = j�(L(zD + C))j = jdet(zI + A)j bylinearity and the above result. So we only have to 
he
k that the sign is 
orre
t.By the Riemann-Ro
h theorem, z 7! �(L(D)z 
 L(C)) = 1n!(zD + C)n is apolynomial fun
tion of degree n, and 1n!(zD + C)n = 1n!(zn(D)n+(lower orderterms))= zn+ (lower order terms). Analogously, p�A(z) = zn+ (lower orderterms). Thus for large z, p�A(z) and �(L(D)z 
 L(C)) are both positive, andthus they are equal for these z. Espe
ially, they are equal for in�nitely many z,and being polynomial fun
tions they are equal. 2
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urves 47Lemma 2.14 Let the notations and the 
onditions on C be as above, and furtherassume L(C) to be non-degenerate. Then i(L(C)), the index of L(C), is thenumber of negative eigenvalues of A. In parti
ular, L(C) is ample i� det(A) 6= 0and the eigenvalues of A are all positive.Proof By Proposition A.25 (
f. [Mu, par. 16, p. 155℄) and the above lemma, theindex is the number of positive roots of p�A, i.e. the number of positive eigenvaluesof �A, i.e. the number of negative eigenvalues of A. The se
ond statement is areformulation of Lemma A.26. 22.2.2 A basis for the N�eron-Severi groupFor ea
h i = 1; :::; n, let �i 2 EndK(E). Let not all �i be 0. Let � := (�1; : : : ; �n)and let � := �1p1 + � � �+ �npn : En �! E be the 
orresponding morphism.Now the 
losed subs
heme C(�) := ker(�) is purely n � 1-dimensional and isthus an e�e
tive divisor on En. The .-valued points of C(�) arefP = (P1; : : : ; Pn)j �1 Æ P1 + �2 Æ P2 + � � �+ �n Æ Pn = 0g:Proposition 2.15 The 
lass of the sheaf L(C(�)) (in NS(En)) 
orresponds tothe endomorphism with the matrix0BBB� �1�1 �1�2 � � � �1�n�2�1 �2�2 � � � �2�n... ... . . . ...�n�1 �n�2 � � � �n�n 1CCCA = 0BBB� �1�2...�n 1CCCA� �1 �2 � � � �n � :Proof In the notation of Subse
tion A.2.3, we have to show that '�1n �L(C(�)) = �0�.We may assume that K is algebrai
ally 
losed. We use that for all K-valuedpoints P of En and endomorphisms �, � Æ TP = T�ÆP Æ �.Now, for every K-valued point P of En, �L(C(�)) ÆP is de�ned by T�1P (C(�))�C(�) = T�1P ��1(0)���1(0) = ��1(T�1�ÆP (0)� (0)). Thus �L(C(�)) = b�'� = 'n�0�.2Notation Let � 2 EndK(E) and 1 � i < j � n. Let C�i;j be the divisorasso
iated with the 
losed subs
hemefP = (P1; : : : ; Pn)jPi + � Æ Pj = 0g:Then the by the above results the matrix of C is zero but at the entries (i; i); (i; j);(j; i); (j; j). Here it looks like � 1 �� �� �



48 Chapter 2. Weil-restri
tions of old abelian varietiesWe see that the group of endomorphisms of En invariant under the Rosatiinvolution is generated by the endomorphisms 
orresponding to Di and C�i;j. SoNS(En) 'NS(EnK)Gal(KjK). We 
an give a basis for NS(En) in terms of a basis ofEndK(E).Theorem 6 Let K be a perfe
t �eld and let E be a non-super-singular ellipti
K-
urve. Then NS(En) ' NS(EnK)Gal(KjK).With the above notations,� if E has no 
omplex multipli
ation (over K), then Di for i = 1; : : : ; n andC1i;j for i < j is a basis for NS(En).� if EndK(E) is an order in a quadrati
 imaginary �eld and �; � is a basis ofEndK(E), then Di for i = 1; : : : ; n and C�i;j, C�i;j for i < j is a basis forNS(En).� if EndK(E) is an order in a quaternion algebra and �; �; �; � is a basis ofEndK(E), then Di for i = 1; : : : ; n and C�i;j; C�i;j; C�i;j; C�i;j for i < j is abasis for NS(En).2.2.3 The N�eron-Severi group of a twistLet Kjk be a Galois �eld extension of odd degree and let E be a non-super-singular ellipti
 
urve over k. Let A be an abelian k-variety su
h that AK � EnK .We want to 
al
ulate the N�eron-Severi-group of A as a subgroup of EndK(EnK) 'Mn(EndK(EK)).By Lemma A.11, the N�eron-Severi-group of A 
onsists of those elements of theN�eron-Severi-group of AK � EnK whi
h are invariant under the Galois-a
tion. Forea
h � 2 G, we have an arithmeti
 operation of AK=K. Under the isomorphismAK � EnK this operation 
orresponds to an automorphism e� on EnK . e� is of theform s�� with � the 
anoni
al automorphism of EnK=K and s� a K-automorphismof EnK .Under our assumption that E be non-super-singular and n be odd, all endo-morphisms of EK are de�ned over k. So also all endomorphisms of EnK are de�nedover k and so all elements of NS(EnK) are invariant under � and in order to de-termine the invariant elements under the a
tion of e� we have to 
al
ulate whi
helements are invariant under s� for all � 2 G.A spe
ial 
ase of Proposition A.15 is:Let x 2 NS(EnK), 
orresponding to a hermitian matrix X 2 Mn(Endk(E)).Then s��(x) 
orresponds to the matrix S�>XS�.This implies:Proposition 2.16 Let Kjk be a Galois �eld extension of with Galois group Gof odd degree. Let E be a non-super-singular ellipti
 
urve over k. Let A be an
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e-zero-hypersurfa
e 49abelian k-variety su
h that AK � EnK . Assume that all K-endomorphisms of EKare de�ned over k. For ea
h � 2 G, the Galois-operation on AK=K is de�nedby e� = �s� where s� is a K-automorphism of En 
orresponding to a matrixS� 2Mn(EndK(EK)).Let x 2 NS(En), 
orresponding to a hermitian matrix X 2 Mn(Endk(E)).Then x 2 NS(A) i� for all � 2 G,S�>XS� = X:
2.3 The N�eron-Severi group of the tra
e-zero-hypersurfa
eIn this se
tion, we study the N�eron-Severi group of the tra
e-zero-hypersurfa
eN of the Weil-restri
tion of a non-super singular ellipti
 
urve with respe
t to a
y
li
 Galois extension of odd degree. In parti
ular, we want to know if N has aprin
ipal polarization; see Subse
tion 1.3.4.Let Kjk be a 
y
li
 Galois extension of degree n with Galois group G. IdentifyG with Gopp and let � be a generating element of G.Let E be an ellipti
 
urve, W be the Weil-restri
tion of EK := E 
k K withrespe
t to Kjk. Let N be the tra
e-zero-hypersurfa
e, �N : N ,! W the embed-ding.2.3.1 The 
anoni
al polarization of the tra
e-zero-hypersurfa
eLet ' be the 
anoni
al prin
ipal polarization of E. Then ResKk (') is a prin
ipalpolarization of W .As in the end of Subse
tion 2.1.3, let �n denote the set f0; : : : ; n� 1g. ThenWK ' E �nK , and under this identi�
ation ResKk (') is de�ned by the divisorD := PiDi where Di := p�1i (0). (This divisor is Galois-invariant under the\twisted operation" and des
ends to a divisor on W .)We 
all the pull-ba
k of the polarization ResKk (') the 
anoni
al polarizationof N . Sin
e W is not the produ
t of E and N but only isogenous to the produ
t,the pull-ba
k of this polarization is not prin
ipal.Re
all that with Proposition 2.9, the kernel of this polarization isK(��N (L(D))) = E \N = E[n℄: (2.6)This implies:Proposition 2.17 After the 
hoi
e of the generator � of Gal(Kjk), N is 
anon-i
ally isomorphi
 to its dual.
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tions of old abelian varietiesProof Sin
e the polarization ���NL(D) has kernel E[n℄, bN is 
anoni
ally isomorphi
to N=E[n℄.Now 
hoose a generator � of Gal(Kjk). The morphism a� � id : N �! N haskernel E[n℄. Thus this morphism indu
es an isomorphism of N with N=E[n℄. 2We 
an give a suÆ
ient 
ondition so that N is isogenous to a prin
ipallypolarized abelian variety.Proposition 2.18 Let Kjk be an extension of prime degree l. If the group s
hemeE[l℄ has a non-trivial subgroup over k - e.g. if k 
ontains an l-torsion-point of Eor if 
har(k) = l, then N is isogenous to a prin
ipally polarized abelian variety.Proof Any non-trivial subgroup of the group E[l℄ is automati
ally a maximalisotropi
 subgroup of ��N (L(D)); see [Mu, p.233-234℄. 12 If E has a k-rationall-torsion point, then this point de�nes a prime subgroup. If 
har(k) = l, then theFrobenius endomorphism of E is purely inseparable and has degree l. Its kernelde�nes a non-trivial (
onne
ted) subgroup of E[l℄. 2To give an idea of the methods employed in this 
hapter, we give a new proofof equation (2.6).If we identify WK ' E GK with E �nK where the \�i-th" fa
tor 
orrespondsto the i-th fa
tor, then for any K-s
heme S, the S-valued points of AK areP = (P0; : : : ; Pn�1) where Pi 2 EK(S) and P0 + � � � + Pn�1 = 0. So via P =(P0; : : : ; Pn�1) 7! (P1; : : : ; Pn�1), NK is identi�ed with En�1K .Under this identi�
ation of NK with En�1K the divisor ��1N (D) is given byPn�1i=1 Di + C where C is the kernel of p0 + � � � + pn�1. By Proposition 2.15, the
orresponding matrix is 0BBBBBBB� 2 1 � � � 1 11 2 . . . 1 1... . . . . . . . . . ...1 1 . . . 2 11 1 � � � 1 2
1CCCCCCCA :

By subtra
ting the lines one sees that all .-valued points of the kernel have thefrom P = (P1; : : : ; P1). Then one sees that P1 2 E[n℄. 2We identify NK with En�1K as in the above proof. Then � operates on NK bye� = �s, where � is the 
anoni
al arithmeti
 automorphism of En�1K =K and theautomorphism s is given by(P1; : : : ; Pn�1) 7! (P2; P3; : : : ; Pn�1;�P1 � � � � � Pn�1):12In [Mu℄ it is proven that over an algebrai
ally 
losed �eld every abelian variety is isogenous toa prin
ipally polarized abelian variety. This is not true over an arbitrary ground�eld, the reasonbeing that the kernel of a polarization need not have a non-trivial subgroup.



The N�eron-Severi group of the tra
e-zero-hypersurfa
e 51This 
orresponds to the matrix
S = 0BBBBB� 0 1 . . . 0... . . . . . . 00 . . . 0 1�1 �1 � � � �1

1CCCCCA : (2.7)As a spe
ial 
ase of Proposition 2.16 we get:Proposition 2.19 Let Kjk be a 
y
li
 Galois extension of perfe
t �elds and letE be a non-super-singular ellipti
 
urve. Assume that all K-endomorphism of EKare de�ned over k. Let N be the tra
e-zero-hypersurfa
e of the Weil-restri
tionwith respe
t to Kjk. Let S be de�ned as in equation (2.7). Then the N�eron-Severigroup of N 
orresponds to the subgroup of hermitian matri
es X with entries inEndk(E) whi
h satisfy S>XS = X:
2.3.2 A basis for the N�eron-Severi groupFrom now on we assume that the degree n is odd and that E is non-super singular.Re
all that under our assumption that n be odd, all K-endomorphism of EKare de�ned over k.Let n = 2m + 1. Then N is an abelian variety of dimension 2m, NK ' E2mK .We want to de�ne a basis of NS(E2m) = NS(E2mK ) whi
h is permuted under theoperation of the Galois group of K over k, i.e. if x is an element of the basis, thens�(x) shall also be an element of the basis. Then the linear invariants of this basisform a basis of NS(NK)Gal(Kjk) ' NS(N).We 
onsider the 
ase that E has no 
omplex multipli
ation �rst. In this 
aseNS(E2m) is the group of symmetri
 2m � 2m-matri
es with entries in Z, and sowe want to �nd a basis for this group su
h that if X is an element of this basis,S>XS is also an element of this basis.Let Eij be the matrix whi
h is zero ex
ept at the entry (i; j) where it is 1.Let Ai;j be the matrix whi
h is zero ex
ept at (i; j) and (j; i) where it is 1. (Ifi = j there is only one non-zero entry.) So Ai;i = Ei;i and Ai;j = Ei;j + Ej;i fori 6= j. The m(2m + 1) matri
es Ai;j for 1 � i � j � n form a basis of the freeabelian group of symmetri
 matri
es with entries in Z. For any symmetri
 matrixX, let X = Pi�jX(i; j)Ai;j where X(i; j) 2 Z. We also write X(j; i) for X(i; j)(i � j).



52 Chapter 2. Weil-restri
tions of old abelian varietiesLet Bl :=Pi=1;��� ;2m�Ei;l +Pj=1;��� ;2m�El;j =0BBBBBBBBBBBB�
l-th 
olumn�1...�1l-th row �1 � � � �1 �2 1 � � � 1�1...�1

1CCCCCCCCCCCCA :
Let V :=P1�i;j�2mEi;j = ((1)) be the matrix whose entries are all 1.Lemma 2.20 Let m be a number. Then Ai;j for i � j; j � i 6= m;m + 1, Blfor l 6= m;m + 1 and V form a basis for the free abelian group of symmetri
2m� 2m-matri
es with entries in Z.Proof The set de�ned in the lemma 
onsists of m(2m+1)� (2m� 1) of the formAi;j, 2m� 2 elements of the form Bl and V , thus the total number of elements ism(2m+ 1) { as required for a basis.We have to 
he
k that that the base 
hange matrix from the basis Ai;j; i; j =1; : : : ; n to the elements in the lemma is invertible.For this, we only have to 
he
k that the following 2m � 1� 2m� 1-matrix isinvertible:0BBBB� B1(1; m + 1) � � � Bm�1(1; m + 1) Bm+2(1; m+ 1) � � � B2m(1; m+ 1) V (1; m + 1)... ... ... ... ...B1(m; 2m) � � � Bm�1(m; 2m) Bm+2(m; 2m) � � � B2m(m; 2m) V (m; 2m)B1(1; m + 2) � � � Bm�1(1; m + 2) Bm+2(1; m+ 2) � � � B2m(1; m+ 2) V (1; m + 2)... ... ... ... ...B1(m � 1; 2m) � � � Bm�1(m � 1; 2m) Bm+2(m� 1; 2m) � � � B2m(m� 1; 2m) V (m � 1; 2m)

1CCCCAThis is 0BBBBBBBBBBBBBBBBBBB�
B1 B2 ��� Bm�1 Bm+2 ��� B2m�1 B2m V# # # # # # #�1 0 � � � � � � 0 1�1 �1 1. . . . . . ...�1 �1 10 � � � � � � 0 �1 1�1 �1 1�1 . . . 1. . . �1 ...�1 �1 1

1CCCCCCCCCCCCCCCCCCCA :
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e-zero-hypersurfa
e 53Ex
ept for the sign this has the same determinant as0BBBBBBBBBBBBBBB�
1 0 � � � � � � 0 11 1 1. . . . . . ...1 1 10 � � � � � � 0 1 10 1 00 �1 . . . 0. . . . . . 1 ...0 �1 1 0

1CCCCCCCCCCCCCCCA :
And the determinant of this matrix isdet0BBBBBB� 1 11 0�1 . . . 0. . . 1 ...�1 1 0

1CCCCCCA = det0BBBB� 1�1 . . .. . . 1�1 1
1CCCCA = 1:2 We now 
he
k that this basis is permuted under the Galois-operation, i.e. ifX is an element of the basis, then S>XS is another element of the basis.We do some 
al
ulations �rst.Let j < 2m. Then Ei;jS = Ei;j+1.Ei;2mS =Pj=1;:::;2m�Ei;j.Let i < 2m. Then S>Ei;j = Ei+1;j.S>E2m;j =Pi=1;:::;2m�Ei;j.It followsLet i; j < 2m. Then S>Ei;jS = Ei+1;j+1.Let i < 2m. Then S>Ei;2mS = S>(Pj=1;:::;2m�Ei;j) =Pj=1;:::;2m�Ei+1;j.Let j < 2m. Then S>E2m;jS = S>E2m;j+1 =Pi=1;:::;2m�Ei;j+1.S>E2m;2mS = S>(Pj=1;:::;2m�E2m;j) =Pi;j=1;:::;2mEi;j .And this impliesLet i < 2m. Then S>(Pj=1;:::;2mEi;j)S =Pj=1;:::;2m�1Ei+1;j+1 +Pj=1;:::;2m�Ei+1;j = �Ei+1;1.S>(Pj=1;:::;2mE2m;j)S =Pi=1;:::;2m; j=1;:::;2m�1�Ei;j+1 +Pi;j=1;:::;2mEi;j =Pi=1;:::;2mEi;1.Let j < 2m. Then S>(Pi=1;:::;2mEi;j)S =



54 Chapter 2. Weil-restri
tions of old abelian varietiesPi=1;:::;2m�1Ei+1;j+1 +Pi=1;:::;2m�Ei;j+1 = �E1;j+1.S>(Pi=1;:::;2mEi;2m)S =Pi=1;:::;2m�1 j=1;:::;2m�Ei+1;j +Pi;j=1;:::;2mEi;j =Pj=1;:::;2mE1;j .AndS>(Pi;j=1;:::;2mEi;j)S =(S>(Pi=1;:::;2m�1Pj=1;:::;2mEi;j)S + S>(Pj=1;:::;2mE2m;j)S =(Pi=1;:::;2m�1�Ei+1;1) + (Pi=1;:::;2mEi;1) = E1;1.It follows:Lemma 2.21Let 1 < i � j. Then S>Ai;jS = Ai+1;j+1.S>A2m;2mS = V .S>V S = A1;1.Let i < 2m. Then S>Ai;2mS = Bi+1.S>B2mS = B1.Let l < 2m. Then S>BlS = A1;l+1.With this result it is easy to give a basis of NS(N) as a subgroup ofM2m�2m(Z).For the 
onvenient notation let for l = 0; : : : ; 2m� 1 Vl :=Pi=1;:::;2m�lAi;i+l.So if we 
all the main-diagonal the 0-diagonal and give numbers 1; : : : ; 2m� 1to the upper diagonals and numbers �1; : : : ;�2m+1 to the lower diagonals, thenVi is zero ex
ept at the ith and �ith diagonal where all entries are 1.It follows from the lemma that the following matri
es de�ne a basis of NS(N):V0 +Pi=0;:::;2m�1 Vi.V1 +B1 +B2m if m � 2.Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1).We now study the 
ase that E has 
omplex multipli
ation (over k). Sin
ewe assumed that E is non-super-singular, Endk(E) is an order in an imaginaryquadrati
 �eld. There exists an � 2Endk(E) su
h that 1; � is a basis of thefree abelian group Endk(E). (If (1; �0) is a basis of the main order and f is the
ondu
tor of the order then (1; f�0) is a basis of Endk(E).)With respe
t to this � we want to de�ne a basis of the free abelian group ofhermitian n�n-matri
es with entries in Z[�℄ =Endk(E). The basis de�ned abovewill be a part of the new basis. Then we will show that the new elements of thebasis are also permuted by the Galois a
tion.Let i 6= j. Let A�i;j be the matrix whi
h is zero ex
ept at the pla
es (i; j)and (j; i). At the pla
e (i; j) it has value �, at pla
e (j; i) is has value �. SoAi;j := �Ei;j + �Ej;i.



The N�eron-Severi group of the tra
e-zero-hypersurfa
e 55Ai;j (i � j); A�i;j (i < j) is a basis for the group of hermitian n � n-matri
eswith entries in Z[�℄. If X is any su
h matrix we de�ne X(i; j; �) by X =Pi�jX(i; j)Ai;j +Pi<j X(i; j; �)A�i;j .Let B�l :=Pi=1;��� ;2m��Ei;l +Pj=1;:::;2m��El;j =0BBBBBBBBBBBB�
l-th 
olumn��...��l-th row �� � � � �� ��� � �� � � � ����...��

1CCCCCCCCCCCCA :
Let V � :=Pl=1;:::;2m(�+ �)Al;l +P1�j<i�2mA�i;j =0BBBBB� �+ � � : : : �� . . . . . . ...... . . . . . . �� . . . � �+ �

1CCCCCA :
Lemma 2.22 Ai;j for i � j; j � i 6= m;m + 1, Bl for l 6= m;m + 1, V;A�i;j fori < j; j � 1 6= m;m + 1; B�l for l 6= m;m + 1 and V � form a basis for the freeabelian group of hermitian 2m� 2m-matri
es with entries in Z[�℄.Proof We only have to 
he
k that the matrix0BBBBB� B�1 (1; m + 1; �) : : : B�m�1(1; m+ 1; �) B�m+2(1;m + 1; �) : : : B�2m(1; m + 1; �) V�(1; m+ 1; �)... ... ... ... ...B�1 (m; 2m; �) : : : B�m�1(m; 2m;�) B�m+2(m; 2m;�) : : : B�2m(m; 2m; �) V�(m; 2m;�)B�1 (1; m + 2; �) : : : B�m�1(1; m+ 2; �) B�m+2(1;m + 2; �) : : : B�2m(1; m + 2; �) V�(1; m+ 2; �)... ... ... ... ...B�1(m� 1; 2m;�) : : : B�m�1(m � 1; 2m;�) B�m+2(m � 1; 2m;�) : : : B�2m(m� 1; 2m;�) V�(m � 1; 2m;�)

1CCCCCAis invertible. But this is the same matrix as the one 
onsidered in Lemma 2.20. 2Lemma 2.23Let i < j < 2m. Then S>A�i;jS = A�i+1;j+1.Let i < 2m. Then S>A�i;2mS = B�i+1.S>B�2mS = B�1 .Let l < 2m. Then S>B�l S = A�1;l+1.S>V �S = V �.



56 Chapter 2. Weil-restri
tions of old abelian varietiesProof Everything is proven by the 
al
ulations pre
eeding Lemma 2.21 but thelast equation.Now, S>(P1�i�j�2mEi;j)S = S>(P1�i�j�2m�1Ei;j)S+S>(Pi=1;:::;2mEi;2m)S =P2�i�j�2mEi;j +P1�j�2mE1;j =P1�i�j�2mEi;jandS>(P1�j�i�2mEi;j)S = S>(P1�j�i�2m�1Ei;j)S + S>(Pj=1;:::;2mE2m;j)S =P2�j�i�2mEi;j +P1�i�2mEi;1 =P1�j�i�2mEi;j .This implies S>V �S = V �. 2Let for l = 1; : : : ; 2m V �l := Pl=1;:::;2m�l A�i;i+l. Then the following matri
esde�ne a basis of NS(N):V0 +Pi=0;:::;2m�1 ViV1 +B1 +B2m if m � 2Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1)V �1 +B�1 +B�2m if m � 2V �l + V �2m�l+1 + B�l + B�2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1)V � = (�+ �)V0 +Pl=1;:::;2m�1 V �l .We get the following proposition:Proposition 2.24 Let Kjk be a 
y
li
 Galois extension of perfe
t �elds of degreen = 2m + 1. Let E be a non-super-singular ellipti
 
urve over k. Let N be thetra
e-zero-hypersurfa
e of the Weil-Restri
tion of EK with respe
t to Kjk. ThenNS(N), the N�eron-Severi group of N , equals NS(N)Gal(kjk) and is 
anoni
ally asubgroup of the matrix group M2m�2m(Endk(E)). Under this in
lusion, the freeabelian group NS(N) has the following basis:If E has no 
omplex multipli
ation:F0 := V0 +Pl=0;:::;2m�1 Vl { this de�nes the 
anoni
al polarization of NF1 := V1 +B1 +B2m if m � 2Fl := Vl + V2m�l+1 + Bl + B2m�l+1 for l = 2; : : : ;m � 1 (if 2 � l � m � 1, thenm+ 1 < 2m� l + 1 � 2m� 1).In parti
ular, NS(N) is m-dimensional.If E has 
omplex multipli
ation and 1; � is a basis of Endk(E):F0; : : : ; Fm�1 andF �0 := (�+ �)V0 +Pl=1;:::;2m�1 V �l .F �1 := V �1 +B�1 +B�2m if m � 2F �l := V �l + V �2m�l+1 +B�l +B�2m�l+1 for l = 2; : : : ;m� 1In parti
ular, NS(N) is 2m-dimensional.In this proposition, we use the same notations as above, i.e.Bl :=Pi=1;��� ;2m�Ei;l +Pj=1;:::;2m�El;j



The N�eron-Severi group of the tra
e-zero-hypersurfa
e 57B�l :=Pi=1;��� ;2m��Ei;l +Pj=1;:::;2m��El;jVl :=Pi=1;:::;2m�lEi;i+l +Pj=1;:::2m�lEj+l;j for l � 0V �l :=Pi=1;:::;2m�l �Ei;i+l +Pj=1;:::;2m�l �Ej+l;j for l � 1.De�nition Let Gm be the subgroup of M2m�2m(Z) whi
h is generated by thematri
es F0; : : : ; Fm. We have seen that F0; : : : ; Fm is a basis for this group.Let N be the tra
e-zero-hypersurfa
e as above. Then NS(N) is embedded inMn(Endk(E)), and the elements of NS(N) whi
h 
orrespond under this inje
tionto elements of Gm de�ne a subgroup of NS(N) whi
h we 
all the generi
 part ofNS(N). Loosely speaking, the elements of the generi
 part of NS(N) are thoseelements whi
h \do not 
ome from 
omplex multipli
ation". In parti
ular, if Ehas no 
omplex multipli
ation, the generi
 part of NS(N) is the full group.Theorem 7 Let Kjk be a 
y
li
 Galois extension of perfe
t �elds of odd degreen. Let E be a non-super-singular ellipti
 
urve over k. Let N be the tra
e-zero-hypersurfa
e of the Weil-Restri
tion of EK with respe
t to Kjk. Then NS(N), theN�eron-Severi group of N , equals NS(Nk)Gal(kjk).If E has no 
omplex multipli
ation (over k), the kernel of any element ofNS(N) 
ontains the group s
heme E \N = E[n℄ of n-torsion points of E.If E has 
omplex multipli
ation, the statement is true for all elements of thegeneri
 part of NS(N) de�ned above.Proof Let n = 2m+1. Under the isomorphism NK ' E2mK , the .-valued points ofEK [n℄ 
orrespond to the .-valued points of E2mK whi
h are of the form (P; : : : ; P )for P 2 EK [n℄. We 
laim that for l = 0; : : : ;m� 1, the sum of all the 
olumns ofFl is a ve
tor of the form n0B� a1...a2m 1CA with ai 2 Z. It follows from this 
laim thatall .-valued points of E[n℄ are mapped to zero under every element of the generi
part of NS(N).The 
laim is obviously true for F0; see Proposition 2.9 with the se
ond proof,p. 50.We make two de�nitions:First, for every symmetri
 2m � 2m-matrix X, we denote Pj=1;:::;2mX(i; j) byX(i). The 
laim is then that for all l = 1; : : : ; m; i = 1; : : : ; 2m, F (i)l is divisibleby n.Se
ond, for 1 � i � j � 2m let �[i;j℄ := P
=i;:::;j Æ
;: : f1; : : : ; 2mg �! Z, i.e.�[i;j℄(�) = 1 i� i � � � j and 0 otherwise. (1 � � � 2m)Then V (:)l = �[1;2m�l℄ + �[l+1;2m℄.In parti
ular, V (1)1 = 1; V (i)1 = 2 for 2 � i � 2m � 1; V (2m)1 = 1. ThusV (i)1 = 2� Æ1;i � Æ2m;i.
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tions of old abelian varietiesFurther, for l = 2;� m � 1; 1 � i � 2m, (Vl + V2m�l+1)(i) = (�[1;2m�l℄ +�[l+1;2m℄ + �[1;l�1℄ + �[2m�l+2;2m℄)(i) = 2� Æl;i � Æ2m�l+1;i.It follows for l = 1; : : : m� 1 :For i 6= l; 2m� l + 1 is F (i)l = 2 +Bl(i; l) +B2m�l+1(i; 2m� l + 1) = 2� 2 = 0.F (l)l = 1 +Pj=1;:::;2mBl(l; j) + B2m�l+1(l; 2m � l + 1) = 1 � (2m + 1) � 1 =�(2m+ 1) = �n.F (2m�l+1)l = 1+Pj=1;:::;2mB2m�l+1(2m� l+1; j)+Bl(2m� l+1; l) = 1� (2m+1)� 1 = �(2m+ 1) = �n. 2If follows:Corollary 2.25 No element of the generi
 part of NS(N) de�nes a prin
ipal po-larization.We already know that the 
anoni
al polarization has kernel E[n℄. So:Corollary 2.26 Let E have no 
omplex multipli
ation (over k). Then N is notprin
ipally polarized. If n is a prime, N is isogenous to a prin
ipally polarizedabelian variety i� E[n℄ has a non-trivial sub-groups
heme over k.2.3.3 Complex multipli
ationLet Kjk be as above and let E be a non-super-singular ellipti
 
urve with 
omplexmultipli
ation (over k). We want to study whether the tra
e-zero-hypersurfa
e Nis prin
ipally polarized. Sin
e NS(N) ' NS(Nk)Gal(kjk), all polarizations of N arede�ned by ample sheaves on N itself.With Proposition 2.24 and the help of Lemmata 2.12 and 2.14 the questionwhether N has a prin
ipal polarization is equivalent to a numeri
al 
onditions:There exists a sheaf with Euler 
hara
teristi
 1 i� the polynomial equation ofdegree 2m in 2m variablesdet(x0F0 + � � � + xm�1Fm�1 + y0F �0 + � � �+ ym�1F �m�1) = �1is solvable in the integers.A solution to this equation de�nes a prin
ipal polarization i� x0F0 + � � � +xm�1Fm�1 + y0F �0 + ym�1F �m�1 has only positive eigenvalues. (Of 
ourse, thisimplies that the determinant had to be 1 in the above equation.)We now perform these 
al
ulations expli
itely for n = 3.Under our assumption of non-super-singularity, Endk(E) is an order in theimaginary quadrati
 �eld End0k(E). Let End0k(E) = Q(pD);D < 0 and let Æ :=pD. There exists an f 2 N su
h that Endk(E) is of the form Z+ fO where Ois the main order in the �eld End0k(E) (i.e. it is the normal 
losure of Z). Thenumber f is 
alled the 
ondu
tor of the order.
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e-zero-hypersurfa
e 59D � 2; 3 mod 4 Then 1; fÆ is a basis of Endk(E).Note that if X is some 2�2-matrix with det(X) > 0 then either X or �X haspositive eigenvalues. So there exists a prin
ipal polarization on N i�1 != det(xF0 + yF fÆ0 ) = det� 2x x+ yfÆx� yfÆ 2x � = 3x2 + y2f2Dis solvable for x; y 2 Z.D � 1 mod 4 Then 1; f 1+Æ2 is a basis of Endk(E).xF0 + yF f 1+Æ20 = � 2x+ yf x+ yf 1+Æ2x+ yf 1�Æ2 2x+ yf �The determinant of this matrix is4x2 + 4xyf + y2f2 � x2 � xyf 1 + Æ2 � xyf 1� Æ2 � y2f2 1�D4 =3x2 + xy(4f � f) + y2f2 4� 1 +D4 =3x2 + 3xyf + y2f2 3 +D4So in this 
ase N has a prin
ipal polarization i�3x2 + 3xyf + y2f23 +D4 = 1is solvable with x; y 2 Z.Theorem 8 Let Kjk be a Galois �eld extension of perfe
t �elds of degree 3. LetE be a non-super-singular ellipti
 
urve over k. Let N be the tra
e-zero-surfa
e ofthe Weil-restri
tion of EK with respe
t to Kjk.If E has no 
omplex multipli
ation (over k), then the N�eron-Severi group ofN is a free abelian group on 1 generator, generated by an ample sheaf with kernelE[3℄. In parti
ular, N is not prin
ipally polarized.If E has 
omplex multipli
ation (over k), then NS(N) is a free abelian groupon 2 generators. Let End0k(E) = Q(pD);D < 0. Let f be the 
ondu
tor of theorder Endk(E). Then:If D � 2; 3 mod 4, then N is prin
ipally polarized i� 3x2 + y2f2D = 1 issolvable in Z.If D � 1 mod 4 then N is prin
ipally polarized i� 3x2 + 3xyf + y2f2 3+D4 = 1is solvable in Z.



60 Chapter 2. Weil-restri
tions of old abelian varieties2.4 Curves on the tra
e-zero-hypersurfa
efor degree 3For this se
tion, let Kjk be a Galois �eld extension of perfe
t �elds of degree 3, Ean ellipti
 k-
urve, W the Weil-restri
tion of AK with respe
t to Kjk and N thetra
e-zero-hypersurfa
e on W . 13We want to study the tra
e-zero-surfa
e N using expli
it equations and therebyrelate the results of the previous se
tion with expli
it 
al
ulations on N .By a theorem of A.Weil, a prin
ipal polarization of an abelian surfa
e A oversome �eld k is de�ned by a proper geometri
ally redu
ed 
urve on A whi
h iseither non-singular, geometri
ally irredu
ible and of genus 2 or geometri
ally thepointed union of two ellipti
 
urves. In the �rst 
ase, A is the Ja
obian of this
urve, in the se
ond Ak is isomorphi
 to the dire
t produ
t of the two ellipti

urves; see Proposition A.27 in Subse
tion A.2.7 in the appendix.Now let A be a simple abelian surfa
e whi
h is isogenous to a prin
ipally po-larized abelian surfa
e eA, i.e. there exists an isogeny � : eA �! A. Assume that �is not an isomorphism. Then if the polarization on eA is given by a geometri
allyirredu
ible 
urve, the image of this 
urve on A is a singular 
urve whose normal-ization has genus 2, and if the polarization on eA is given geometri
ally by twoellipti
 
urves, the images of these ellipti
 
urves are still ellipti
 
urves, but theyinterse
t in more than one point.We want to �nd these 
urves in 
ases in whi
h we know that the tra
e-zero-hypersurfa
e is isogenous to a prin
ipally polarized abelian variety.We will su

eed insofar as for 
har(k) = 3, we will �nd a 
urve on N whosenormalization has genus 2. If 
har(k) > 3; �3 2 k and the x-
oordinate of a 3-torsion point lies in k, we will �nd su
h a 
urve after possibly a quadrati
 extensionof k.Before starting with the 
on
rete 
al
ulations we remark that by Corollary 2.8if E is non-super-singular and �3 =2 Endk(E), N is simple. Now, 
urves withj-invariant 0 have an endomorphism algebra whi
h 
ontains �3. Thus with [Mu,Appendix I, p.258, Corollary℄, we 
on
lude that if k is �nite, N is simple providedthat E is non-super-singular and Ek is not isogenous to an ellipti
 
urve withj-invariant 0.2.4.1 The tra
e-zero-hypersurfa
e for 
har(k) 6= 2; 3 14Let 
har(k) 6= 2; 3 and assume that the 3-rd roots of unity are 
ontained in k. Wewant to 
al
ulate equations of the tra
e-zero-hypersurfa
e N .13If S is a 
losed subs
heme of a variety V , we say that S is on V .14The results in this subse
tion are based on 
al
ulations by G.Frey and N.Naumann. Some
orre
tions and additional remarks are due to the author.



Curves on the tra
e-zero-hypersurfa
e for degree 3 61Let �3 2 k be a third root of unity. (If k = Fp , p prime, this means thatp � 1 mod 3.) By Kummer-theory, there exists an � 2 k with �3 = a 2 k. Let� 2 Gal(Kjk) be given by �(�) = �3�.Let the ellipti
 
urve E be de�ned by the aÆne equationY 2 = X3 +AX +B; (2.8)where A;B 2 k.A

ording to the \
onstru
tion of the Weil-restri
tion by restri
tion of s
alars"(see Subse
tion 1.1.3), we make the substitutionsX = x0 
k 1 + x1 
k �+ x2 
k �2Y = y0 
k 1 + x1 
k �+ x2 
k �2 (2.9)and get the equation (y0 
k 1 + x1 
k �+ x2 
k �2)2 =(x0 
k 1 + x1 
k �+ x2 
k �2)3 +A(x0 
k 1 + x1 
k �+ x2 
k �2) +B 
k 1:Expanding out this equation, we get:y20 + 2ay1y2 = x30 + ax31 + a2x32 + 6ax0x1x2 +Ax0 +B;ay22 + 2y0y1 = 3x20x1 + 3ax0x22 + 3ax21x2 +Ax1;y21 + 2y0y2 = 3x20x2 + 3x0x21 + 3ax1x22 +Ax2: (2.10)This system of equations de�nes an open, aÆne part W0 of the Weil-restri
tionof W in A 6k , the 6-dimensional aÆne spa
e over k. (The 
losed subset WnW0 isequal to the support of the divisor D de�ning the \
anoni
al" polarization of W .)We want to 
al
ulate the interse
tion of the tra
e-zero-hypersurfa
e N withW0. We will denote this surfa
e by N0. We think of N0 as a surfa
e in A 6k .The tra
e zero-hypersurfa
e is de�ned by expanding the equation 15P � �(P ) = 	�2(P );(P a A
k K-valued point of E for some k-algebra A:) (2.11)Let P be a A 
k K-valued point of E whi
h 
orresponds to a A-valued point onW0 and satis�es this equation for the X-
oordinate, i.e.:X(P � �(P )) = X(	�2(P )) = X(�2(P )) (2.12)Then P satis�es (2.11) or it satis�esP � �(P ) = �2(P ) (2.13)If this is the 
ase, P = �2(P ) 	 �(P ), and thus the A-valued point of W 
or-responding to P fa
tors through E. This means that P = �(P ) = �2(P ), andsubstituting this into (2.13), we get P = 0, the zero on E. But this is not possiblesin
e the zero on E 
orresponds to a point of W whi
h does not lie on W0. Thuswe may use equation (2.12) instead of (2.11).15In this se
tion, in order to distinguish the addition on E from addition of 
oordinates, wewrite � for the addition on E.



62 Chapter 2. Weil-restri
tions of old abelian varietiesWe now want to use the \usual" group law on an ellipti
 
urve E with Weier-stra�-equation given as above; see [Si, III,2℄. For a k-valued point P , let(x(P ); y(P )) denote the 
oordinates. Then, if P1; P2 are two k-valued points withx(P1) 6= x(P2), x(P1 � P2) = � y(P2)� y(P1)x(P2)� x(P1)�2 � x(P1)� x(P2): (2.14)To use this formula, we restri
t ourselves from A
k K-valued points as above tok 
k K ' k3-valued points. This is possible be
ause the subvariety N0 of W0 isuniquely determined by its k-valued points.Let P1 and P2 be two k3-valued points with x-
oordinate x(Pi) = (x(1)(Pi);x(2)(Pi); x(3)3 (Pi)). Then be
ause of the isomorphism E(k3) ' E(k)3, equation(2.14) remains valid if xi(P1) 6= xi(P2) for i = 1; 2; 3.Let X = x0 
k 1 + x1 
k � + x2 
k �2 2 k 
k K. Then X 
orresponds to(x(1); x(2); x(3)) 2 k3 where x(i) = (idk 
k �i�1)(X) = x0 + �i�13 �x1 + �2(i�1)3 �2x2.Let P 2 E(k
kK) with x-
oordinate X = x0
k1+x1
k�+x2
k�2 2 k
kK.We want to apply the group law (2.14) toX and �(X). This is possible if x(i) 6= x(j)for i; j with i 6= j. We have x(i) = x(j)  !x0 + �i�1�x1 + �i�13 �2x2 = x0 + �j�13 �x1 + �j�13 �2x2  !(�i�13 � �j�13 )x1 = �(�2(i�1)3 � �2(j�1)3 )x2: (2.15)Thus the group law (2.14) remains valid outside the interse
tion of W0 with thethree hyperplanes in A 6k de�ned by (2.15). We denote the union of these hyper-planes by H. We resri
t ourselves to the subvariety W0nH.Now equation (2.12) is equivalent to� �(Y )� Y�(X) �X�2 = X + �(X) + �2(X): (2.16)Under the substitutions (2.9), this is equivalent to((y1��3y1)
k�+(y2��23y2)
k�2)2 = 3x0((x1��3x1)
k�+(x2��23x2)
k�2)2:Expanding out one obtains(1� �3)(1 � �23 )a (y1y2 � 3x0x1x2)
k 1 + (1� �23 )2a (y22 � 3x0x22)
k �+(1� �3)2a (y21 � 3x0x21)
k �2 = 0:Thus as a subvariety of W0nH, N0nH is de�ned byy1y2 = 3x0x1x2y21 = 3x0x21y22 = 3x0x22: (2.17)



Curves on the tra
e-zero-hypersurfa
e for degree 3 63We 
an insert these equations into (2.10). Thus N0nH is de�ned (as a subvarietyof A 6knH) by (2.17) andy20 = x30 + ax31 + a2x32 +Ax0 +B2y0y1 = 3x20x1 + 3ax21x2 +Ax12y0y2 = 3x20x2 + 3ax1x22 +Ax2: (2.18)Note that the variety de�ned by (2.17) and (2.18) in A 6k 
ontains E, thus it is notbirational to N0.Now regard the proje
tionq : A 6k �! A 4k ; (x0; x1; x2; y0; y1; y2) 7! (x0; x1; x2; y0):The restri
tion of q to the variety de�ned by (2.17) and (2.18) is an isomorphismoutside y0 = 0, be
ause for y0 6= 0, we 
an divide the last two equations of (2.18)by 2y0 and thus obtain equations for y1 and y2. (For y0 = 0, the proje
tion indu
esa 2-fold 
overing: For y0 = 0, equation (2.18) imposes no 
ondition on y1; y2, andby (2.17), (y1; y2) is only determined up to a sign.)Multiplying the resulting equations by 4y20 and dividing by x1x2, x21 and x22respe
tively (whi
h is possible outside H), (2.17) be
omes(3x20 + 3ax1x2 +A)2 = 12x0y20 : (2.19)Thus under q, N0n(H [ fy0 = 0g) is isomorphi
 to the variety de�ned by thisequation and the �rst equation of (2.18), i.e. to the variety de�ned by the followingequations in A 4kn(q(H) [ fy0 = 0g).y20 = x30 + ax31 + a2x32 +Ax0 +B(3x20 + 3ax1x2 +A)2 = 12x0(x30 + ax31 + a2x32 +Ax0 +B) (2.20)Let N1 be the variety de�ned by these two equations in A 4k . We now want to showthat N1 has only one irredu
ible 
omponent and thus is birational to N0 = N\W0or { what is the same { to N .The se
ond equation de�nes by Krull's Prin
ipal Ideal Theorem ([Ei, Theorem10.1℄) a subs
heme of pure dimension 2 in A 3k ; the proje
tion r : A 4k �! A 3k :(x0; x1; x2; y0) 7! (x0; x1; x2) restri
ts to a �nite (thus surje
tive) morphism ofdegree 2 from N1 to the s
heme de�ned by the se
ond equation.We study the s
heme de�ned by the se
ond equation �rst. We know thatthis s
heme is outside r Æ q(H) isomorphi
 to r Æ q(N0). If it had more than one
omponent, the additional 
omponent would have to be 
ontained in rÆq(H). Sin
eit has pure dimension 2, the additional 
omponent would have to be the image ofone 
omponent of H under r Æ q. But the interse
tion of the s
heme de�ned bythe se
ond equation with H is at most 1-dimensional and so the s
heme does nothave su
h a 
omponent.Sin
e no 
omponent of the variety de�ned by the se
ond equation lies in r Æq(H), no 
omponent of N1 lies in r�1(rq(H)) = p(H). Thus N1 is birational toN0, more pre
isely, the restri
tion of p to N1 is a birational map to N1 whi
h isan isomorphism outside H [ fy0 = 0g.



64 Chapter 2. Weil-restri
tions of old abelian varietiesThere is a �bration by proje
tion onto x0. We will now examine the resulting
urves if we �x x0. The interse
tion of these 
urves with p(H) and y0 = 0 respe
-tively is 0-dimensional and so these 
urves are birational to 
urves whi
h lie onN . 16Let x0 6= 0 be �xed.By (2.19), the �bers under the proje
tions to x0 
onsist (geometri
ally) of twoisomorphi
 
omponents { de�ned by the se
ond equation of (2.20) (whi
h mightitself be redu
ible), both de�ned over k(p12x0).Let C0 denote the aÆne k-s
heme de�ned by the se
ond equation. We 
laimthat C0 is a geometri
ally irredu
ible, geometri
ally redu
ed k-
urve.Proof Let f(x1; x2) := (3x20+3ax1x2+A)2� 12x0(x30+ax31+a2x32+Ax0+B)be the de�ning polynomial of C0.Consider the morphism C0k �! A 1k de�ned by (x1; x2) 7! x1, 
orrespondingto the in
lusion k[x1℄ ,! k[x1; x2℄=(f).Under all spe
ializations k[x1℄ �! k as well as under the in
lusion k[x1℄ �!k(x1), the polynomial f has degree 3.Thus for some topologi
al point x of A 1k , the �ber of the morphism C0k �! A 1kat the �xed point x is given by a 3-dimensional algebra over the 
orrespondingresidue 
lass �eld at x.In parti
ular, the generi
 points of C0k are mapped to the generi
 point of A 1k .This implies that the s
heme C0k is irredu
ible i� the �ber over the generi
point of A 1k is, i.e. if the nilideal in the spe
trum of the algebra k(x1)[x2℄=(f) isprime. Further, sin
e k[x1; x2℄=(f) �! k(x1)[x2℄=(f) is an in
lusion, the s
hemeC0k is redu
ed i� the algebra k(x1)[x2℄=(f) is.Thus C0k is integral i� the algebra k(x1)[x2℄=(f) is a �eld. This is the 
ase i�the polynomial f is irredu
ible over k(x1).Now, if f was redu
ible over k(x1), it would 
ontain a fa
tor of degree 1.This would mean that the the redu
ed algebra (k(x1)[x2℄=(f))red splits into thedire
t sum of k(x1) and another k(x1)-algebra whi
h would imply that C0redk would
ontain a rational 
urve. This rational 
urve would be birational to a 
urve onthe abelian surfa
e Nk whi
h is impossible. 2Let C be the 
losure of C0 in P2k. This means that C is obtained by writingthe se
ond equation of (2.20) in homogeneous form (where x0 is a 
onstant), i.e.C is given by(3x20z4 + 3ax1x2 +Az4)2 = 12x0(x30z4 + ax31z + a2x32z + (Ax0 +B)z4):Setting z = 0, we obtain (3ax1x2)2 = 0:16We use the following fa
t: Let V be a proper k-variety, C a smooth k-
urve, C0 an open, aÆnepart of C and C0 �! V a k-morphism. Then this morphism 
an be extended to a k-morphismC �! V .



Curves on the tra
e-zero-hypersurfa
e for degree 3 65Thus there are two points at in�nity: [1 : 0 : 0℄ and [0 : 1 : 0℄.The derivative with respe
t to z is for z = 012x0(ax31 + a2x32);and this is non-zero for the two points at in�nity. Thus there are no singularitiesof C at in�nity.The geometri
 operation a� on W de�ned by the arithmeti
 operation � onAK is given by (y0; x0; x1; x2) 7! (y0; x0; �3x1; �23x2). Analogously, one gets anoperation on C. In parti
ular, singularities outside (x1; x2) = (0; 0) o

ur intriples.Now, the arithmeti
 genus of C0 is (4�1)(4�2)2 = 3, and this is equal to thegenus of the normalization of C0 plus the singularity degree. (And the singularitydegree is larger or equal the number of singularities.) Thus if C0 had singularitiesoutside (0; 0), it would be a rational 
urve. But on the other hand, C is birationalto a 
urve on the abelian variety N . Thus it 
annot be a rational 
urve sin
e thereare no su
h 
urves on abelian varieties.Thus the only possible singularity of C0 is (x1; x2) = (0; 0).Spe
ializing the de�ning equation to this point, we get:(3x20 +A)2 = 12x0(x30 +Ax0 +B);i.e. 3x40 + 6Ax20 + 12Bx0 �A2 = 0This is the 3rd division polynomial of E; see [Si, III,10,Exer
ise 3.7℄. Thus (0; 0)is a point on C i� x0 is the x-
oordinate of a 3-torsion point. We now 
he
k if(0; 0) is a singularity: The derivatives of the de�ning equation of C with respe
tto x1 and x2 to the point (0; 0) are both 0. Thus if (0; 0) is a point on C0, it is asingularity.Assume that this is the 
ase and furthermore that �3 =2 Endk(Ek). Then byTheorem 5, N 
k k(p12x0) is simple and the genus of the normalization of C is 2.If x0 is not the x-
oordinate of a 3-torsion point, C0 is non-singular. Being aquadri
 
urve in P2k(p12x0), it is a so-
alled 
anoni
al 
urve; see [Ha, IV, Example5.2.1.℄.We get the following result:For any x0 6= 0, there are two 
urves on N 
k k(p12x0) whi
h are birational tothe 
urve C (whi
h depends on x0). If x0 6= 0 is not the x-
oordinate of a 3-torsionpoint, C is a non-singular 
urve whi
h is a so-
alled 
anoni
al 
urve of genus 3.However, if x0 is the x-
oordinate of a 3-torsion point, C is singular, and underthe assumption �3 =2 Endk(Ek), the genus of the normalization of C is 2.



66 Chapter 2. Weil-restri
tions of old abelian varietiesNow let x0 = 0.Then the se
ond equation of (2.20) be
omes3ax1x2 +A = 0:Let A 6= 0. Substituting x2 = � A3ax�11 into the �rst equation of (2.20), we get(with x0 = 0) y20 = ax31 � A327a2x�31 +B:Multipli
ation by x41 and substitution y = y0x21 givesy2 = ax71 +Bx41 � A327ax1: (2.21)Let C be the proje
tive 
losure of C0 in P2k. Then C is either a rational 
urve or ahyperellipti
 
urve whose normalization has genus � 3. The �rst 
ase is impossiblesin
e it is a 
urve on an abelian surfa
e.So, if the dis
riminant of the polynomial on the right-hand side is non-zero, thenormalization of C has genus 3, and in general it is a hyperellipti
 
urve whosenormalization has genus � 3. If N is simple, then the normalization of C hasgenus 2 or 3.If N is simple, this 
urve is de�ned even without the assumption �3 2 k.One takes the interse
tion of N with the surfa
e de�ned by \expanding out"�(Y ) = Y . The normalization of the resulting 
urve is still hyperellipti
, sin
eevery non-singular 
urve with genus � 2 whi
h is hyperellipti
 over some �eld ishyperellipti
 wherever it is de�ned. (This holds sin
e its fun
tion �eld 
ontains aunique rational sub�eld of index 2.)For A = 0 i.e. j = 0, we get two ellipti
 
urves. Note that in this 
ase �3 2End0k(E) and thus this is 
onsistent with the de
omposition of W in Subse
tion2.1.3.By (2.16), 
ondition x0 = 0 is { outside of H { equivalent to Y = �(Y ). Thuswe get the following result:Under the 
ondition j 6= 0, the interse
tion of N with the subvariety of Wde�ned by Y = �(Y ) is a hyperellipti
 
urve C whose normalization has genus �3. (3 is the \generi
" 
ase.)We now translate the idea of interse
ting N0 with the variety de�ned by \ex-panding out" �(Y ) = Y to 
hara
teristi
 2 and 3.The 
urves 
onstru
ted in this way will also be used as examples in the next
hapter (Se
tion 3.3) where we outline atta
ks on the DL-problem in E(K).2.4.2 The 
urve de�ned by �(Y ) = YWe explain the idea �rst independently of the 
hara
teristi
.Let E be given by the following aÆne Weierstra�-equation:Y 2 +A1XY +A3Y = X3 +A2X2 +A4XA6; (2.22)
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e-zero-hypersurfa
e for degree 3 67where all Ai lie in k.We now interse
t the subvariety of W0 whi
h is given by the expansion of theequation Y = �(Y ) (2.23)with N0, the open, aÆne part of the tra
e-zero-hypersurfa
e N .We restri
t ourselves to the aÆne parts W0nH and N0nH of W and N de�nedas above.To de�ne N0, we 
an just as for 
har(k) > 3 restri
t ourselves to the equationfor the X-
oordinate. Under (2.23), we haveX(P � �(P )) = �A2 �X � �(X):Thus under (2.23), we get the following easy de�ning equation for N0.X + �(X) + �2(X) = �A2 (2.24)Let C0 be the subs
heme of W0 whi
h is de�ned by (2.23) and (2.24). It will turnout to be a 
urve.
har(k) > 3This 
ase was treated above. Stating with an ellipti
 
urve with j-invariant 6= 0de�ned by equation (2.8), we obtain a 
urve whi
h is (possibly after a base-
hangek(�3)jk) birational to the 
urve given by (2.21).
har (k) = 2Again assume that �3 2 k and assume that j 6= 0. (If �3 is not 
ontained in k,the 
urve C0 is after the base-
hange k(�3)jk given by the equations whi
h nowfollow.)Let �; a and � be de�ned as above. Let E be given by an aÆne equationY 2 +XY = X3 +A2X2 +B; (2.25)where A2; B 2 k; B 6= 0; see [Si, Appendix A, Proposition 1.1. (
)℄.Again we make the substitutions (2.9). Then the subs
heme C0 is given byy1 = y2 = 0; x0 = �A2 = A2;and (2.25) be
omes(1
 y0)2 + (1
A2 + �
 x1 + �2 
 x2)(1 
 y0) =(1
A2 + �
 x1 + �2 
 x2)3 +A2(1
A2 + �
 x1 + �2 
 x2)2 +B: (2.26)This expands to the following three equations, whi
h des
ribe C0 in A 4k .y20 +A2y0 = A32 + ax31 + a2x32 +A22 +Bx1y0 = A22x1 + aA2x22 + ax21x2 + aA2x22x2y0 = A22x2 +A2x21 + ax1x22 +A2x21 (2.27)



68 Chapter 2. Weil-restri
tions of old abelian varietiesThe se
ond and third equation 
an be simpli�ed tox1y0 = A22x1 + ax21x2x2y0 = A22x2 + ax1x22; (2.28)and for (x1; x2) 6= (0; 0), this is equivalent toy0 = A22 + ax1x2:Substituting this into the �rst equation of (2.27), we get the following equationfor C0 A42 + a2x21x22 +A32 + aA2x1x2 = A32 + ax31 + a2x32 +A22 +B:The s
heme C0 is a geometri
ally irredu
ible, geometri
ally redu
ed 
urve.The proof of this fa
t is analogous to the one on page 64.The 
urve C0 is an open aÆne part of the proje
tive 
urve C de�ned by the
orresponding homogeneous equationa2x21x22 + aA2x1x2z2 + ax31z + a2x32z + (A22 +A42 +B)z4 = 0: (2.29)As this equation has degree 4, C has arithmeti
 genus 3. Just as in the 
aseof 
har(k) > 3 dis
ussed above, singularities outside in�nity and (0; 0) have too

ur in triples. So again, if the 
urve had su
h singularities, the genus of itsnormalization would be 0, what is impossible. Thus the only possible singularitiesare (0; 0) and the points at in�nity.We examine the singularities at in�nity. The 
urve C has the in�nite points[1 : 0 : 0℄ and [0 : 1 : 0℄. Taking the derivative of (2.29) with respe
t to z (notethat 
har(k) = 2) gives ax31 + a2x32:This is 6= 0 for both in�nite points 6= 0. Thus C has no singularities at in�nity.We now look at the possible singularity at (0; 0). Firstly, (0; 0) would have tolie on C0. Thus A22 +A42 +B = 0:Se
ondly, the derivatives with respe
t to x1 and x2 at (0; 0) would both have to be0. This implies A2 = 0 and thus also B = 0. This is impossible be
ause it wouldmean that E is singular.We arrive at the following 
hara
terization of the 
urve C:C is a 
anoni
al 
urve of degree 4 and genus 3 whi
h is the normalization of a
urve on N .
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e for degree 3 69
har(k) = 3Now let k be a �eld with 
hara
teristi
 3. A

ording to Artin-S
hreier theory, Kjkis generated by some � with �3 � � = a 2 k. The Galois group is generated by �with �(�) = �+ 1.For later use, we 
al
ulate�(�2) = (�+ 1)2 = �2 � �+ 1�2(�2) = (�2(�))2 = (�� 1)2 = �2 + �+ 1 (2.30)and �3 = �+ a�4 = �2 + �a�5 = �2a+ �+ a�6 = �2 � �a+ a2: (2.31)Let E be given by the equationY 2 = X3 +A2X2 +B; (2.32)where a

ording to the assumptions A2; B 2 k and are both non-zero; see [Si,Appendix A, Proposition 1.1. (
)℄.Again under the substitutions (2.9), (2.24) be
omesx2 = A2; y1 = y2 = 0;and (2.32) gives1
 y20 = 1
 x30 + (�
 x31 + 1
 ax31) + (�2A32 � �
 aA32 + 1
 a2A32)+A2[1
 x20 + �2 
 x21 + �2A22 + �
 aA22��
 x0x1 � �2 
A2x0 � �
A2x1 � 1
 aA2x1℄ +BThus C0 is given by the following three equation in A 4k .y20 = x30 + ax31 + a2A32 +A2x20 � aA22x1 +B0 = x31 � aA32 + aA32 �A2x0x1 �A22x10 = A32 +A2x21 +A32 �A22x0: (2.33)The third equation 
an be divided by A2 6= 0 and is equivalent to0 = x21 �A22 �A2x0:This equation also implies the se
ond equation of (2.33) and is equivalent tox0 = A�12 x21 �A2: (2.34)This implies x20 = A�22 x41 + x21 +A22: (2.35)



70 Chapter 2. Weil-restri
tions of old abelian varietiesIf we insert (2.34) and (2.35) in the �rst equation of (2.33), we are given the 
urveC0, des
ribed byy20 = A�32 x61 �A32 + ax31 + a2A32 +A�12 x41 +A2x21 +A32 � aA22x1 +B;i.e. y20 = A�32 x61 +A�12 x41 + ax31 +A2x21 � aA22x1 + a2A32 +B: (2.36)This is a hyperellipti
 
urve of degree 6.Let C be the proje
tive 
losure of C0 in P2k. We obtain the following 
hara
-terization of C:The normalization of C is a hyperellipti
 
urve of genus 1 or 2. (If N is simple,the genus is 2.) In parti
ular, if N is simple, it is isogenous to the Ja
obian varietyof the normalization of C.



Chapter 3Coverings of 
urves and thedis
rete-logarithm problem
Introdu
tion and resultsThis 
hapter is devoted to 
ryptoanalyti
 appli
ations.Let k be a �nite �eld,Kjk a �eld extension of prime degree n. Let X 0 be a non-singular, geometri
ally irredu
ible (i.e. geometri
ally integral), proper 
urve overK. 1 Assume that X 0 has \
ryptographi
ally good" properties. Espe
ially, thegroup Pi
0(X 0) �=Cl0(K(X 0)) should have a large prime fa
tor. We try to trans-form the dis
rete-logarithm problem in Cl0(K(X 0)) into the dis
rete-logarithmproblem in Cl0(k(C)) for a suitable non-singular, geometri
ally irredu
ible, properk-
urve C.The idea is that if the genus of C is not \too large", perhaps the dis
rete-logarithm problem in the group Cl0(k(C)) is \easier" than the dis
rete-logarithmproblem in the original group Cl0(K(X 0)). This is suggested by [En℄, [EG℄ and[Gau℄.In [GHS℄, the following approa
h was introdu
ed:Let CK �! X 0 be a 
overing. Then K(X 0) is in
luded in K(CK). Considerthe group-homomorphismnormK(CK)jk(C) Æ 
onK(CK)jK(X0) : Cl0(K(X 0)) �! Cl0(k(C)): (3.1)Two 
onditions should be ful�lled:1. The large prime fa
tor of Cl0(K(X 0)) is preserved.2. The 
urve C has \reasonably ni
e" 
ryptographi
 properties. Espe
ially thegenus of C should not be \too large" in relation to n and the genus of X 0.For example, if we 
onsider a family of 
urves X 0 for di�erent extensiondegree n, by the state of the art of 
ryptoanalysis in 
lass groups of high1In this 
hapter, X 0 or X always denotes a 
urve and never a variable.71



72 Chapter 3. Coverings of 
urves and the DL-problemgenus 
urves, the genus of C should be at most quadrati
 in n; see [En℄.Other interesting properties of C are hyperellipti
ity or automorphisms.For 1., no \theoreti
al result" is known to the author. 2 However, using theWeil-restri
tion of J(X 0) with respe
t to Kjk, we motivate very strongly thatthe kernel of (3.1) is small in 
ertain situations; see Subse
tions 3.1.1 and 3.1.2,espe
ially Theorem 9, p. 77.Then we show how to use Galois theory to 
onstru
t appropriate 
overings of
urves (or equivalently �nite extensions of fun
tion �elds of trans
enden
e degree1). In the 
ase that the Ja
obian J(X 0) is a new abelian variety (for de�nition seeforeword), we give the 
onstru
tion of [GHS℄ as an example. For the 
ase that X 0is already de�ned over k, we �rst proof a theoreti
al result (Theorem 9, p. 77),then we give examples based this result (see Subse
tion 3.3).
3.1 Coverings as 
urves on the Weil-restri
tionLet k be a �nite �eld of 
hara
teristi
 p, Kjk be an extension of �nite �eldsof prime degree n. Identify Gal(Kjk) with its opposite group and denote theFrobenius automorphism of Kjk by �Kk .Let X 0 be a geometri
ally integral, proper, non-singular 
urve over K with aK-rational point P0. Let W be the Weil-restri
tion of X 0 with respe
t to Kjk.Let C be a non-singular, irredu
ible proper 
urve over k. (We do not assumethat C is geometri
ally irredu
ible.) Then by the de�nition of the Weil-restri
tion,k-morphisms C �! W are in bije
tion to K-morphisms CK := C 
k K �! X 0:If 
 : CK �! X 0 is a K-morphism, then there is a unique b : C �! W su
h that
 = u Æ (b
 idK).Again let 
 : CK �! X 0 be a K-morphism, and let b : C �! W be theunique morphism with 
 = u Æ (b 
k idK). Then the image of 
 is a point i� 
fa
tors through the stru
ture morphism CK �! Spe
(K) i� b fa
tors through thestru
ture morphism C �! Spe
(k) i� the image of b on W is a point. 3 Thus:Lemma 3.1 
 is dominant i� the image of b on W is a 
urve.From now on, let 
 be a dominant, �nite morphism. We 
all su
h a morphisma 
overing of non-singular, proper, irredu
ible 
urves.2Of 
ourse, it is possible to 
he
k that the large prime fa
tor is preserved in spe
i�
 
ases, forexample with the help of a 
omputer.3More generally, let D be some k-s
heme. Then by fun
toriality, b : C �! W has the formb = ed for some d : C �! D and e : D �! W i� 
 has the form 
 = f Æ (d 
 idK) for somed : C �! D; f : D 
k K �! X 0. (In fa
t, f = u Æ (e
k idK).)



Coverings as 
urves on the Weil-restri
tion 73We have a 
ommutative diagramCK 

((b
k idK //

��

WK u //

��

X 0
C b // W:This indu
es a 
ommutative diagramPi
0(CK)N

��

Pi
0(WK)(b
k idK)�oo N
��

Pi
0(X 0)
�
tt u�oo

Pi
0(C) Pi
0(W ):b�ooWe have already seen that the group-homomorphism NÆu� : Pi
0(X 0) �!Pi
0(W )is bije
tive; see Corollary 1.19. In the 
ase that X 0 is an ellipti
 
urve E0, thishomomorphism is { under the identi�
ations of E0 and W with its duals viatheir 
anoni
al prin
ipal polarizations { nothing but the 
anoni
al isomorphismE0(K) ~�!W (k).If k(C), K(CK) and K(X 0) are the fun
tion �elds of C, CK and X 0 respe
tively,then N Æ 
� 
orresponds tonormK(CK)jk(C) Æ 
onK(CK)jK(X0) : Cl0(K(X 0)) �! Cl0(k(C)): (3.2)We want to study the kernel of (3.2) or { equivalently { the kernel of NÆ
� :Pi
0(X 0) �!Pi
0(C).We note �rst that in pra
ti
e we 
an restri
t ourselves to the 
ase that C isgeometri
ally irredu
ible. For, let that not be the 
ase. Let � := k(C) \ k, wherek is the algebrai
 
losure of k (interse
tion in some 
ommon over�eld). We nowmake the assumption that n does not divide [� : k℄. (To use this 
onstru
tion foran atta
k on the DLP in Cl0(K(X 0)), [� : k℄ should be mu
h smaller than n.) The�elds K and � are linearly disjoint over k, i.e. K 
k � is a �eld, denoted K�. Ifwe 
onsider C as a �-
urve, it is geometri
ally irredu
ible and CK = C 
k K 'C 
� (K 
k �) ' C 
� K�. 4 AsnormK(CK)jk(C) Æ 
onK(CK)jK(X0) =normK�(CK)j�(C) Æ 
onK�(CK)jK�(X�) Æ 
onK�(X0�)jK(X0) :Cl0(K(X 0)) �! Cl0(k(C));4For de�nition of \linear disjoint" see Subse
tion A.3.1 in the appendix.



74 Chapter 3. Coverings of 
urves and the DL-problemwe only have to 
onsider the kernel of (3.2) for geometri
ally irredu
ible 
urves.Let C be a geometri
ally irredu
ible (i.e. geometri
ally integral) k-
urve.The kernel of NÆ
� : Pi
0(X 0) �! Pi
0(C) is isomorphi
 to the kernel ofb� : Pi
0(W ) �! Pi
0(C). Let J(C) be the Ja
obian variety of C. Then this kernelis isomorphi
 to the kernel of b� : Pi
0(W )(k) �! J(C)(k). (This holds even ifC has no k-rational points. In this 
ase, we still have an inje
tive homomorphismPi
0(C) �! J(C)(k); see [Mi-J, Remark 1.5.℄.)By Corollary 1.18, Pi
0(W ) is an abelian variety whi
h is 
anoni
ally isomor-phi
ResKk (J(X)), the Weil-restri
tion of the Ja
obian variety of X 0. To study thekernel of b� : Pi
0(W )(k) �! J(C)(k), we ask if the morphism b� : Pi
0(W ) �!J(C) is an isogeny on large isogeny fa
tors of Pi
0(W ). If this is the 
ase andPi
0(X 0) ' Pi
0(W ) has a large prime fa
tor, then we expe
t that this prime fa
toris preserved under b� and thus under N Æ 
�, i.e. under (3.2).We make the following general assumption:The Ja
obian variety of X 0 is simple and its endomorphism ring is 
ommutative.The assumption that the Ja
obian variety is simple is natural in the 
ase of a
ryptographi
 appli
ation sin
e Pi
0(X 0) should have a large prime fa
tor.The se
ond 
ondition is for example ful�lled if X 0 is a non-super-singularellipti
 
urve.3.1.1 Curves with Ja
obians whi
h are new abelian varietiesLet X 0 be a 
urve whi
h is not de�ned over k su
h that its Ja
obian J(X 0) is anew abelian variety, i.e. J(X 0) is not isogenous to an abelian variety de�ned overk. For example, X 0 
ould be an ellipti
 
urve whi
h is not isogenous to an ellipti

urve de�ned over k.In this 
ase, Pi
0(W ) ' ResKk (J(X 0)) is simple; see Corollary 1.18 and The-orem 3.So in this 
ase, the kernel of (3.2) is bounded by the separability degree of themorphism from Pi
0(W ) onto its image in J(C 0). Thus we expe
t the kernel of
� to be small. In parti
ular, if Pi
0(X 0) 
ontains a large prime fa
tor, as is the
ase in 
ryptographi
 appli
ations, then we expe
t this fa
tor to be preserved.3.1.2 Curves whi
h are de�ned over the small �eldLet X be a 
urve over k, X 0 := X 
k K. We assumed that X 0 has a K-rationalpoint P0. Let � : X 0 �! J(X 0) be the embedding de�ned by P0 7! 0.



Coverings as 
urves on the Weil-restri
tion 75Diagram (3.1) extends to the following diagramCK 
 //b
kidK
!!CC

CC
CC

CC

��

XK � // J(XK)XnK
��

u =={{{{{{{{
// J(XK)n

��

66mmmmmmmmmmmmmC b
!!DD

DD
DD

DD
D W j:=ResKk (�)

// V := ResKk (J(XK)):Lemma 3.2 j� := ResKk (�)� : bV = \ResKk (J(XK)) �! Pi
0(W ) is an isomor-phism of abelian varieties.Proof This follows from the diagramResKk (J(XK))T
��

ResKk (\J(XK))ResKk (��)�oo T
��Pi
0(W ) \ResKk (J(XK))j�oo

:
Here, the down-arrows are the morphisms de�ned in Subse
tion 1.2.3. They areisomorphism sin
e XK is a 
urve and J(XK) an abelian variety; see Corollary 1.18and Proposition 1.20. 2Instead of asking whi
h isogeny fa
tors of Pi
0(W ) are preserved under b� :
W �! J(C), we now ask whi
h isogeny fa
tors of ResKk (J(XK)) are preservedunder b� Æ j� : bV �! J(C). This approa
h is more 
onvenient sin
e V =ResKk (J(XK)) is itself an abelian variety.We already assumed that J(XK) is simple and that the endomorphism ringof J(XK) is 
ommutative. We now assume furthermore that { after an in
lusionof End0k(J(X)) into Q { End0k(J(X)) \ Q(�n) = Q . Then we know by Theorem 5that V has exa
tly two simple isogeny fa
tors, J(X) itself and the tra
e-zero-hypersurfa
e N . We expe
t the kernel of b� to be small if the image of N underb� Æ j� is non-trivial.There exists an extension �jk of degree prime to n = [K : k℄ su
h that C�has a �-rational point P and su
h that End�K(J(X 0)�K) is still 
ommutative (i.e.End�K(J(X 0)�K) = EndK(J(X 0))).[Proof If �jk has degreem and there exists no two roots x1, x2 of the 
hara
ter-isti
 polynomial of the Frobenius of J(X 0) (in Q ) and no l su
h that � lmx1 = x2,then the roots of the 
hara
teristi
 polynomial of the Frobenius of J(X 0�K) aredistin
t. Choose su
h an extension �jk whose degree is high enough (and primeto n) su
h that by the \Riemann-hypothesis", C� has a �-rational point.℄



76 Chapter 3. Coverings of 
urves and the DL-problemNow Kjk and �jk are linearly disjoint, so if K� is some 
omposite of Kjk and�jk, then K� ' K 
k � and K�j� is again a �eld extension of degree n.Sin
e \base-restri
tion" 
ommutes with \base-extension" (see Lemma 1.1), V�is again isogenous to J(XK)� �N� and N� is again simple.Let � := j Æb. The morphism �P := T(��
kid�)ÆP Æ(�
k id�) : C� �! V� mapsthe �-rational point P of C� to 0. Let fP : C� �! J(C)� be the immersion de�nedby P 7! 0. By the universal property of the Ja
obian (see [Mi-J, Proposition 6.1℄),there exists a unique morphism of abelian varieties 
P : J(C�) �! V� su
h thatJ(C)� 
P
##FFFFFFFFC�fPOO �P // V�:After dualizing, we obtain [J(C)�fP�

��J(C)� bV�;��oo


P�bbDDDDDDDDwhere fP� : \J(C)� �! J(C)� is the 
anoni
al isomorphism. In the last line we
an write �� instead of �P� sin
e T ���ÆP : Pi
0(V�) �! Pi
0(V�) is the identity bythe de�nition of Pi
0(V�).In parti
ular, ker(��) = ker(
P�). Under the identi�
ation of V� with bV� via theprin
ipal polarization indu
ed by the 
anoni
al prin
ipal polarization of J(X 0), theredu
ed 
onne
ted 
omponent of the zero of ker(��) is the orthogonal 
omplementof the image of 
P ; see Subse
tion A.2.4 in the appendix, in parti
ular LemmaA.22, i.e. �P � indu
es an isogeny of 
P (J(C))� with its image and is trivial onthe orthogonal 
omplement of this abelian subvariety.We are mainly interested in the question whether �� indu
es an isogeny of N�with its image, i.e. if the image of 
P 
ontains N�.Now, the image of 
P is the smallest abelian subvariety of N� whi
h 
ontains�P (C). Thus N� is not 
ontained in the image of 
P i� �P (C) is 
ontained inJ(X)�.We identi�ed Gal(Kjk) with its opposed group and denote the Frobenius au-tomorphism of Kjk by �Kk 2 Gal(Kjk). The automorphism �Kk of K indu
es anautomorphism of Spe
(K), and this indu
es the \arithmeti
 Frobenius automor-phism" of J(XK) whi
h we also denote by �Kk ; 
f. Subse
tion A.3.4.Let a = a�Kk be the k-automorphism of V 
orresponding to the automorphism�Kk on J(X 0); see subse
tion 1.1.5. Then �P (C) is 
ontained in J(X)� i� ((a 
kid�)� id) Æ �P (C�) is a point, i.e. i� (((a � id) Æ �)
k id�)(C�) is a point, i.e. i�(a� id) Æ �(C) is a point.Let pk : C �! Spe
(k); pK : CK �! Spe
(K) be the stru
ture morphisms.



Coverings as 
urves on the Weil-restri
tion 77Then (a� id)Æ�(C) is a point ! (a� id)Æ� fa
tors through pk  ! there existsa q 2 V (k) with a Æ � � � = q Æ pk.For q 2 V (k), let Q := uÆ(q
k idK) be the 
orresponding element in J(X)(K).Then the last equation is equivalent to �Kk (�
)� �
 = Q Æ pK , i.e. �Kk (�
) = TQ Æ �
by the de�nition of TQ.Similar arguments for J(X) instead of N lead toProposition 3.3 Let 
 : C �! X 0 be a morphism where C is a 
urve. Then�� : V �! J(C) indu
es an isogeny of� N with its image i� there does not exist a Q 2 J(X)(K) with �Kk (�
)� �
 =Q Æ pK, i.e. �Kk (�
) = TQ Æ �
,� J(X) with its image i� there does not exist a Q 2 J(X)(K) with �
+ � � � +�Kk n�1(�
) = Q Æ pK.So if there does not exist a Q 2 J(X)(K) with �Kk (�
) = TQ Æ �
, then the kernelof normK(CK)jk(C) Æ 
onK(CK)jK(XK) : Cl0(K(XK)) �! Cl0(k(C))is bounded by the separability degree of the isogeny �� between N and its imagetimes Pi
0(X). So we expe
t the kernel to be small.In parti
ular, if Pi
0(XK) 
ontains a large prime fa
tor, as is the 
ase in
ryptographi
 appli
ations, then we expe
t that this prime fa
tor is preserved.Theorem 9 Let Kjk be an extension of �nite �elds of prime degree n. Let �Kk bethe Frobenius automorphism of Kjk. Let X be a non-singular, proper, geometri-
ally irredu
ible 
urve over k of genus g with a k-rational point P0. Assume thatthe Ja
obian J(XK) of XK is simple, and the endomorphism ring of J(XK) is
ommutative. Assume further that { after an in
lusion of End0k(J(X)) into Q {Endk(J(X)) \ Q(�n) = Q.Let W be the Weil-restri
tion of XK with respe
t to Kjk. Then Pi
0(W ) isan n � g-dimensional abelian variety whi
h is 
anoni
ally isogenous to J(X)�kN ,where N is a simple (n� 1) � g-dimensional abelian variety.Let C be a non-singular, proper, geometri
ally irredu
ible 
urve over k, andlet 
 : C �! X be a 
overing.Assume that C has an automorphism t of degree n whi
h is not an 
-automor-phism, i.e. su
h that 
 Æ t 6= 
 and that there does not exist a Q 2 J(X)(K) su
hthat �
t
k idK = TQ Æ (�

k idK).Let Ct be the twist of C with respe
t to Kjk and t, i.e. Ct = CK= < �Kk t >.Then Ct is a non-singular, geometri
ally irredu
ible 
urve, and t de�nes an auto-morphism on Ct of order n.Then the morphism 
 
k idK : CtK ' CK �! XK indu
es a morphism



78 Chapter 3. Coverings of 
urves and the DL-problembt : Ct �!W . CtK 

((bt
kidK //

��

WK u //

��

XK
Ct bt // WNow, the morphism bt� : Pi
0(W ) �! J(Ct) indu
es an isogeny of N with itsimage. 5Proof We only have to 
he
k the last statement. By Proposition 3.3, we have toshow that there does not exist a Q 2 J(X)(K) with�Kk (�

k idK)(t�1 
k idK)�Kk �1 = TQ Æ (�

k idK): (*)Now, �Kk (�
 
k idK)(t�1 
k idK)�Kk �1 = �
t�1 
k idK . Thus (*) is equivalent toT�Q Æ (�
 
k idK) = (�
t
k idK). This is impossible by assumption. 2Remark Under the assumption that 
t 6= 
, the 
ondition that there does notexist a Q 2 J(X)(K) with �
t
k idK = TQ Æ(�

k idK) is espe
ially ful�lled underone of the following two 
onditions:� t has a geometri
 �xed point� J(X)(K) does not have an element of order nProof Firstly, if t has a geometri
 �xed point, and the equation is satis�ed forsome Q, then Q = 0 thus �
 = �
t. Sin
e � is an immersion, 
 = 
t, 
ontradi
tingthe assumption.Se
ondly, if a Q exists then it follows that �
 
k idK = �Kk n(�
 
k idK) =TnQ Æ (�

k idK). Let P 2 C(k). Then (�

k idk) ÆP = nQ+ (�

k idk) ÆP thusnQ = 0. 23.2 Coverings of 
urves whose Ja
obian variety is asimple new abelian variety3.2.1 Constru
tion of 
overingsLet Kjk be an extension of �nite �elds of prime degree n, let X 0 be a geometri
allyirredu
ible 
urve over K with a K-rational point.5In parti
ular, in the 
ontext of the theorem, if Pi
0(XK) has a large prime fa
tor, then weexpe
t this prime fa
tor to be preserved under NÆ
� : Pi
0(XK) �! Pi
0(C).



Coverings of 
urves whose Ja
obian variety is simple and new 79General assumptions for this se
tion Assume that J(X 0) is a simple newabelian variety, i.e. that it is not isogenous to an abelian variety de�ned over k.(This implies that X 0 is not de�ned over k, i.e. there exists no k-
urve X withXK � X 0.) Assume that the endomorphism ring of J(X 0) is 
ommutative.Let K(X 0) be the fun
tion �eld of X 0. Suppose that K(X 0)jK(x) is an abelianextension, in
luded in K(x)sepjK(x), and the degree [K(X 0) : K(x)℄ is prime ton. As above, we denote the Frobenius automorphism of Kjk by �Kk .Let L0 = K(X 0)�Kk (K(X 0)) � � � �Kk n�1(K(X 0)) be the Galois 
losure of K(X 0)over k(x) in K(x)sep.Then by Galois theory, we get the exa
t sequen
e1 �! Gal(L0jK(x)) �! Gal(L0jk(x)) �! Gal(Kjk) �! 1: (3.3)Lemma 3.4 Sequen
e (3.3) splits.Proof Note that Gal(L0jK(x)) is isomorphi
 to (Gal(K(X 0)jK(x)))m for somem � n. The order of this group is prime to n, sin
e by assumption [K(X 0) : K(x)℄is prime to n. Thus the lemma follows from the following group-theoreti
 lemma.2Lemma 3.5 Let 1 �! A �! E �! G �! 1 be an exa
t sequen
e of �nite groupswhere A is abelian, G is 
y
li
 and the order of A is prime to the order of G. Thenthis sequen
e splits.Proof First let A be a general abelian group. Then if an extension E of G by Ais given, G operates on A by taking preimages and 
onjugation inside E. Su
han operation given, the extensions E of G by A are 
lassi�ed by the elementsof H2(G;A), the trivial element in this group 
orresponding to the semi-dire
tprodu
t de�ned by the given operation of G on A; see [Se, VII,par. 3℄.We now show that under the assumption that the orders of G and A are
oprime, H2(G;A) is trivial. Thus every extension of G by A is a semi-dire
tprodu
t.Firstly, H2(G;A) is annihilated by the order of G; see [Se, VIII, par. 2, p.130,Corollary 1℄. Se
ondly, H2(G;A) ' bH0(G;A) = AG=N(A) (see [Se, VIII, par.4, p.133, Corollary℄), and this group being the quotient of a subgroup of A isannihilated by the exponent of A.Sin
e the orders of A and G where assumed to be 
oprime, H2(G;A) = 1. 2Assume that L0jK(x) is regular over K. 66For de�nition of \regular" see Subse
tion A.3.1 in the appendix.



80 Chapter 3. Coverings of 
urves and the DL-problemFix a se
tion of (3.3). Let L be the �xed �eld of the subgroup of Gal(L0jk(x))de�ned by this se
tion. Then by 
onstru
tion, L and K(x) are linearly disjointover k(x) and LK = L0. Thus L0jK(x) is de�ned over k.Note however, that L0jK(x) is not de�ned over k with its Galois group. Forif this was the 
ase, every subextension of L0jK(x) would be de�ned over k thusK(X 0)jk(x) would be de�ned over k whi
h is by assumption not the 
ase.Be
ause of the simpli
ity of the Weil-restri
tion the mapnormKLjL Æ 
onKLjK(X0) : Cl0(K(X 0)) �! Cl0(L)is expe
ted to have small kernel.Now assume that L0jK(x) is not regular. The argumentation is now similar tothe one on page 73: Assume further that [L0 \ k : K℄ is prime to n. (In fa
t,to use this 
onstru
tion as an atta
k on the DLP in Cl0(K(X 0)), [L0 \ k : K℄should be mu
h smaller than n.) Then there exists an extension of �nite �elds �jksu
h that K 
k � ' �K = L0 \ k. Now L0jK� is regular, and L0j�(x) is Galois.By the same arguments as above, there exists a regular subextension Lj� withL
� K� ' KL = L0. Therefore L
k K ' L
� (K 
k �) ' L0.Be
ause of the simpli
ity of the Weil-restri
tion of X 0�, with respe
t to K�j�,we still expe
t the kernel ofnormKLjL Æ 
onKLjK(X0) = normKLjL Æ 
onK�KLjK�(X0) Æ 
onK�(X0)jK(X0) :Cl0(X 0) �! Cl0(L)to be small.Geometri
 interpretation of the 
onstru
tionLet L0 still be the Galois 
losure of K(X 0)jk(x). Assume that [L0 \ k : K℄ isprime to n. We have seen that in this 
ase there exists a fun
tion �eld Ljk withL
k K ' LK = L0. The diagramL
k K
JJJJJJJJJK(X 0) LK(x)

IIIIIII k(x)
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orresponds to a diagram CK := C 
k K

�� ''OOOOOOOOOOX 0
��

C
��

P1K
&&MMMMMMMMMMM P1k

(3.4)
of 
overings of irredu
ible non-singular proper 
urves. (C is geometri
ally irre-du
ible i� Ljk is regular, that is, if L0jK is regular.)Let W be the Weil-restri
tion of X 0 with respe
t to Kjk, b : C �! W themorphism 
orresponding to 
 : CK �! X 0.If we 
onsider C as a 
overing of P1k, then 
 2 ResP1KP1k (X 0). By Lemma 1.2, this isequal to ResKk (X 0)�ResP1KP1k (X0)P1k. So b : C �! W fa
tors throughW�ResKk (P1)P1k 'ResP1KP1k (X 0).We get the following diagram of 
overingsC 
k K

��
++WWWWWWWWWWWWWWWWWWWWWWWWWX 0 �P1K �Kk (X 0)�P1K � � � �P1K �Kk n�1(X 0)pid

�� **VVVVVVVVVVVVVVVVV
C
��X 0

��

ResP1KP1k (X 0)
��

P1K
++WWWWWWWWWWWWWWWWWWWWWWWWWWW P1k;where C 
k K �! X 0 �P1K �Kk (X 0) �P1K � � � �P1K �Kk n�1(X 0) is given by(�Kk i(a))i=0;:::;n�1. By 
onstru
tion, this morphism identi�es an open part of CKwith the open part of one 
omponent of X 0 �P1K �Kk (X 0)�P1K � � � �P1K �Kk n�1(X 0)(sin
e K(X 0) 
K(x) �Kk (K(X 0)) 
K(x) � � � 
K(x) �Kk n�1(K(X 0)) �! K(C) is sur-je
tive) and the same is true for C and ResP1KP1k (X 0).In parti
ular, C �! ResP1KP1k (X 0) indu
es a 
losed immersion of an open partof C. So is also ResP1KP1k (X 0) ' W �ResKk (P1) P1k �! ResKk (X 0), sin
e P1k �!



82 Chapter 3. Coverings of 
urves and the DL-problemResKk (P1K) is (see Lemma 1.5) and \
losed immersion" is stable under base-
hange(see [Ha, II,ex. 3.11.℄). Thus:Proposition 3.6 b : C �!W indu
es a 
losed immersion of an open part of C.3.2.2 An appli
ationLet n be odd. Let H 0 be a hyperellipti
 
urve as above. A Weierstra�-equationof H 0 de�nes a 
overing H 0 �! P1K of degree 2. Let L0 be the Galois 
losure ofK(H 0)jK(x). Then if L0jK(x) is regular, by the general theory presented above,it 
an be de�ned over k. 7
har(k) = 2Let the ellipti
 K-
urve E0 be given by the Weierstra�-equationy2 + xy = x3 + �x2 + �; �; � 2 KSo K(E0)jk(x) is a (Galois) extension of degree 2, and via this extension we re-gard K(E0) as a intermediate �eld of K(x)sepjK(x). After division by x2 andsubstitution s := y=x+ � 12 =x, the extension K(E0)jK(x) is given bys2 + s+ � 12x�1 + �+ x = 0:(Note that sin
e K is perfe
t, � 12 2 K.) Thus the Galois 
losure L0 of K(E0)jK(x)is given by the Artin-S
hreier equations20 + s0 + � 12x�1 + �+ x = 0s21 + s1 + �Kk 1(�) 12x�1 + �Kk 1(�) + x = 0...s2n�1 + sn�1 + �Kk n�1(�) 12x�1 + �Kk n�1(�) + x = 0with s0 = s. It is shown in [GHS℄ that L0 is a regular �eld extension of K(z) ofdegree � 2n, and furthermore that it is hyperellipti
 and that its genus is boundedby 2n�1.More pre
isely, letU := spanF2 (f�Kk i(�) 12x�1 + �Kk i(�) + xgi=0;:::;n�1);U 0 := spanF2 (f(�Kk i(�) 12 ; �Kk i(�); 1)gi=0;:::;n�1):Let m :=dimF2 (U=P(K(x))\U) =dimF2 (U 0=U 0 \ f(0;P(�); 0); � 2 Kg), whereP(�) := �2 + �. Then it follows from Artin-S
hreier theory that 2m = [L0 : K(x)℄;see [Ne, IV, (3.3) with (3.4)℄ for the statement of the Artin-S
hreier theory we usehere. Cal
ulations show that g(L) = g(L0) = 2m�1 or g(L) = g(L0) = 2m�1 � 1.7This 
onstru
tion was introdu
ed by Galbraith and Smart and analyzed in detail by Gaudry,Hess and Smart in 
hara
teristi
 2; 
f. [GHS℄. Additional remarks were made by Menezes andQu; 
f. [MQ℄. It was generalized to 
ertain hyperellipti
 
urves of 
hara
teristi
 2 by Galbraith;
f. [Gal℄. The analysis in the odd-
hara
teristi
 
ase is due to the author.



Coverings of 
urves whose Ja
obian variety is simple and new 83For n prime to 2, let '2(n) := ord(2) for 2 2 (Z=nZ)�.Then for k = F2 , m 
an only assume the values '2(n)i + 1 for i � 1, thusg(L) = 2'2(n)i or g(L) = 2'2(n)i � 1; see [MQ℄.Let n = 127. Then '2(n) = 7, and for this value of n, an expli
it extensionK(E0)jK(x) 
an be 
onstru
ted for whi
h L has genus 27 � 1 = 127; see [GHS℄.
har(k) 6= 2Let n still be odd. Let H 0 be a hyperellipti
 
urve of genus g whi
h satis�es the\general assumptions". Let H 0 be given by the Weierstra�-equationy2 = f(x);where f is a polynomial of degree 2g + 1 or 2g + 2. Again regard K(H 0) as anintermediate �eld of K(x)sepjk(x), let L0 be the Galois 
losure of K(H 0)jK(x)inside K(x)sep.We identify the pla
es of K(x)jK with K [ f1g (via x). Let e1; e2; : : : 2 Kand possibly1 be the rami�ed pla
es of the extension KL0jK(x). (The pla
e 1is rami�ed i� deg(f) = 2g + 1.)The absolute Galois-group Gal(KjK) operates on the 
overing and thus alsoon the rami�ed pla
es. It �xes 1 and operates on the ei.On the other hand, the set S := fe1; e2; : : :g is not invariant under Gal(Kjk).For if it was, f(x) = (x� e1)(x� e2) � � � would have 
oeÆ
ients in k, and thus H 0would be de�ned over k.Assume that �k(e1); : : : ; �k(el) =2 S and �k(el+1); : : : 2 S. Then all elements�ik(ej); i = 0; : : : ; n� 1; j = 1; : : : ; l are distin
t and for i � 1, they do not lie inS.Lemma 3.7 L0jK(x) is regular over K and has degree 2n.proof (by indu
tion) Let i = 2; : : : ; n. Assume that L0 � � � �Kk i�1(L0)jK(x) is regularover K and has degree 2i�1. This is equivalent to [KL0 � � � �i�1k (KL0) : K(x)℄ =2i�1. Now �ki(e1) is in the rami�
ation lo
us of �ki(KL0)jK(x) but not in therami�
ation lo
us ofKL0 � � � �ki�1(KL0)jK(x). Thus �ik(KL0) 
annot be 
ontainedin KL0 � � � �ik(KL0), and thus they are linearly disjoint over K(x), de�ning anextension of degree 2i. This implies that L0 � � � �Kk i�1(L0) is regular of degree 2i.2. By the general theory, there exists a regular extension Ljk(x) su
h thatK
L 'KL = L0. The rami�
ation of Ljk(x) or { what is the same { the rami�
ation ofL0jK(X) 
an be 
al
ulated using Abhyankar's Lemma; see [Po, Lemma (2.14)℄.Lemma 3.8 (Abhyankar) Let F be a �eld, F a Galois 
losure of F , v a dis
retevaluation of F of rank 1. Let F1, F2 be �nite Galois extension �elds of F in F .Let v1, v2 be extensions of v in F1, F2, e1 = e(v1jv); e2 = e(v2jv) the 
orresponding
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urves and the DL-problemrami�
ation indi
es. Assume that v is tamely rami�ed in F1jF and in F2jF andthat e1 divides e2.Then: If F 0 is the 
omposite of F1 and F2 in F and v0 is an extension of v inF 0, then v0 is unrami�ed in the extension F 0jF2.With this lemma, we 
on
lude that all rami�
ation indi
es of the rami�edpla
es of KL0jK(X) are 2.Let r be the number of rami�ed pla
es ofKL0jK(x). Then r equals the numberof elements in the set f�Kk i(ej)j i = 0; : : : ; n � 1; j = 1; 2; : : :g([f1g). So by theremarks before Lemma 3.7,2g + n+ 1 � r � (2g + 2)n:The lower bound is obtained if the degree of f is 2g + 1 and all ei lie in k expe
tone (whi
h lies in K), the upper bound is obtained if the degree of f is 2g+2 andno ei lies in k.With the Riemann-Hurwitz-formula we 
al
ulateg(L) = g(L0) = 2n(0�1)+ 12re� 1e 2n+1 = �2n+r2n�2 = 2n�2(r�4)+1: (3.5)So 2n�2(2g + n� 3) + 1 � g(L) � 2n�1((g + 1)n� 2) + 1:In parti
ular, let H 0 be an ellipti
 
urve. Then there always exists a Weierstra�-equation su
h that f has degree 3. So 3 + n � r � 3n+ 1 and2n�2(n� 1) + 1 � g(L) � 3 � 2n�2(n� 1) + 1:
3.3 Coverings of 
urves de�ned over the small �eld3.3.1 Constru
tion of 
overingsLet still Kjk be a prime extension of �nite �elds of 
hara
teristi
 p, n := [K : k℄,X a non-singular, proper, geometri
ally irredu
ible 
urve over k with a k-rationalpoint. Assume that EndK(J(XK)) is 
ommutative and { after an in
lusion ofEnd0k(J(X)) into Q { End0k(J(X)) \ Q(�n) = Q . As proven in Theorem 5, underthese assumptions, the tra
e-zero-hypersurfa
e of the Weil-restri
tion of J(XK)with respe
t to Kjk is simple.We want to 
onstru
t 
overings of X whi
h ful�ll the 
onditions of Theorem 9,i.e. we want to 
onstru
t 
overings 
 : C �! X su
h that C has an automorphismt with 
 Æ t 6= 
. Furthermore we want that t has a geometri
 �xed point. (IfCl0(XK) has no element of order n, this assumption is not needed.)



Coverings of 
urves defined over the small field 85Analogously to Subse
tion 3.2.1, let k(X) be the fun
tion �eld of X, k(X)jk(x)an extension, in
luded in k(x)sepjk(x), su
h that n divides [k(X) : k(x)℄. Let L bethe Galois 
losure of k(X)jk(x) in k(x)sep.Assume that n does not divide [L : k(X)℄. Then Ljk(x) has an automorphismof order n whi
h does not �x K(X) whi
h we denote by t#. Assume that thisautomorphism is 
ontained in some inertia group of Ljk(x) or that Cl0(XK) has noelement of order n. Let C be a proper, non-singular model of k(X), 
 : C �! X the
overing 
orresponding to the extension k(C)jk(X). Let t be the automorphismof C 
orresponding to t#.Now, if Ljk is regular, we 
an apply Theorem 9. (If Ljk is not regular but L isregular over some extension �jk su
h that n does not divide [� : k℄, we 
an workover � instead of k and then still apply the theorem.)A �rst exampleLet 
 : E �! E be the identity and let t : E �! E be the ellipti
 involution, i.e.t Æ P = �P . Now if Kjk is a �eld extension of degree 2 (not ne
essarily of �nite�elds) then by the theorem, the twist of E by the involution is mapped into theWeil-restri
tion. By 
onstru
tion, this morphism is given by the 
losed immersion(id;�id) : EK �! E2K ' WK . This 
orresponds to the well-known fa
t that thetra
e-zero-hypersurfa
e is isomorphi
 to Et, and W is isogenous to E �k Et.Geometri
 interpretation of the 
onstru
tionLet 
 : C �! X be the 
overing de�ned by Ljk(X). The �eld extension k(X)jk(x)de�nes a 
overing X �! P1k. Let W be the Weil-restri
tion of XK with respe
tto Kjk, b : C �! W the morphism 
orresponding to 
 
k idk : CK �! XK .Let bt : Ct �! W be the morphism 
orresponding to CtK ' CK �! XK as inTheorem 9.Then both b and bt fa
tor through the 
losed immersion ResP1KP1k (XK) �!ResKk (XK).We want to give 
onditions under whi
h bt indu
es a 
losed immersion of anopen part of Ct. This is the 
ase i� bt 
k idK = (
ti�1 
k idK)n�1i=0 : CtK 'CK �! ResP1KP1k (XK) 
k K ' n foldz }| {XK �P1K � � � �P1K XK indu
es a 
losed immersionof an open part of CtK . This in turn is the 
ase i� the ring-homomorphismn foldz }| {K(XK)
K(x) � � � 
K(x) K(XK) �! KL indu
ed by t#i�# for i = 0; : : : ; n � 1is surje
tive (where �# : k(x) ,! k(X) is the in
lusion).Proposition 3.9 Let [k(X) : k(x)℄ = n. Then bt : Ct �! ResKk (XK) indu
es a
losed immersion of an open part of Ct.Proof Let �#i ; i = 1; : : : ; n : k(x) �! k(X) be the in
lusions. We know that t



86 Chapter 3. Coverings of 
urves and the DL-problemoperates non-trivially on the set of �#i . Thus by assumption, it operates by 
y
li
permutation, i.e. the set of t#i�# for i = 0; : : : ; n � 1 equals the set of �#i fori = 1; : : : ; n.Thus the ring-homomorphism n foldz }| {k(X)
k(x) � � � 
k(x) k(X) �! L indu
ed byt#i�# for i = 0; : : : ; n � 1 equals (up to permutation of the fa
tors) the ring-homomorphism indu
ed by the inje
tions �#i . We know that this homomorphismis surje
tive. (L is generated by the roots of a primitive element of k(X)jk(x).) 2A se
ond exampleLet E be a non-super-singular ellipti
 
urve whi
h is not isogenous to an ellipti

urve with j-invariant 6= 0. A Weierstra�-equation of E de�nes a �eld extensionk(E)jk(y) of degree 3. Sin
e by assumption k(E) does not have an automorphismof order 3, this extension is non-Galois.Let L be a Galois 
losure of this extension. Then Ljk(E) is an extension ofdegree 2, the Galois group of K(E)jk(y) is isomorphi
 to the symmetri
 group onthree elements.There are two possibilities: 1. L = �(E�), where �jk is the unique extensionof degree 2, 2. L is regular over k. Sin
e L has an automorphism of order 3 andwe assumed that E does not have j-invariant 0, the �rst 
ase is impossible. ThusLjk(E) is regular.Let 
 : C �! E be the 
overing of non-singular, proper, irredu
ible 
urveswhi
h 
orresponds to the extension Ljk(E). Sin
e we assumed that E is notisogenous to a 
urve with j-invariant 0, the genus of C is at least 2.Let Kjk be the �eld extension of degree 3 and let �Kk be the Frobenius auto-morphism of Kjk. Let t 2 Gal(Ljk(x)) be of of the two elements of exa
t order3. Let Ct be the twisted 
urve de�ned by �Kk 7! t�Kk . By 
onstru
tion, just as C,Ct is a 
overing of P1k.If we substitute t be t2, the other element of exa
t order 3 in Gal(Ljk(x)), weobtain another 
overing Ct2 �! P1k. However, the elements t and t2 are 
onjugatedin Gal(Ljk(x)), st = t2s for some element s of order 2 in Gal(Ljk(x)) and su
h an sde�nes an isomorphism from CtK �! P1K to Ct2K �! P1K whi
h is 
ompatible withthe Galois-operation. Therefore the two P1k-
overings Ct and Ct2 are isomorphi
.[This 
orresponds to the fa
t that there are exa
tly two elements in the pointedset H1(Gal(Kjk);Aut(CK �! P1K).℄The 
overing Ct �! P1k 
orresponds to a morphism bt : Ct �! ResP1KP1k (EK).(Where EK �! P1K is the 
overing indu
ed by the extension K(EK)jK(y).) ByProposition 3.9, this morphism indu
es a 
losed immersion of an open part of Ct.All in all, the redu
ible K-
urve ResP1KP1k (EK)K ' EK �P1KEK �P1KEK has �veirredu
ibility 
omponents: EK itself, and four 
omponents whi
h are birational toCK . [The ring K(EK)�K(x)K(EK)�K(x)K(EK) is isomorphi
 to K(EK)�L3.℄



Coverings of 
urves defined over the small field 87One of the 
omponents of ResP1KP1k (EK)K ' EK �P1K EK �P1K EK is the image ofCtK ' CK under bt 
k idK = (
; 
t; 
t2). The other 
omponents whi
h are isomor-phi
 to CK are the images of CK under (
t; 
; 
), (
; 
t; 
), (
; 
; 
t) respe
tively.These 
omponents are permuted under the Galois-operation on ResP1KP1k (EK)K .They des
end to an irredu
ible k-
urve on ResP1KP1k (EK) whi
h is birational to CK
onsidered as k-
urve. Thus apart from E itself, the image of Ct is the onlygeometri
ally irredu
ible k-
urve on ResP1KP1k (EK).Let E be given by a \ni
e" Weierstra�-equation as in [Si, Appendix A, Proposi-tion 1.1℄. Then Ct is birational to the geometri
ally irredu
ible 
urves 
onstru
tedin Subse
tion 2.4.2, the last subse
tion of the previous 
hapter. (In parti
ular, theimage of Ct in ResKk (EK) under bt lies on the tra
e-zero-hypersurfa
e of E.) If
har(k) = 3, it is birational to the 
urve given by (2:36). If 
har(k) > 3 andthe third roots of unity are 
ontained in k, it is birational to the 
urve given by(2:21). If 
har(k) = 2, again under the assumption that the third roots of unityare 
ontained in k, it is birational to the 
urve given by (2:29).In parti
ular:� If 
har(k) 6= 2; 3, Ct is a hyperellipti
 
urve of genus � 3.� If 
har(k) = 2, Ct is a \
anoni
al 
urve" of genus 3.� If 
har(k) = 3, Ct is a 
urve of genus 2.3.3.2 An appli
ationDe�nition For n prime to p, let 'p(n) := ord(p) for p 2 (Z=nZ)�. We might
all 'p the lo
al Euler-fun
tion for p.Lemma 3.10 Fp(�m) = Fp'p (m) .Let 
 : Gal(Fp(�m)jFp) �! (Z=mZ)� be the m-th 
y
lotomi
 
hara
ter, i.e.�(�m) = �
(�)m . Then 
 indu
es a bije
tion of Gal(Fp(�m)jFp) with the subgroupgenerated by p in (Z=mZ)�. 2For the following 
onstru
tion, let n be an odd prime and assume that the n-throots of unity are 
ontained in k, i.e. k 
ontains Fp'p (n) .Let H be a hyperellipti
 k-
urve and let g(x; y) be some Weierstra�-\equation"(i.e. polynomial) de�ning H. Let L be a Galois 
losure of the extension of k(x)



88 Chapter 3. Coverings of 
urves and the DL-problemgiven by zn = x; g(z; y) = 0. Lk(H)2k(z)nk(x)Let � = �n be an n-th root of unity in k. Then the �eld L is given by the equationszn = x; g(z; y0) = 0; g(�z; y1) = 0; : : : ; g(�n�1z; yn�1) = 0 (with y0 = y):So Ljk(H) is a 
omposite of extensions of degree 2, and [L : k(H)℄ = 2a for somea � n� 1.The pla
e p0 is rami�ed in Ljk(x), its rami�
ation index equals n. Let t# bean element of the inertia group of Ljk(x) of order n. Now t# does not �x k(H)be
ause [L : k(H)℄ = 2a and n is odd, and t# has a �xed point.Let � := L\k (interse
tion in some 
ommon over�eld) be the Galois 
losure of kin L. Then the extension Lj�(H�) and the automorphism t ful�ll the requirementsof the theorem.Let �# : k(H) �! L be the in
lusion. Then the set t#�#(k(H)) equals the setof images of k(H) under all in
lusions into L (over k(x)). Thus the homomorphismn foldz }| {k(H)
k(x) � � � 
k(z) k(H) �! L indu
ed by t#i�# is surje
tive, and as in the 
aseof Proposition 3.9, bt : Ct �! ResKk (XK) indu
es a 
losed immersion of an openpart of Ct.It is a priori not 
lear whether Ljk is regular. However, sin
e Gal(Ljk(z)) hasexponent 2, if Ljk is not regular, it is regular over the unique extension of k ofdegree 2.As above, let � be the Galois 
losure of k in L. Then L and �(z) are linearlydisjoint over �(x). Thus [L : k(x)℄ = [L : �(z)℄ � [�(x) : k(z)℄ = [kL : k(z)℄ � [� : k℄and [� : k℄ = [kL:k(z)℄[L:k(z)℄ .We now address the extension-degrees in question for spe
ial Weierstra�-equations. Then we 
al
ulate the genus of L (whi
h equals the genera of C andCt).
har(k) = 2We still assume that the n-th roots of unity are 
ontained in k.Let E be an ellipti
 
urve, given by the Weierstra�-equationy2 + xy = x3 + �x2 + �; �; � 2 k



Coverings of 
urves defined over the small field 89After division by x2 and substitution s := y=x+ � 12 =x, the extension k(E)jk(x) isgiven by the Artin-S
hreier equations2 + s+ � 12x�1 + �+ x = 0:Now substitute x by z. Then the extension Ljk(x) de�ned above is given byzn = xs20 + s0 + � 12 z�1 + �+ z = 0s21 + s1 + � 12 (�z)�1 + �+ �z = 0...s2n�1 + sn�1 + � 12 (�n�1z)�1 + �+ �n�1z = 0with s0 = s.Let U 0 be the F2 -ve
tor spa
eU 0 := spanF2 (f� 12 ��i; �; �i)gi=0;:::;n�1) � F2 3:Let P(�) := �2 + �. By Artin-S
hreier theory in the form of [Ne, IV, (3.3) with(3.4)℄, [L : k(z)℄ = 2d with d = dimF2 (U 0=U 0 \ f(0;P(�); 0)j� 2 kg), [Lk : k℄ = 2mwith m = dimF2 (U 0=U 0 \ f(0; �; 0)j� 2 kg). LetV 0 := spanF2 (f� 12 ��i; �i)gi=0;:::;n�1):Then m = dimF2 (V 0). '2(n) � m � 2'2(n) (3.6)The se
ond inequality follows from the in
lusion V 0 � � 12 F2 (�) � F2 (�). The�rst inequality follows from proje
tion of V 0 onto F2 (�) (proje
tion to the se
ond
oordinate).Of 
ourse, sin
e we only have n generating ve
tors, we also have the inequalitydimF2 (U 0) � n whi
h is for example a better bound if '2(n) = n� 1.We now study over whi
h 
onstant �eld L is regular. We have the following
ases:
ase 1: � = 0. In this 
ase, [L : k(x)℄ = [kL : k(x)℄ = dim(V 0) = m and theextension Ljk is regular.
ase 2: � 6= 0. Sin
e the sum over all n-th roots of unity is 0, (0; �; 0) 2 U 0.Now the extension Ljk is regular i� � 2 P(k), and it is regular over the 
onstant�eld extension of degree 2 otherwise.We 
al
ulate the genus of L. We use the following lemma. 88This idea was pointed out to the author by H. Sti
htenoth.



90 Chapter 3. Coverings of 
urves and the DL-problemLemma 3.11 (A

ola; Kani; Gar
ia, Sti
htenoth) Let � be a �eld, l a primenumber, m a natural number and Lj�(z) a Galois extension, regular over �, withGalois group isomorphi
 to (Z=lZ)m. Then Lj�(z) has exa
tly e := (lm�1)=(l�1)sub�elds Lij�(z) with [Li : k(z)℄ = l. We haveg(L) = eXi=1 g(Li):Proof See [GS, Theorem 2.1℄ with [Kan, Theorem 1℄. (The 
onditions on � statedin [GS℄ are not ne
essary.) 2We apply this lemma with l = 2, L, m as above and � the Galois 
losure of kin L.Then e = 2m � 1 and all Lij�(z) are Artin-S
hreier extensions. { They 
orre-spond bije
tively to 
y
li
 subgroups of V 0, i.e. to non-trivial elements of V 0. Su
han element (� 12 
i; di) 2 V 0 de�nes an extension Lij�(z) given by the Artin-S
hreierequation t2 + t+ � 12 
iz�1 + diz = 0:Thus g(Li) � 1 and we get the following proposition.Proposition 3.12 Either Ljk is regular or it is regular over the 
onstant �eldextension of degree 2. Let m := dimF2 (V 0). Then [Lk : k(x)℄ = 2m, and L hasgenus � 2m � 1 � 22'2(n) � 1.We 
an now apply Theorem 9. We have motivated: 9Proposition 3.13 Let n be an odd prime number. Let E be an ellipti
 
urve overF2'2 (n) su
h that E(F2'2 (n)n) 
ontains a prime fa
tor of order � 2'2(n)n�'2(n).Then a geometri
ally irredu
ible 
urve Ct of genus � 22
'2(n) � 1 de�ned overF22'2 (n) with an automorphism of order n 
an be 
onstru
ted su
h that via thehomomorphism (3.2), we expe
t the DL-problem in E(F2'2 (n)n) to be transformedinto the DL-problem of Cl0(Ct).An interesting spe
ial 
ase is the following: Let n = 2
�1 be a prime number.Then '2(n) = 
 sin
e 2
 = n+ 1 � 1 mod n. So:Let n = 2
 � 1, be a prime number, e.g. n = 3; 7; 31; 127. Let E be an ellipti

urve over F2
 su
h that E(F2
n ) 
ontains a prime fa
tor of order � 2
n�
. Thena geometri
ally irredu
ible 
urve Ct of genus � 22
 � 1 de�ned over F22
 withan automorphism of order n 
an be 
onstru
ted su
h that via the homomorphism(3.2), we expe
t the DL-problem in E(F2
n ) to be transformed into the DL-problemof Cl0(Ct).9We write \motivated" instead of \proven" be
ause the result relies on the fa
t that we expe
tthe large prime fa
tor in E(K) to be preserved; see Theorem 9 for details.



Coverings of 
urves defined over the small field 91In parti
ular, let E be a 
urve de�ned over F25 su
h that E(F2155 ) 
ontains aprime fa
tor of order 2150. Then we have asso
iated to E a geometri
ally irre-du
ible 
urve Ct of genus � 210 � 1, de�ned over F210 with an automorphism oforder 31, su
h that via the homomorphism (3.2), the DL-problem in E(F2155 ) isexpe
ted to be transformed into the DL-problem of Cl0(Ct).
har(k) 6= 2Let k(H) be a hyperellipti
 fun
tion �eld of genus g and let k(H)jk(z) be a degree-2 extension de�ned by a Weierstra�-equation of degree d := 2g + 1 or d := 2g + 2(in z). We identify the pla
es of k(z)jk with k [ f1g (via z).Then k(E)jk(z) is rami�ed over d pla
es e1; e2; : : : ; ed 2 k and additionallyover 1 if d is odd.There are several di�erent 
ases depending on whether some rami�
ationpoints lie in the same orbit under of the a
tion of the Galois group of k(z)jk(x).The most generi
 one is the following:All ei lie in di�erent orbits of the Galois group of k(z)jk(x).There are two sub-
ases:
ase 1: ei 6= 0 for all i. Then kLjk(z) is rami�ed at (2g+1)n+1 or (2g+2)npla
es (depending on whether the Weierstra�-\equation" (i.e. polynomial) hasodd or even order).
ase 2: ei = 0 for some ei. Then kLjk(z) is rami�ed at 2gn+2 or (2g+1)n+1pla
es.In both 
ases, exa
tly as in the proof of Lemma 3.7, one sees that Ljk(z) isregular and has degree 2n.Using Abhyankar's Lemma (Lemma 3.8), we 
on
lude that the rami�
ationorder at the rami�ed pla
es is always 2. We 
an 
al
ulate the genus of L (whi
hequals the genera of C and Ct) using formula (3.5):g(L) = 2n�2(r � 4) + 1;where r is the number of rami�ed pla
es in Ljk(z). Thus 2gn+2 � r � (2g+2)nand 2n�1(gn� 1) + 1 � g(L) � 2n�1((g + 1)n� 2):
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Appendix ASome auxiliary results
A.1 Some results about the Pi
ard s
hemeThe fun
tor Pi
(X) of a non-singular, proje
tive, integral k-variety X with ak-rational point as well as the group-s
hemes Pi
(X) and Pi
0(X), the Pi
ards
heme, where already introdu
ed in Subse
tion 1.2.2. Here we give some addi-tional properties. We are only interested in \geometri
" questions like the dimen-sion of Pi
0(X), so we work over an algebrai
ally 
losed �eld only.A.1.1 The dimension of the Pi
ard s
hemeLet k be an algebrai
ally 
losed �eld, X a non-singular, proje
tive, integral k-variety.The dimension of the Pi
ard s
heme Pi
0(X) 
an be 
al
ulated via �etale 
o-homology or via the �etale fundamental group.Lemma A.1 For any prime l 6= 
har(k): 1dim(Pi
0(X)) = 12dimQl (H1(X�et;Zl)
Zl Q l ) =12dimQl (Hom
ont(�1(X);Zl)
Zl Q l )Proof of the �rst equation Let n 2 N with 
har(k) - n. The Kummer exa
t sequen
e(in the �etale topology) 0 �! �n �! Gm �n�! G m �! 01We should write the fundamental group relative to some base point. However the fundamentalgroups relative to di�erent base points are (non-
anoni
ally) isomorphi
.93



94 Appendix A. Some Auxiliary Resultsgives rise to a long exa
t sequen
e0 �! �n(X) �! �(X;OX )� �n�! �(X;OX)� �!H1(X�et; �n) �! H1(X�et; G m) �! H1(X�et; G m ) �! � � �k� k�Pi
(X) �n�! Pi
(X)Sin
e X is proje
tive, �n : �(X;OX)� �! �(X;OX )� ' k� is an isomorphism. Wethus have an isomorphism H1(X�et; �n) ~�!Pi
(X)n2Choosing an isomorphism �n �! Z=nZ we get a non-
anoni
al isomorphismH1(X�et;Z=nZ)� Pi
(X)n:Now let l 6=
har(k) be a prime. We 
an 
hoose isomorphism �li ~�!Z=liZ in a waythat is 
ompatible with the proje
tive systems. Taking the limit, we obtain anisomorphism H1(X�et;Zl) ~�!Tl(Pi
(X)):3It followsH1(X�et;Zl)
Zl Q l � Tl(Pi
(X)) 
Zl Q l ' Tl(Pi
0(X)) 
Zl Q l 'Tl(Pi
0(X)red)
Zl Q lOn the other hand, Pi
0(X)red is an abelian variety and with [Mi-A, Theorem15.1℄, we 
an 
on
lude thatdim(Pi
0(X)) = dim(Pi
0(X)red)12dimQlTl(Pi
(X)) 
Zl Q l = 12dimQlH1(X�et;Zl)
Zl Q lProof of the se
ond equation (outline) There is a 
anoni
al isomorphismHom
ont(�1(X);Zl) ' H1(X�et;Zl)This follows from the following fa
ts:- H1(X�et;Z=nZ)' _H1 (X�et;Z=nZ). 4 [Mi-�E, III.2, Theorem 2.17.℄2For some abelian groupG, we denote the kernel of the multipli
ation of n byGn. In parti
ular,if A is an abelian variety over the algebrai
ally 
losed �eld k, then A[n℄(k) ' A(k)n.3For an abelian group G and some prime l, we denote lim �iGli by Tl(G). In parti
ular, ifA is an abelian variety over the algebrai
ally 
losed �eld k, then Tl(A) = Tl(A(k)).4We use the same notation for a �nite group, the 
orresponding group s
heme and the 
orre-sponding �etale/
at sheaf over some s
heme.



Some results about the Pi
ard s
heme 95- The set of isomorphism 
lasses of prin
ipal homogeneous spa
es for Z=nZover X is in bije
tion with _H1(Xet;Z=nZ). [Mi-�E, III.4, Corollary 4.7., Remark4.8.℄- Prin
ipal homogeneous spa
es for Z=nZ over X 
orrespond to Galois 
ov-erings of X with given Galois a
tion of Z=nZ and vi
e versa, and the set ofisomorphism 
lasses of these is in bije
tion with Hom
ont(�1(X);Z=nZ). ([SGA I,V.2℄ and de�nition of the �etale fundamental group) 2If Pi
(X) is redu
ed (smooth) { thus an abelian variety { 
an also be read offrom 
ohomology:Lemma A.2 dim(Pi
0(X)) � dimkH1(X;OX )Equality holds i� Pi
0(X) is redu
ed. In parti
ular, this is the 
ase if 
har(k) = 0.Proof See [BLR, 8.4, Theorem 1℄. The last statement follows from the fa
t thatall proje
tive group s
hemes over �elds in 
hara
teristi
 zero are redu
ed. 2For the following proposition we need the de�nition:De�nition Let 
har(k) > 0, let X be a proje
tive k-variety. A smooth properglobal lifting is a separated s
heme X de�ned over the spe
trum of a dis
retevaluation ring R su
h that� The fun
tion �eld of R has 
hara
teristi
 zero and the residue �eld is k� The \geometri
 �ber" X0 := X
R k is isomorphi
 to X� X is smooth and proper over Spe
R.Let X� := X 
R Quot(R) be the \generi
 �ber" of X. Then in parti
ular, X� isa non-singular, proper, integral Quot(R)-variety. We denote X� 
Quot(R)Quot(R)be X�.Remark We will use that the Pi
ard-s
heme of X� exists and is proper. Sin
e upto now we have only talked about the Pi
ard-s
heme of a proje
tive non-singularintegral variety, we assume furthermore that the generi
 �ber of X� is proje
tive.However, the Pi
ard-s
heme also exists in the proper 
ase and is proper; see [BLR,8.2. Theorem 3 ,8.4, Theorem 3℄.Lemma A.3 Let k be a �eld with positive 
hara
teristi
. Let X have a smoothproper global lifting. Then Pi
0(X) is redu
ed.Proof By Lemma A.2 we have to show that dim(Pi
0(X)) = dimH1(X;OX ).Let X be a global lifting for k over the spe
trum of the dis
rete valuation ringR.



96 Appendix A. Some Auxiliary ResultsLet l 6=
har(k) be a prime. By the above lemmata,12dimQlH1(X��et;Zl)
Zl Q l = dimQuot(R)H1(X�;OX� ):We now use the theorems of 
ohomology and base 
hange to \transfer" this equa-tion to X0 � X.dimQuot(R)H1(X� ;OX� ) = dimQuot(R)H1(X� ;OX� ) = dimkH1(X0;OX�)The �rst equation is a spe
ial 
ase of [Ha, III, Proposition 9.3℄, and the se
ondequation follows from [Ha, III, Corollary 12.9℄.By [Mi-�E, VI, Corollary 4.2℄,H1(X��et;Z=nZ)�= H1(X0�et;Z=nZ):These equations implydim(Pi
0(X)) = 12dimQl (H1(X�et;Zl)
Zl Q l ) = dimkH1(X;OX ):Thus by Lemma A.2, X is redu
ed. 2A.1.2 The Pi
ard s
heme of a produ
tLet k be an algebrai
ally 
losed �eld and let X1;X2 be two non-singular proje
tiveintegral k-varieties. Let P1 and P2 be k-rational points of X1, X2 respe
tively.Let qi : X1 �k X2 �! Xi (i = 1; 2) be the proje
tions.Let Z be a k-s
heme. By bull-ba
k, we have morphismsPi
(X1 �k Z)=Pi
(Z)� Pi
(X1 �k Z)=Pi
(Z) �! Pi
(X1 �k X2 �k Z)=Pi
(Z)(M1;M2) 7! q�1(M1)
 q�2(M2):By applying (Pi �k idZ)� we see that these morphism are inje
tive.Thus we get an inje
tive natural transformationU : Pi
(X1)� Pi
(X1) �! Pi
(X1 �k X2):This indu
es a morphismU : Pi
0(X1)�Pi
0(X1) �! Pi
0(X1 �k X2):Proposition A.4 If k has 
hara
teristi
 zero or if X1 and X2 have smooth properglobal liftings, then U is an isomorphism between abelian varieties.In general, U indu
es an isomorphism between the 
orresponding redu
ed ob-je
ts, whi
h are abelian varieties.



Some results about abelian varieties 97Proof By Lemma A.1,dim(Pi
0(X1 �k X2)) = 12dimQl (Hom
ont(�1(X1 �k X2);Zl)
Zl Q l ) =12dimQl (Hom
ont(�1(X1)� �1(X2);Zl)
Zl Q l ) =12dimQl (Hom
ont(�1(X1);Zl)�Hom
ont(�1(X2);Zl))
Zl Q l ) =dim(Pi
0(X1)) � dim(Pi
0(X2)): (A.1)Here we use�1(Pi
0(X1)�k Pi
0(X2)) �= �1(Pi
0(X1))� �1(Pi
0(X2))(relative so some base points); see [SGA I, X, Corollaire 1.7℄.Alternatively, we 
ould also use the K�unneth-formula of �etale 
ohomology toderive (A:1).Sin
e k is an algebrai
ally 
losed �eld, the 
orresponding redu
ed obje
ts onboth sides are abelian varieties. U has trivial kernel, thus indu
es an isomorphismof abelian varieties.If X1 and X2 have global liftings, so has the produ
t and by Lemma A.3, bothsides are redu
ed, thus U is an isomorphism. 2Remark If X1 and X2 are irredu
ible non-singular 
urves, then a smooth globallifting exists; see [Po, Satz 10.1℄. Thus in this 
ase, U is an isomorphism of abelianvarieties.A.2 Some results about abelian varietiesThe results is this se
tion are mostly well-known. Some of the results are dis
ussedin [Mu℄ over algebrai
ally 
losed �elds at least impli
itly. However, for most ofthe results we la
k a suitable referen
e and be
ause of that we in
lude them withproofs.A.2.1 IsogeniesLet K be a �eld, A, B and C three abelian K-varieties.Lemma A.5 Let �; � : B �! C be some morphisms, � : A �! B an isogeny.Assume that �� = ��. Then � = �.Proof � is surje
tive on K-valued points, and thus � = � : B(K) �! C(K). Thisimplies � = � : B �! C. 2We also have the following analogous result:Lemma A.6 Let �; � : A �! B be some morphisms, � : B �! C an isogeny.Assume that �� = ��. Then � = �.



98 Appendix A. Some Auxiliary ResultsProof Sin
e � : b �! C is an isogeny, ker(�) is a 
losed subs
heme of ker([n℄)for some n 2 N. Thus there exists a � : C �! B su
h that �� = n idC . Thus[n℄� = [n℄�, so �[n℄ = �[n℄. Sin
e [n℄ is an isogeny, we get � = � by the pre
edinglemma. 2For any two abelian varieties A and B, let as usual Hom0K(A;B) :=HomK(A;B) 
Z Q . HomK(A;B) is a free abelian group (sin
e [n℄ = n id is anisogeny), thus HomK(A;B) �! Hom0K(A;B) is an in
lusion.If � : A �! B, q 2 Q , we write q � for �
 q.The 
lass of abelian varieties with morphisms between two abelian varietiesA and B being Hom0K(A;B) forms a 
ategory whi
h is 
alled the \
ategory ofabelian varieties up to isogeny"; 
f. [Mu, par. 19℄.Lemma A.7 Let � : A �! B be an isogeny. We want to show that � hasa unique inverse in the 
ategory of abelian varieties up to isogeny. By this wemean the following: There exists a � 2 Hom0K(B;A) with �� = idA; �� = idB.Moreover, � is uniquely determined by �� = idA or �� = idB.Proof There exists some isogeny � : B �! A and some n 2 N with �� = n idA.Thus 1n�� = idA, i.e. 1n� is the left inverse of � in the 
ategory of abelian varietiesup to isogeny. Now, 1n� is also the right inverse for �. In fa
t, ��� = n�, andby Lemma A.5, �� = n idB . Again by the pre
eding lemmata, the left and rightinverses of � in the 
ategory of abelian varieties up to isogeny are unique. Thus �is the unique inverse of � in the 
ategory of abelian varieties up to isogeny. 2We will denote the inverse of the isogeny � by ��1.The next lemma is now obvious.Lemma A.8 Let � : A �! B be an isogeny of abelian varieties. Then End0K(A)�! End0K(B) � 7! ����1 is an isomorphism.2Remark Let the kernel of � : A �! B be 
ontained in ker([n℄) for some n 2 N.For example, A and B might be ellipti
 
urves and � an isogeny of degree n.Then the above lemma may be strengthened in the following way: For somering � and an element f 2 �, let �(f) be the lo
alization of � at the multipli
ativeset ff iji � 0g. Then � indu
es an isomorphism End(A)(f) �! End(B)(f).A.2.2 The N�eron-Severi group and polarizationsLet k be a �eld and let A be an abelian k-variety, bA the dual variety. Let L bean invertible sheaf on A. Let �L : A �! bA be the morphism whi
h is asso
iatedto the natural transformation Hom(�; A) �! Pi
0(A), given for Z-valued pointsP by P 7! T �P q�Z(L) 
 q�Z(L)�1, where qZ : A �k Z �! A is the proje
tion. The



Some results about abelian varieties 99map � : Pi
(A) �! HomK(A; bA) itself is a group homomorphism. The kernel of� is Pi
0(A), the group of 
lasses of invertible sheaves on A being algebrai
allyequivalent to OA.The group Pi
(A)=Pi
0(A) is 
alled the N�eron-Severi group of A, denotedNS(A). As usual, we denote NS(A) 
Z Q by NS0(A). If x 2 NS(A) is givenby some sheaf M on A, we denote �M also by �x. By 
onstru
tion, the map� : NS(A) �! Homk(A; bA) is an inje
tive group homomorphism. It extends to aninje
tive group homomorphism � : NS0(A) �! Hom0k(A; bA).Let Kjk be an algebrai
 �eld extension. Let A0 be an abelian K-variety. Asusual, any k-morphism � : Spe
(K) �! Spe
(K) indu
es an isomorphism �� :Pi
(A0) �! Pi
(��1(A0)). This isomorphism 
orresponds to the isomorphism��1(: : :) = (: : :)� : Pi
(A0) �! Pi
(��1(A0)). (For Kjk Galois and A0 = AK thisis a spe
ial 
ase of Lemma 1.16, if one forgets the last equality of the proof ofLemma 1.16, this proof also implies the general 
ase.)Lemma A.9 Let � be a k-automorphism of Spe
(K), let L be an invertible sheafon A0. Then���(L) = ��1�L� = ��1(�L) = ��L : ��1(A0) �! ��1(
A0):Proof Let �0# be a k-automorphism with �0#jK = �#. This de�nes a K-automorphism �0 of Spe
(K). Denote the pull-ba
k of L to A0K again by L.Applying the base 
hange KjK to the above equality, we get the following equal-ity of morphisms of abelian K-varieties, whi
h is equivalent to the equality in thestatement of the lemma. ��0�(L) = �0�1�L�0 = �0�1(�L):We show that this equality holds for K-valued points. This implies the equalityin the statement of the lemma.Let P be a K-valued point of ��1(A0K) ' �0�1(A0)K . We use that �0TP�0�1 =�0(TP ) = T�0(P ) : A0K �! A0K .Now, ��0�(L) Æ P (whi
h is a K-valued point of �0�1(
A0K)) 
orresponds to the
lass of sheaves T �P (�0�(L))
�0�(L)�1 = (�0TP )�(L)
�0�(L)�1 = (T�0(P )�0)�(L)
�0�(L)�1 = �0�(T ��0(P )(L) 
 L�1). This sheaf in turn 
orresponds to �0�1(�L Æ�0(P )) = �0�1 Æ �L Æ �0 Æ P Æ �0�1 Æ �0 = �0�1(�L) Æ P . 2Galois extensionsNow let Kjk be Galois. Let A be an abelian k-variety, A0 = AK .Then the last lemma implies in parti
ular that Pi
0(AK) is invariant underpull-ba
k by �. (This follows for example also from the fa
t that the operation ofG on Pi
(AK)(K) restri
ts to an operation on Pi
0(AK)(K) = bA(K).)
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e Pi
0(A) = Pi
0(AK)\Pi
(A), NS(A) is naturally a subgroup of NS(AK).Be
ause Pi
0(A) is invariant under the Galois-operation, G operates on NS(AK).With the notations as in the lemma, L de�nes an element in NS(AK)G i� �Lis invariant under G, i.e. i� it is de�ned over k.We want to study the 
okernel of the inje
tive group homomorphismNS(A) ,! NS(AK)G: (A.2)Lemma A.10 The 
okernel of (A.2) has exponent 2.Proof This is a spe
ial 
ase of [Mu, 20, p.188, Theorem 2℄:Let x 2 NS(AK)G. This indu
es the morphism �x : A �! bA.Choose a prime l 6=
har(k). The bilinear form el(:; �x(:)) on Tl(AK) is skew-symmetri
 sin
e �x 
k idK = �L on AK . Let P be a universal divisional 
or-responden
e on A � bA, and let M := (id; �x)�(P). Then one 
al
ulates that2el(:; �x(:)) = el(:; �M(:)). It follows that 2�x = �M be
ause of the non-degenera
yof el.This implies that M is 
lass of 2x in NS(AK)G. 2Warning The proof of the remark following [Mu, par. 20, p.188, Theorem 2℄(i.e. [Mu, par. 23, p.231, Theorem 3℄) does not hold sin
e it is assumed thatPi
(A) is divisible. Thus one 
annot 
on
lude that the 
okernel of (A.2) is trivial.Now we study the 
okernel of (A.2) with a 
ohomologi
al approa
h.By de�nition of the N�eron-Severi group we have a short exa
t sequen
e1 �! Pi
0(AK) �! Pi
(AK) �! NS(AK) �! 1:Taking invariants under the a
tion by the Galois group G, we get a long exa
tsequen
e 1 �! Pi
0(A) �! Pi
(A) �! NS(AK)G �!H1(G;Pi
0(AK)) �! H1(G;Pi
(AK)) �! � � �Thus 
oker(Pi
(A) �! NS(AK)G) = ker(H1(G;Pi
0(AK)) �! H1(G;Pi
(AK))).Lemma A.11 If the order of G is �nite and odd then NS(A) �! NS(AK)G is anisomorphism.Proof We already know that the 
okernel has exponent 2. On the other hand,sin
e G is a �nite group and the order of G odd, so are the orders of its Tate-
ohomology groups; see [Se, VIII, 2, p.130, Corollary 1℄. Thus the 
okernel has tobe trivial. 2



Some results about abelian varieties 101Lemma A.12 Let k be �nite. Then H1(Gal(kjk); A(k)) = 0 and thus NS(A) �!NS(Ak)Gal(kjk) is an isomorphism.Proof We only have to show the result for all �nite subextensions. Let Kjk besu
h a subextension with Galois group G.Every 1-
o
y
le (P�)�2G de�nes by � 7! TP� (= translation by P�) a twist ofAK . Su
h a twist is isomorphi
 to A i� (P�)�2G is a 1-
oboundary, i.e. if thereexists a Q 2 A(K) with ��1(Q)�Q = P� for all � 2 G, i.e. i� ��1(Q) = TP� ÆQ,i.e. i� Q = � Æ TP� Æ Q Æ ��1. And this means that Q is invariant under theGalois-operation of G on AK and thus is a k-rational point of A.Now, a theorem by S.Lang says that over a �nite �eld k, all k-s
hemes whi
h are\geometri
ally" abelian varieties have a rational point; see [Mu, p.205, Theorem3℄. So (P�)�2G is a 1-
oboundary and thus H1(G;AK) is trivial.Note: The argument 
an be reformulated by saying that all prin
ipal homoge-neous spa
es of AK are equivalent, or { what is the same { that the Weil-Châtelet-group of A is trivial; see [Si, X, 3℄ for details, the results formulated there hold forgeneral abelian varieties. 2The N�eron-Severi group as fun
torLemma A.13 Let  : A �! B be a morphism of abelian k-varieties, x 2NS0(Bksep)Gal(ksepjk), given by some L 2 Pi
(Bksep). Then� �(L) = b 
k idksep Æ �L Æ  
k idksep : Aksep �! bAksep :The proof is analogous to the one of Lemma A.9.We 
an assume that k = k.Let P be a k = k-valued point of A. We use that  TP = T ÆP  .Now, � �(L) Æ P (whi
h is a k-valued point of bA) 
orresponds to the 
lass ofsheaves T �P ( �(L))
 �(L)�1 = ( TP )�(L)
 �(L)�1 = (T ÆP )�(L)
 �(L)�1 = �(T � ÆP (L)
 L�1). This sheaf in turn 
orresponds to b �L Æ P . 2In parti
ular, Pi
0(A) is invariant under  �. Thus NS is a 
ontravariant fun
torfrom the 
ategory of abelian k-varieties to the 
ategory of abelian groups. (Andso are NS0, NS((:)ksep)Gal(ksepjk) and NS0((:)ksep)Gal(ksepjk).)If  : A �! B, the 
orresponding homomorphism between N�eron-Severigroups will also be denoted by  �.Polarizations and the 
ategory of polarized abelian varietiesDe�nition [Mi-A, 13℄ A polarization of A is a morphism ' : A �! bA su
h that'
k idk = �L : Ak �! Ak for some ample sheaf L on Ak. A prin
ipal polarizationis a polarization with trivial kernel.



102 Appendix A. Some Auxiliary ResultsBy Lemma A.9, � indu
es a bije
tion between the subset of element ofNS(Aksep)Gal(ksepjk) de�ned by ample sheaves and the set of polarizations on A.De�nition The 
ategory of polarized abelian varieties over k 
onsists of thefollowing:Obje
ts are abelian varieties A with some element x 2 NS(Ak) where x isde�ned by an ample sheaf and { after the 
hoi
e of a dual abelian variety bA {�x : Ak �! Âk is de�ned over k. (If k is perfe
t, this is the same as saying thatx 2 NS(Ak)Gal(kjk).)The morphisms between two obje
ts (A; x) and (B; y) are morphisms � : A �!B with ��(x) = y. 5Analogously, one de�nes the 
ategory of polarized abelian varieties with polar-izations de�ned by sheaves over k. Here, the obje
ts are abelian varieties A withsome x 2 NS(A). The morphisms are de�ned as above.There is a forget-fun
tor from the 
ategory of polarized abelian varieties withpolarizations de�ned by sheaves over k to the 
ategory of polarized abelian vari-eties varieties. This fun
tor is fully faithful.And there is a forget-fun
tor from the 
ategory of polarized abelian varietiesto the 
ategory of abelian varieties. This fun
tor is also faithful and for a �xedabelian variety A, the preimages under this fun
tor 
orrespond in a natural wayto the polarizations on A.The results about the N�eron-Severi group translate to results of polarizations.For example, if ' : A �! bA is a polarization, then 2' is de�ned by a sheaf on A.And if k is �nite, every polarization is de�ned by a sheaf on A.The proof is [Mu, 20, p.188, Theorem 2℄ again plus the fa
t that \ample" is ageometri
 property and depends only on the 
lass of a sheaf in the N�eron-Severigroup.For the next two lemmata, let k be perfe
t.Lemma A.14 Let ' : A �! bA be a polarization. This polarization indu
esan inje
tive group homomorphism NS0(Ak)Gal(kjk) �! End0k(A). The image ofthis in
lusion 
onsists of the elements of End0k(A) whi
h are �xed by the Rosatiinvolution (with respe
t to ').Now let ' be a prin
ipal polarization. Then we have an inje
tive group homo-morphism NS(Ak)Gal(kjk) �! Endk(A). Again, the image of this in
lusion 
onsistsof the elements whi
h are �xed by the Rosati involution (with respe
t to ').Proof Both statements follow from the 
orresponding statements over algebrai
ally
losed �elds by taking Galois-invariants. Thus we restri
t ourselves to algebrai
ally
losed �elds.5With this de�nition for the 
ategory of polarized abelian varieties we avoid the (simultaneous)
hoosing of a dual abelian variety for every abelian variety.



Some results about abelian varieties 103Let k be algebrai
ally 
losed. The �rst statement is well-known; see [Mu,p.190 (3)℄. For the se
ond statement, let � 2 End(A). By the �rst statement,there exists an n 2 N and sheaf M on A su
h that '�1�M = n�, i.e. �M = n'�.Sin
e ' is an isomorphism, ker(�M) 
ontains A[n℄, the group s
heme of n-torsionpoints of A. Sin
e we assumed k to be algebrai
ally 
losed, by [Mu, par. 23, p.231,Theorem 3℄, there exists a sheaf N on A su
h that Nn =M, and the 
lass of thissheaf in the N�eron-Severi group is mapped to �. 2Lemma A.15 Let ' be a polarization on A. With respe
t to this polarization, let(: : :)0 denote the Rosati involution.Let x 2 NS(Ak)Gal(kjk) 
orresponding under the polarization ' to the endomor-phism m on A. Let  be an endomorphism on A. Then  �(x) 
orresponds { againunder ' { to  0m 2 End0k(A).Proof The element in End0k(A) we are looking for is '�1� �(x), and this equals'�1 b �x = '�1 b ''�1�x =  0m . 2A.2.3 Produ
ts and the Rosati involutionLet k be a �eld, let Bi for i = 1; : : : ; n and Aj for j = 1; : : : ;m be abelian k-varieties. Let A := Qj=1;:::;mAj ; B := Qi=1;:::;nBi. Let �Aj : Aj �! A be thein
lusions and let pAj : A �! Aj be the proje
tions. (Similar de�nitions for B.)Then, sin
e a �nite produ
t of abelian varieties is also the sum of the these abelianvarieties in the 
ategory of abelian varieties,Homk(A;B) �! Li;j Homk(Aj ; Bi) 7! (pBi  �Aj )i=1;:::;n; j=1;:::;m (A.3)is an isomorphism. (The same is true for the 
orresponding groups Hom0k(: : : ; : : :)of both sides.)Thus every morphism from A to B is uniquely determined by its \matrix",and 
onversely, every \matrix" determines a morphism. Further, the 
ompositionof morphisms 
orresponds to the usual 
omposition of matri
es.In parti
ular, under (A.3), Endk(A) is isomorphi
 to the \matrix ring"Li;j Homk(Aj ; Ai).There is a notational diÆ
ulty: For j = 1, a morphism  = ( 1; : : : ;  n) :A �! B =Qi=1;:::;nBi is represented by the 
olumn ve
tor0BBB�  1 2... n 1CCCA :We now want to study how the Rosati involution with respe
t to a produ
tpolarization operates on the \matri
es". It is 
onvenient to generalize the 
on
eptof a \Rosati involution" �rst.



104 Appendix A. Some Auxiliary ResultsLet X and Y be abelian k-varieties with �xed polarizations 'X : X �!bX; 'Y : Y �! bY . Then for every  2 Hom0k(X;Y ), we denote '�1X b 'Y 2Hom0k(Y;X) by  0 and 
all it the Rosati involution with respe
t to the polariza-tions 'X and 'Y .Now for i = 1; : : : ; n; j = 1; : : : ;m, let 'Bi : Bi �! 
Bi and 'Aj : Aj �! 
Aj bepolarizations. Let 'A : A �! bA and 'B : B �! bB be the 
orresponding produ
tpolarizations.Lemma A.16 Let  2 Hom0k(A;B) be by the \matrix" ( i;j)i=1;:::;n; j=1;:::;m; i;j 2 Hom0k(Aj ; Bi). Then with respe
t to 'A and 'B, the Rosati involutionof  is given by the \matrix" ( 0j;i)i=1;:::;m; j=1;:::;n with  0j;i 2 Hom0k(Bj ; Ai).Proof Under the identi�
ation of bA with Qj=1;:::;n bAj , 
pAj equals (by de�nition)� bAj . Analogously, 
p bAj = �bbAj = �Aj and thus p bAj = b�Aj . Further, '�Bj = � bBj 'Bj and'AipAi = p bAi ', i.e. pAi '�1A = '�1Ai p bAi .We have to show that pAi  0�Bj =  0j;i. Now,pAi  0�Bj = pAi '�1A b 'B�Bj = '�1Ai p bAi b � bBj 'Bj = '�1Ai b�Ai b 
pBj 'Bj ='�1Ai \(pBj  �Ai )'Bj = '�1Aid j;i'Bj =  0j;i2A.2.4 Orthogonal 
omplements and the Complete Redu
ibilityTheoremIn this subse
tion, let k be a perfe
t �eld. Let X be an abelian variety over k.Let �jk be a sub�eld of kjk, L an an ample sheaf on X� de�ning a polarization' : X �! bX. Let Y be an abelian subvariety of X, let �Y : Y ,! X be thein
lusion, and let 
�Y : bX �! bY be the 
orresponding dual morphism.The sheaf ��Y (L) is again ample (this is true for any pull-ba
k of an amplesheaf), and by Lemma A.13, the polarization de�ned by ��Y (L) 
an be 
al
ulatedas follows:Lemma A.17 
�Y '�Y 
k id� = ���Y (L). In parti
ular, K(L) = ker(
�Y '�Y )
k id�.De�nition Let Z be the redu
ed 
onne
ted 
omponent of the zero of'�1(ker(
�Y )) = ker(
�Y '). With other words, it is redu
ed indu
ed 
losed sub-s
heme asso
iated to the 
onne
ted 
omponent of the zero of ker(
�Y '). (Thusthere exists a natural 
losed immersion Z ,! ker(
�Y ').) We 
all Z the orthogonal
omplement of Y in X with respe
t to L. The redu
ed and irredu
ible sub-groups
heme Z of X is geometri
ally irredu
ible by lemma A.28 and geometri
ally re-du
ed be
ause we assumed k to be perfe
t, thus Z is an abelian variety. From



Some results about abelian varieties 105this it also follows that \orthogonal 
omplement" 
ommutes with base extension(of �elds). Sin
e ���Y is surje
tive, 
�Y is surje
tive.Let l 6=
har(k) be a prime. Let EL be the Riemann form asso
iated with Land l; 
f. [Mu, p.186℄. The term \orthogonal 
omplement" is justi�ed by thefollowing lemma.Lemma A.18 Zk is the largest abelian subvariety Z 0k of Xk with the property thatEL(Yk; Z 0k) = 1.Proof Let P 2 Tl(Xk); Q 2 Tl(Yk). ThenELXk(Tl(�Y )(Q); P ) = elXk(Tl(�Y )(Q); Tl(�L)(P )) = elYk(Q;Tl(
�Y )Tl(�L)(P )):So,ELXk(Tl(�Y Yk); P ) = 1 ! elYk(Tl(Yk); Tl(b��L)(P )) = 1 ! Tl(b��L)(P ) = 1:Espe
ially, the orthogonal 
omplement Zk of Yk has the desired property. On theother hand, if Z 0k is any abelian subvariety with EL(Yk; Z 0k) = 1, then Tl(Z 0k) �Tl(��1L (ker(b�))). This implies Tl(Z 0k) � Tl(Zk).[Assume P 2 Tl(Z 0k); P =2 Tl(Zk). Let i > 0 su
h that liP = 0. For all m 2 N,letQm 2 Tl(Z 0k) with limQm = P . Then form1 < m2; Qm2�Qm1 =2 Tl(Zk) be
auseotherwise P = lim2(Qm2 �Qm1) 2 Tl(Zk). So all sets Qm1 + Tl(Zk); Qm2 + Tl(Zk)are disjoint. By 
onstru
tion they are also 
ontained in Tl(��1L (ker(b�))), thus thisset has in�nitely many elements, a 
ontradi
tion.℄Now the result follows by the inje
tivity of the l-adi
 representation. 2Lemma A.19 Y \Z := Y �X Z =: ��1Y (Z) is a 
losed subs
heme of ker(
�Y '�Y ).Proof The 
losed immersion Z ,! ker(
�Y ') indu
es a 
losed immersion��1Y (Z) ,! ��1Y (ker(
�Y ')) = ker(
�Y '�Y ). (\Closed immersion" is \stable underbase extension".) 2Sin
e ��Y�(L) is ample, so K(��Yl(L)) is �nite, and so is Y �X Z. This impliesthe \Complete Redu
ibility Theorem".Proposition A.20 [Mu, p.173℄ Let (X;') be a polarized abelian k-variety and Yan abelian subvariety, Z the orthogonal 
omplement of Z with respe
t to L. Thendim(X) = dim(Y ) + dim(Z) and X is isogenous to Y �k Z.Remark Let � : Y �kZ �! X be the isogeny, de�ned by �X and �Y . Then underthis isogeny, ' be
omes a produ
t polarization, i.e. b�'� is a produ
t polarization.This is obvious sin
e by de�nition of Z, b�Z'�Y = 0 and similarly with Y andZ inter
hanged, sin
e the de�nition is \orthogonal 
omplement" is symmetri
 byLemma A.18 for example.



106 Appendix A. Some Auxiliary ResultsAlready assuming the Complete Redu
ibility Theorem, one 
an easily proofLemma A.21 Let X and Z be abelian k-varieties, p : X �! Z a surje
tivemorphism. Then bp : bX �! bZ has �nite kernel.Proof Let Y be the redu
ed 
onne
ted 
omponent of the zero of the kernel ofp : X �! Z, �Z0 : Z 0 ,! X the orthogonal 
omplement of Y with respe
t tosome polarization. Then the kernel of p�Z0 : Z 0 �! Z is immersed in Z 0 \ ker(p)whi
h is �nite sin
e Z 0 \ Y is �nite. So p�Z0 : Z 0 �! Z is an isogeny, and so is
�Z0bp : Z �! Z 0. Thus bp has �nite kernel. 2This implies:Lemma A.22 Let (X;'); ( eX; e') be a prin
ipally polarized abelian k-varieties, letf : eX �! X and f 0 := e'�1 bf' the \Rosati involution" of f with respe
t to ' ande', Y := im(f). Then the orthogonal 
omplement of Y is the redu
ed 
onne
ted
omponent of the zero of ker(f 0).Proof Let f = �Y g, where g : X �! Y is surje
tive. The orthogonal 
omplementis given as the redu
ed 
onne
ted 
omponent of the kernel of 
�Y ', whi
h by thelast lemma is the same as the redu
ed 
onne
ted 
omponent of the zero of thekernel of '�1bg
�Y ' = '�1d�Y g' = f 0. 2Lemma A.23 Let (X;') be a prin
ipally polarized abelian k-variety, f an en-domorphism, f 0 the Rosati involution with respe
t to '. Assume that ker(f 0) isredu
ed and irredu
ible. Let Y = im(f) and Z = ker(f 0). Then Y \Z := Y �kZ =ker(
�Y '�Y ).Proof As above, let f = �Y g. Sin
e by assumption ker(f 0) = ker('�1bg
�Y ') isredu
ed and irredu
ible, so is ker(
�Y '). Thus Z = ker(
�Y ') and Y \Z = ��1Y (Z) =��1Y (ker(
�Y ') = ker(
�Y '�Y ). 2A.2.5 The de
omposition of the endomorphism ring of an abelianvarietyLet A be an abelian variety over a perfe
t �eld k.Let A(i) ,! A, i = 1; : : : be abelian subvarieties su
h that the indu
ed mor-phism QiA(i) �! A is an isogeny. Let e(i); i = 1; : : : be the elements of Endk(A)whi
h 
orrespond under the isogeny to the proje
tions on the left hand side. Then1 = Pi e(i) and the e(i) are idempotent. Now if a(i) 2 N su
h that aie(i) aremorphisms, then A(i) = a(i)e(i)(A) and A(i) is the redu
ed 
onne
ted 
omponentof the zero of the kernel of a(i)(1� e(i)).Conversely, if a de
omposition of the unity 1 =Pi e(i) where the ei are idem-potent is given, de�ne A(i) := a(i)e(i)(A) for suitable a(i) 2 N. Then againQiA(i) � A and the e(i) 
orrespond to the proje
tions on the left hand side.



Some results about abelian varieties 107Now �x a polarization ' on A. With the help of the Complete Redu
ibilityTheorem, A 
an be de
omposed into a produ
t of simple abelian varieties.There exist simple abelian subvarieties �i;j : Ai;j ,! A with Ai;j � Ai0;j0 i�i = i0 su
h that the �i;j indu
e an isogenysYi=1 kiYj=1Ai;j � A (A.4)and su
h that A0i;j :=( abelian variety generated by Ai0;j0 for (i; j) 6= (i0; j0)) isorthogonal of Ai;j with respe
t to '. Under this isogeny, ' be
omes a produ
tpolarization on the left-hand side. In parti
ular, the proje
tions on the left-handside are invariant under the Rosati involution. As above, let ei;j be the idempo-tents in EndK(AK) whi
h 
orrespond to these proje
tions. Then also the ei;j areinvariant under the Rosati involution, e0i;j = ei;j , and thus by Lemma A.22, A0i;jis the orthogonal 
omplement of Ai;j.Let Ai be the abelian subvariety generated by the Ai;1; : : : ; Ai;ki . Then theAis are independent of the parti
ular de
omposition 
hosen. We 
all them theisotypi
 
omponents of the abelian variety A (over k).A � sYi=1Ai (A.5)Let A0i := abelian subvariety in A generated by the Aj ; j 6= i.De
omposition (A.4) indu
es an isomorphismEnd0k(A) ' sYi=1End0k(Ai): (A.6)The End0k(Ai) are simple rings (simple meaning that they do not have a propertwo sided ideal) with End0(Ai) � Mki(Di), where Di � End0k(AAi;j ) is a divisionring.It is a fa
t from the theory of semisimple rings that (A.6) is the unique way tode
ompose End0K(AK) into a produ
t of simple rings (i.e. the if a de
ompositionEnd0K(AK) ' QiRi is given, the Ri are uniquely determined inside End0k(A) upto a permutation); see [FD, Theorem 1,13℄.Now let ei be the image of the unity of End0k(Ai) in End0k(A) under the aboveisomorphism. Then the ei are 
entral and idempotent and 1 =Ps1=1 ei, and againe0i = ei and Ai is orthogonal to A0i.Now all polarizations of Qsi=1Ai are multiples of produ
t polarizations and, inparti
ular, ei = e0i and the Ai are orthogonal with respe
t to any polarization.Proof End0k(Qsi=1Ai) 'Qsi=1 End0k(Ai). This implies NS0(Qsi=1Aik)Gal(kjk) 'Qsi=1NS0k(Aik)Gal(kjk). (Use the 
hara
terization [Mu, p.208, appli
ation III℄ withthe produ
t polarization ' on the left-hand side and the 'i on the right-hand side;see also Proposition A.9.)



108 Appendix A. Some Auxiliary ResultsNow, 
lasses of ample sheaves on the left hand side 
orrespond to tuples of
lasses of ample sheaves on the right hand side. These 
lasses on the left handside de�ne multiples of polarizations, and on the right hand side, they de�nemultiples of produ
t polarizations. 2A.2.6 Ample sheavesLet K be a �eld and let A be an abelian K-variety of dimension n with an amplesheaf L.Re
all the Vanishing Theorem:Proposition A.24 [Mu, par. 16, p.150℄ Let M be a non-degenerate invertiblesheaf on A, i.e. K(M) is �nite.Then there exists a unique integer i(M); 0 � i(M) � n, 
alled the index of M,su
h that Hp(X;M) = 0 for p 6= i(M) and Hi(M)(X;M) 6= 0.The index 
an be 
al
ulated as follows:Proposition A.25 [Mu, par. 16, p.155℄ With L and M as above, the fun
tionz 7! �(Lz 
M) is a polynomial fun
tion of degree n whose roots are all real andnon-zero. The index i(M) is the number of positive roots.This implies:Lemma A.26 Let M be a non-degenerate invertible sheaf on A. The followingare equivalent:1. M is ample, i.e. a power of M is very ample.2. M is de�ned by an e�e
tive divisor.3. The index i(M) is 0, i.e. H0(X;M) 6= 0 and Hp(X;M) = 0 for p 6= 0.4. The polynomial �(Lz 
M) has only negative roots.Proof 2: ! 3: ! 4: follows from the Vanishing Theorem.1: �! 3:: By the Vanishing Theorem applied to the ample sheafM (!) and thenon-degenerate sheafM, the index i(M) is equal to the number of positive roots ofthe polynomial de�ned by z 7! �(Mz 
M) = �(Mz+1) Riemann-Ro
h= (z+1)n�(M).The roots of this polynomial are all at �1 < 0, so the index is zero.2: �! 1:: see [Mu, p. 60, appli
ation 1℄. 2A.2.7 Prin
ipally polarized abelian surfa
esThe following proposition is due to A.Weil. Be
ause Weil uses in his proof his ownlanguage whi
h is out of fashion today, we in
lude a proof.



Some results about abelian varieties 109Proposition A.27 (A.Weil) [We-T, Satz 2℄ Let A be an abelian surfa
e overan algebrai
ally 
losed �eld k. Let L be an ample sheaf on A whi
h de�nes aprin
ipal polarization. Then L is de�ned by an e�e
tive divisor D whi
h is uniqueup to translation.Either D is a non-singular geometri
ally irredu
ible proper 
urve of genus 2,and if � : D �! A is the in
lusion, �� : A �! J(D) is an isomorphism.Or A is isomorphi
 to the produ
t E �k E0 of ellipti
 
urves, and via thisisomorphism, D has the form E�k a+a0�k a0 where a; a0 are two points on E;E0respe
tively.Before we 
ome to the proof of this proposition, we show how the arithmeti
genus of a 
urve on an abelian surfa
e A 
an be 
al
ulated from the Euler-
hara
teristi
 of the sheaf it de�nes on A.Let D be a (not ne
essarily irredu
ible) 
urve on A. Then we have the exa
tsequen
e 0 �! L(�D) �! L(A) �! OD �! 0:Here, we make the usual identi�
ation of OD with ��(OD) where � : D �! A isthe in
lusion. [Ha, Remark 2.10.1℄ This identi�
ation is justi�ed by the fa
t thatHi(D;OD) = Hi(A; ��OD). [Ha, III,Lemma 2.10℄By the additivity of the Euler-
hara
teristi
 we get�(L(�D)) + �(OD) = �(OA) = 0:Be
ause of the Riemann-Ro
h Theorem, �(L(�D)) = 12(D;D) = �(L(D)) andthus �(OD) = ��(L(D)):In parti
ular, if D is 
onne
ted, H1(D;OD) = �(L(D)) + 1.proof of the proposition Let D be an e�e
tive divisor de�ning L, unique up totranslation on A. Let D = Pli=1 niDi, where ni > 1 and Di, i = 1; : : : ; l areirredu
ible proper 
urves. Then by the Riemann-Ro
h Theorem2 = (D;D) =Xi;j ninj(Di;Dj):We 
laim that there are only two 
ases:l = 1; n1 = 1, (D1;D1) = 2, and D1 is a non-singular geometri
ally irredu
ibleproper 
urves of genus 2l = 2; n1 = n2 = 1, (D1;D1) = 0; (D2;D2) = 0; (D1;D2) = 1, and D1;D2 areellipti
 
urvesWithout loss of generality, we 
an assume that (D1;D1) 6= 0 or (D1;D2) 6= 0.Assume that (D1;D1) 6= 0. Sin
e again by the Riemann-Ro
h Theorem, theself-interse
tion of any divisor on an abelian surfa
e is divisible by 2, (D1;D1) = 2,



110 Appendix A. Some Auxiliary Resultsthus n1 = 1 and (D1;Di) = 0 for i > 1. Now D1 is an ample divisor, and by the
riterion of Nakai-Moishezon [Ha, V,Theorem 1.10℄, k = 1. By the remarks beforethe proof of the proposition, the arithmeti
 genus of D is 2. The geometri
 genusof the normalization of D is also 2, and so D itself is non-singular. For assumethat the genus of the normalization would be 0 or 1. It 
annot be zero be
ausethere exist no rational 
urves on abelian varieties, and it 
annot be 1 be
ausethen than the map from the normalization of D to A would be the in
lusion ofan ellipti
 
urve 
ombined with a translation in A. In parti
ular, D would be anellipti
 
urve and its arithmeti
 genus would be 1, not 2.Now assume that (D1;D2) 6= 0. Then (D1;D2) = 1; n1 = n2 = 1 and D1 +D2is ample. Now (D1 + D2;Di) = 0 for any i > 2 and by the 
riterion of Nakai-Moishezon, k = 2. By the remarks before the proof, the arithmeti
 genera ofD1;D2 are 1. The geometri
 genera 
an again not be 0, so D1 and D2 are ellipti

urves.In the 
ase l = 2, D1 and D2 interse
t in one point and A has the universalproperty of the sum of D1 and D2 in the 
ategory of abelian varieties.We 
ome ba
k to the 
ase k = 1. We want to proof that �� : A �! J(D) isan isomorphism. Let P 2 D(k); fP : D �! J(D) be the 
anoni
al immersionde�ned by P 7! 0. By a translation of A, we 
an assume that �(P ) = 0 on A. Bythe universal property of the Ja
obian, there exists a morphism �P : J(D) �! Awith �P Æ fP = �.We already know that �P is an isogeny and 
laim that it is in fa
t an isomor-phism. Then b� and also �� are isomorphisms.fP indu
es a morphism � : D �k D �! J(D), given on .-valued points by(Q;R) 7! P + Q. This fa
tors through D �Sk D, the symmetri
 produ
t. Theindu
ed morphism D �Sk D �! J(D) is birational, thus the degree of � is 2.The 
omposition �P Æ � is given by (Q;R) �! � Æ Q + � Æ R. We 
laim thatthe degree of �P Æ � is 2, thus the degree of �P is 1.The divisor D is algebrai
ally equivalent to (�idA)�1(D) (see [Mu, par. 8,p.75, (iv)℄), and this divisor is algebrai
ally equivalent to (�idA)�1(D) + T for allT 2 A(k).Thus the equation (D;D) = 2 implies (D; (�idA)�1(D) + T ) = 2 for anyT 2 A(k). There exists an open subset U � A su
h that for T 2 U(k), D and(�idA)�1(D) + T interse
t transversely. Thus for T 2 U(k), there exist exa
tly 2points (P;Q) 2 (D �k D)(k) with � Æ (P;Q) = � Æ P + � ÆQ = T .Sin
e U is dense in A, the degree of the morphism � : D �k D �! A is 2. 2Remark Let the 
onditions be as in the proposition but let k be an arbitrary�eld. Then again L is de�ned by an e�e
tive divisor D, unique up to translation.Now, D is a geometri
ally redu
ed proper 
urve. There are two 
ases: EitherD is geometri
ally irredu
ible, non-singular and has genus 2 or it is geometri
ally



Some results about s
hemes and varieties 111the pointed union of two ellipti
 
urves. In the �rst 
ase, A is again isomorphi
to J(D) (over k).A.3 Some results about s
hemes and varietiesIn this se
tion we present some results from various sour
es as well as some otherrather te
hni
al results.A.3.1 Regular fun
tion �elds and geometri
ally irredu
iblevarietiesDe�nition Let Kjk be an algebrai
 extension, let Ljk be any extension. ThenK and L are linearly disjoint over k i� K 
k L is a �eld.Assume that this is the 
ase and let K and L be in
luded in some 
ommonover�eld. Then the 
ompositum KL of K and L in this over�eld together withthe in
lusions K �! KL and L �! KL is (
anoni
ally isomorphi
 to) the tensorprodu
t of K and L over k, K 
k L ' KL.Again let K and L be in
luded in some 
ommon over�eld and assume thatKjk is Galois. Then K and L are linearly disjoint i� K \L = k; see [La, VII, par.3,4℄. 6An fun
tion �eld Ljk is 
alled regular over k, if L and k are linearly disjointover k. An extension Ljk(x) is 
alled regular i� Ljk is regular or { what is thesame { if L and k(x) are linearly disjoint over k(x).Let Kjk be an algebrai
 �eld extension. A regular extension L0jK(x) is said tobe de�ned over k, if there exists a subextension Ljk(x) of L0jk(x) whi
h is linearlydisjoint from K(x)jk(x) with LK = L0. (This implies that Ljk(x) is regular.)A regular extension L0jK(x) is said to be de�ned over k with its Galois group,if there exists su
h a subextension Ljk(x) whi
h is Galois.All the above statements 
an easily be translated into statements about vari-eties. For example, Let X 0 be an irredu
ible k-variety. Then X is geometri
allyintegral i� the fun
tion �eld k(X)jk is regular.Lemma A.28 Let X be a 
onne
ted k-s
heme with a k-rational point. Then Xis geometri
ally 
onne
ted. If additionally X is smooth (and thus irredu
ible) it isgeometri
ally irredu
ible.Proof We have to show that X 
k ksep is irredu
ible.Let Kjk be some �nite Galois extension with Galois group G. Then so isX 
k K �! X. (Galois is stable under base extension.) So (X 
k K)=G ' X.6Caution! The notation KL does not mean that K and L are ne
essarily linearly disjoint.It 
an also just be the 
ompositum in a 
ommon over�eld. We write KL ' K 
k L if K and Lare linearly disjoint.



112 Appendix A. Some Auxiliary ResultsThis means in parti
ular that the underlying topologi
al spa
e of X is the quotientof the underlying topologi
al spa
e of X
kK by G. Thus G operates transitivelyon the 
omponents of X 
k K.Let P : Spe
k �! X be a k-rational point. By base 
hange, P de�nes a K-rational point of X 
k K whi
h we also denote by P . Let X 00 be the 
omponentof the image of P in X 
k K.Now assume that X 
k K has more than one 
omponent.Let � 2 Gopp su
h that � moves X0 to another 
omponent. Then the imageof �P is not in X0, and so is the image of � Æ P = �P��1, a 
ontradi
tion, sin
ealso P = �(P ).Sin
e Kjk was arbitrary �nite Galois, X 
k ksep is 
onne
ted.If X is smooth, so is X 
k ksep, and thus is is 
onne
ted. 2A.3.2 Pull-ba
k of e�e
tive divisorsLet k be a �eld and let X be a non-singular 
onne
ted (irredu
ible) k-variety.Then the group of Weil-divisors and Cartier-divisors on X are isomorphi
. [Ha,Proposition 6.11.℄ Under this isomorphism, e�e
tive Weil-divisors 
orrespond toe�e
tive Cartier-divisors, and they 
orrespond to 
losed subs
hemes of X of pure
odimension 1.We will now dis
uss the last isomorphism in greater detail.Let D be a 
losed subs
heme of pure 
odimension 1. Then there exists anopen 
overing Ui of X su
h that on every Ui, D is de�ned by a single elementfi 2 �(Ui;O�Ui). Let 0 denote the k-rational point of A 1k 
orresponding to k[x℄ �!k; x 7! 0. Then fi de�nes a morphism Ui �! A 1k and DjUi = f�1i (0). 7 Nowthe 
overing (Ui)i and the (fi)i de�ne the 
orresponding Cartier-divisor whi
h wedenote by DC .Now let Y be another non-singular 
onne
ted k-variety and let a : Y �! X bea morphism. Then a�1(D)ja�1(Ui) = a�1f�1i (0) = (fia)�1(0). (The last equalityis equivalent to a�1(Ui)�Ui (Ui �A 1k 0) = a�1(Ui)�A 1k 0:)Assume that a(Y ) * D as sets. (Sin
e we assumed that Y is irredu
ible thisis equivalent to that the inverse image of D in Y is not the whole spa
e.) This
ondition is espe
ially ful�lled if a is an immersion and the support of D (i.e. the
orresponding redu
ed subs
heme) does not 
ontain Y or if a is surje
tive.Then fia 6= 0 and a�1(D) is again a subs
heme of pure 
odimension 1, and the
orresponding Cartier-divisor is de�ned by the open 
overing a�1(Ui) of Y and theset (fia)i. This divisor is usually denoted by a�(DC). Thus a�1(D)C = a�(DC).The groups of Weil-divisor 
lasses, Cartier divisor 
lasses and 
lasses invertiblesheaves are also naturally isomorphi
.7Re
all that for a 
losed immersion of s
hemes � : X ,! Y , and some morphism a : Z �! Y ,by a�1(X) we always mean the s
heme-theoreti
 preimage, i.e. ��1(X) := X �Y Z where theprodu
t is taken relative to � and �.
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hemes and varieties 113Furthermore, again under the 
ondition a(Y ) * D, we have a�(L(DC)) 'L(a�(DC)). ThusLemma A.29 Let X, Y be nonsingular 
onne
ted varieties, a : Y �! X a mor-phism. Let D be a subs
heme on X, purely of 
odimension 1, let DC be theasso
iated Cartier divisor. Assume that the support of D does not 
ontain the seta(Y ).Then a�1(D)C = a�(DC) and a�(L(DC)) ' L(a�1(D)C).Remark If X is an abelian variety and Y �! X is a 
losed immersion, thenthe 
ondition of the proposition 
an always be ful�lled by translating D.A.3.3 Galois-operation and des
entLet X and Y be s
hemes and let � : X �! Y be a Galois 
overing with Galoisgroup G. For any quasi-
oherent OX -sheaf L and � 2 G, 
hoose a pull-ba
k via� : Y �! X. As usual, denote this sheaf by ��(L).Now let L be a quasi-
oherent OX-module on X.For any �; � 2 G and any morphism a : L �! ��1�(L), denote by �(a) the
omposition ��1�(L) �! ��1�(��1�(L)) ' (��)�1�(L), where the �rst morphismis de�ned by base-
hange.Then a 1-
o
y
le datum of L is a map G 2 � 7! a� , where a� is an OX-morphism L �! (��1)�(L) su
h that for all �; � 2 G, a�� = �(a� ) Æ a� : L �!(��)�1�(L).A quasi-
oherent OX -module L on X with a 1-
o
y
le datum is 
alled a quasi-
oherent G-sheaf.Proposition A.30 The fun
tor F 7! ��(F) is an equivalen
e of 
ategories ofquasi-
oherent OY -modules and that of quasi-
oherent G-sheaves on X. Coherentsheaves 
orrespond to 
oherent sheaves and lo
ally free sheaves 
orrespond to lo
allyfree sheaves of the same rank.Proof This is a spe
ial 
ase of the \faithfully 
at des
ent" of OX-modules; see[BLR, par. 6.1℄. 2Caution! The proposition would be wrong if one would 
all an OX-module aG-sheaf if its 
lass is invariant under pull-ba
k by elements of G. Note howeverthat the following proposition is a spe
ial 
ase of formula (1.16):Proposition A.31 Let Kjk be a Galois �eld extension. Let Y be a proje
tive k-variety with a k-rational point. Let L be an invertible free sheaf on Y 
k K, su
hthat for every � 2 Gal(Kjk), ��(L) � L. Then L is isomorphi
 to the inverseimage of a sheaf on Y .



114 Appendix A. Some Auxiliary ResultsRemark A 1-
o
y
le-datum on a OX-sheaf 
an be interpreted as follows:By de�nition, (��1)�(L) = (��1)�1(L)
(��1)�1(OX)OX . Now, (��1)�1(OX) is
anoni
ally isomorphi
 to ��(OX), and the same is true for L. Thus (��1)�(L) '��(L)
��(OX) OX , where ��(OX) �! OX is given by �#�1. This means that L is
anoni
ally isomorphi
 to ��(L) regarded as OX module via �# : OX �! ��(OX).Under this identi�
ation, the OX -morphism a� : L �! ��1�(L) 
orresponds toa morphism a� : L �! ��(L) with a�(�x) = �#(�)a�(x) for � 2 OX(U); x 2L(U); U open in X.Now, ��(L) = ����(L) and a� be
omes an automorphism of ��(L), whi
hwe denote by �#. This morphism satis�es �#(�x) = �#(�)�#(x), where � 2��(OY )(U); x 2 ��(L)(U); U open in Y . We thus have a G-operation on ��(L)whi
h \
overs" the G-operation on ��(OX). Taking invariants, we get a presheaf��(L)G whi
h is in fa
t a sheaf be
ause �#(x) = x is a lo
al property.If M is a OX -sheaf on X, (��(��(M)))G ' M. If L is a OY -sheaf on Ywith a 1-
o
y
le datum, and M is a OX -sheaf on X su
h that ��(M) � L su
hthat under the isomorphi
 the 
o
y
le-data of the two sheaves agree, then M '(��(��(M)))G � ��(L)G. Thus L = ��(M) � ��(��(L)G).A.3.4 S
hemes over �nite �eldsDe�nitions Let q be the power of a prime number p, k the �nite �eld withq elements, Kjk an algebrai
 extension of �elds. We identify the Galois groupGal(Kjk) with its dual and denote its elements with usual letters. The Frobeniusautomorphism of Kjk is denoted by �Kk .There exist two (or even three) di�erent 
on
epts of Frobenius morphisms forK-s
hemes. We want to distinguish between them 
arefully.Let X 0 be a K-s
heme.The k-automorphism �Kk of K indu
es an automorphism of Spe
(K) whi
hwe again denote by �Kk . We 
all the automorphism �Kk : �Kk �1(X 0) �! X 0 thearithmeti
 Frobenius isomorphism.Let FKk be the automorphism of X 0 whi
h is de�ned as follows: FKk is theidentity on the underlying topologi
al spa
e and it is given by f 7! f q on OX0 .By de�nition, we have a 
ommutative diagramX 0 FKk //

��

X 0
��Spe
(K) �Kk // Spe
(K):In parti
ular, if the extension Kjk is non-trivial, FKk is not a Spe
(K)-morphism.Now de�ne the geometri
 Frobenius morphism by �k := �Kk �1 Æ FKk : X 0 �!�Kk �1(X 0) { this is a K-morphism.
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hemes and varieties 115Let X 0 be aÆne and of �nite type, K[x1; : : : ; xm℄=(f1; : : : ; fl) a presentationof the 
oordinate ring of X 0. Then the 
oordinate ring of ��1(X 0) is given byK[x1; : : : ; xm℄=(�Kk #(f1); : : : ; �Kk #(fl)), and �k is given by the identity on K andxi 7! xqi . For a general K-s
heme X 0 of �nite type, �k is de�ned like this lo
ally.The de�nition of �k behaves well with respe
t to base-
hange: If LjK issome algebrai
 �eld extension, then (�Kk �1 Æ FKk ) 
K idL = �Lk �1 Æ FLk : X 0 �!�Kk �1(X 0)
K L ' �Lk �1(X 0 
K L).Note In [Ha℄, the morphism FKk is 
alled \Frobenius morphism" and the geo-metri
 Frobenius morphism �k is 
alled \K-linear Frobenius morphism"; see [Ha,IV, 2, p. 301℄.In [Mi-A℄, the \Frobenius morphism" is only de�ned for the 
ase that k = K,and under this assumption, �Kk is trivial and FKk and �k agree; see [Mi-A, par.20℄.In [Mu℄, the \Frobenius morphism" is �rst de�ned for k = K and then gen-eralized to k-s
hemes whi
h are de�ned over k. Again it equals the geometri
Frobenius morphism �k.From now on, we restri
t ourselves to the 
ase K = k. We write �k for thearithmeti
 Frobenius automorphism �kk and denote F kk by Fk.Let P be a k-valued point of X 0. Then Fk ÆP Æ��1k = P . In fa
t, the left-handside is also a k-valued point of X 0 and its image 
oin
ides with the one of P .The equation Fk Æ P = P Æ �k implies �k Æ P = ��1k Æ Fk Æ P = ��1k Æ P Æ �k =��1k (P ) = P �k .Lemma A.32 Let X 0 be a k-s
heme. Then for all k-valued points P of X 0,�k Æ P = ��1k (P ) = P �k 2 ��1k (X 0):If X 0 is an irredu
ible variety, the �eld extension k(�k(X 0))jk(X 0) is purelyinseparable. If X 0 is an abelian variety, then �k is an isogeny of p-power degreewhose kernel is 
onne
ted (lo
al in the language of [Mu℄).2Lemma A.33 Let V 0 and W 0 be k-varieties, � : V 0 �! W 0 a k-morphism. Then��k �k = �k � : V 0 �! ��1k (W 0).Proof We only have to show this for k-rational points. Let P 2 V 0(k). Then��k Æ � Æ P = ��k Æ P �k = (� Æ P )�k = �k Æ � Æ P:2 This implies:



116 Appendix A. Some Auxiliary ResultsLemma A.34 Let V;W be k-varieties, � : Vk �! Wk a morphism. Then � isde�ned over k i� �k � = ��k.2 Using Lemma A.8, we also getLemma A.35 Let A0 be an abelian k-variety, � 2 End0k(A0). Then ��k =� ���1 2 End0k(��1k (A0)).2Remark A 
onsequen
e of Lemma A.32 is that for an abelian k-variety A, theoperation of the two Frobenius morphisms �k and �k on the Tate-module (for someprime l) are equal (where �k operates by (: : :)�k). Be
ause of this, we speak of theoperation of the Frobenius on the Tate-module and the 
hara
teristi
 polynomialof this operation.
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