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Abstract

Let k be a field and S the polynomial ring k[x1, . . . , xn]. For a non-
trivial finitely generated homogeneous S-module M with grading in Z,
an integer D and some homogeneous polynomial f in S, it is defined
what it means that f is regular on M up to degree D. Following the
usual definition of regularity, a generalization to finite sequences of
polynomials in S is given.

Different criteria for a finite sequence of polynomials in S to be
regular up to a particular degree are given: first a characterization
with Hilbert series, then a characterization with first syzygies, and
finally, for M = S, characterizations with Betti numbers as well as
with the Koszul complex and free resolutions.

1 The notion of bounded regularity

Let k be a field and S = k[x1, . . . , xn] be a polynomial ring over k. We
consider finite sequences of homogeneous polynomials of positive degrees
and their operation on non-trivial finitely generated graded S-modules (with
grading in Z). Here and in the following, by a polynomial, we always mean
an element of S. Moreover, by an S-module we mean in the following a
graded S-module with grading in Z.

If now M is such a module and additionally M has finite length, that is,
Mn = 0 for n� 0, then clearly, there is no regular element on M . It might
however be the case that a homogeneous polynomial is regular on M “up to
a particular degree”. This motivates our basic definition:

Definition 1 Let M be a non-trivial finitely generated S-module.
Let f be a homogeneous polynomial of degree d and D an integer. Then

f is regular regular up to degree D on M if f is non-constant and for all
i ≤ D − d, the linear map Mi −→ Mi+d given by multiplication with f is
injective.

More generally, let f1, . . . , fr be a sequence of homogeneous polynomials
and D ∈ Z. Then the sequence is regular up to degree D on M if all the
polynomials are non-constant and for each q = 1, . . . , r, fq is regular on
M/(f1, . . . , fq−1)M up to degree D.
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Following the usual terminology, a sequence is simply called regular up
to degree D if it fulfills the definition with S = M .

Let M and f1, . . . , fr be as in the definition. As M is assumed to be
finitely generated, dmin := min{i ∈ Z | Mi 6= 0} exists. As the polynomials
are homogeneous of positive degree, we then have (M/(f1, . . . , fr)M)dmin

=
Mdmin

6= 0. Therefore, M/(f1, . . . , fr)M 6= 0 which is a necessary condition
in order that a sequence be regular; cf. [Mat86], [Eis95]. Clearly, the system
is regular if and only if it is regular up to degree D for each D ∈ Z. This
confirms that our definition is reasonable.

Let us call a Laurant series over Z in the variable t simply a Laurant
series, and let us extend the meaning of a ≡ b mod td for two Laurant series
a, b and d ∈ N to any d ∈ Z in the obvious way: a ≡ b mod td if and only if
the t-valuation of a− b is at least d.

Let now M be as above and let f be a homogeneous polynomial of
positive degree d. Furthermore, let HM = HM (t) =

∑∞
i=−∞ dimk(Mi)t

i be
the Hilbert series of M , which is a Laurent series over Z defined by a rational
function.

It is immediate that f is regular up to degree D on M if and only if
HM/fM ≡ (1− td) ·HM mod tD+1. Therefore, if the sequence f1, . . . , fr with
homogeneous polynomials of degrees d1, . . . , dr is regular up to degree D on
M then HM/(f1,...,fr)M ≡

∏r
i=1(1 − tdi) · HM mod tD+1. We will prove, in

Section 4, that the converse of this statement also holds. This establishes
in particular that regularity up to a particular degree is independent of the
ordering of the polynoimials.

Further contributions in this article are: In the fith section, we give
characterizations of regularity up to some degree in terms of first syzygies.
In the sixth and last section, we characterize regularity up to some degree on
S itself in terms of Betti numbers as well as in terms of the Koszul complex
and free resolutions. We also prove some general results on complexes, in
particular on the Koszul complex, from a “bounded degree” point of view.

2 Relationship with other works and applications

This article is closely related to the article [Par10] by K. Pardue, the article
[PR09] by K. Pardue and B. Richert, to the extended abstract [BFS04] by
M. Bardet, J.-C. Faugère, B. Salvy, the work [BFSY05] by these authors
and B.-Y. Yang and thesis of M. Bardet ([Bar04]). It is also inspired by R.
Fröberg’s article [Frö85]. Furthermore, it has applications to the analysis of
algorithms for the solution of systems of polynomial equations, for example
via J.-C. Faugère’s F5-algorithm ([Fau02]).

We comment on some of these relationships in this section. Further
comments can be found in remarks in the following sections.
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Bounded regularity and semi-regularity

The notion of regularity up to a particular degree is related to semi-regularity,
which was defined in [Par00] in the following way; see [Par10].

Definition 2 Let I be a homogeneous ideal of S and f a homogeneous
polynomial of degree d. Then f is semi-regular on S/I if for each i ∈ Z the
linear map (S/I)i −→ (S/I)i+d induced by multiplication with f is injective
or surjective.

Let now f1, . . . , fr be homogeneous polynomials. Then the sequence is
semi-regular if for all q = 1, . . . , r, fq is semi-regular on S/(f1, . . . , fq−1).

The condition on the linear maps can of course be reformulated as fol-
lows: Any coordinate matrices of the linear maps always have full rank.

Recall that for a non-trivial finitely generated module M of finite length,
the Castelnuovo-Mumford regularity of M is equal to the maximal d ∈ Z
with Md 6= 0; see [Eis05, Corollary 4.4]. We see that any semi-regular
sequence f1, . . . , fr is regular up to the Castelnuovo-Mumford regularity of
S/(f1, . . . , fr). The converse to this statement does of course not hold. The
easiest example for this is arguably the sequence x2, xy, y2 which was already
mentioned in [Par00]. Note however that the sequence x2, y2, xy is indeed
semi-regular.

Let us note also that one defines the Hilbert regularity of a non-trivial
finitely generated S-module as the smallest index from which on the Hilbert
function agrees with the Hilbert polynomial. Thus for a finitely generated S-
module M of finite length the Hilbert regularity is equal to the Castelnuovo-
Mumford regularity plus one.

There is also the following reformulation of semi-regularity in terms of
Hilbert series:

For any power series
∑∞

i=0 ait
i ∈ Z[[t]], let |

∑∞
i=0 ait

i| be the series∑∞
i=0 bit

i with

bi =

{
ai if aj > 0 for all 0 ≤ j ≤ i
0 otherwise .

Then f of degree d is semi-regular on S/I if and only if HS/(I,f) =

|(1 − td) ·HS/I |. It follows that a system f1, . . . , fr with degrees d1, . . . , dr

is semi-regular if and only if for all q ≤ r, HS/(f1,...,fq) = |
∏q
i=1(1−t

di )
(1−t)n |.

Bounded regularity and d-regularity

Regularity up to a particular degree as defined in this work is closely related
to what is called d-regularity in [BFS04]: There a sequence of homogeneous
polynomials f1, . . . , fr for which S/(f1, . . . , fr) is Artinian called d-regular
for some natural number d if and only if it is regular up to degree d + 1 in
our terminology.
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There and also in [BFSY05] and [Bar04] the phrase “semi-regular se-
quence” was given a new meaning, different from the one introduced in
[Par00]: First, in order that a system of homogeneous polynomials f1, . . . , fr
can be semi-regular in the sense of these works, the quotient S/(f1, . . . , fr)
has be be Artinian (which implies that r ≥ n). Now, for such a sequence
the Hilbert regularity of S/(f1, . . . , fr) is called degree of regularity and is
denoted by dreg. Finally, such a sequence is called semi-regular if it is dreg-
regular. This means that it is called semi-regular if it is regular up to the
Castelnuovo-Mumford regularity of S/(f1, . . . , fr).

Fröberg’s conjecture

A well known conjecture due to R. Fröberg ([Frö85]) states that for any n and
any generic sequence of homogeneous polynomials f1, . . . , fr ∈ k[x1, . . . , xn]

for a field k of characteristic 0, one has HS/(f1,...,fr) = |
∏r
i=1(1−tdi )
(1−t)n |. Here

by a generic sequence of homogeneous polynomials of degrees d1, . . . , dr we
mean a sequence of polynomials of the given degrees in which all monomials
occur and the system of coefficients is algebraically independent over the
prime field.

Equivalently, the conjecture says that any generic sequence of poly-
nomials in characteristic 0 is semi-regular in the original sense. Another
reformulation is: For r ≥ n, a generic sequence of homogeneous poly-
nomials f1, . . . , fr is regular up to the Castelnuovo-Mumford regularity of
S/(f1, . . . , fr), which means that it is semi-regular in the sense of [BFS04],
[BFSY05] and [Bar04]. Note that this reformulation is immediate even
though for a concrete sequence it does not hold that semi-regularity and
regularity up to the Castelnuovo-Mumford regularity of the quotient are
equivalent.

In line with Fröberg’s conjecture, one observes experimentally that for a
randomly generated sequence over a finite field k one usually hasHS/(f1,...,fr) =

|
∏r
i=1(1−tdi )
(1−t)n |. Moreover, also in line with the conjecture as it was first stated

in [Frö85], one observes: If one considers random sequences with at least
one non-trivial common solution in k (that is, V (f1, . . . , fr) is non-trivial),

then one usually has HS/(f1,...,fr) = sup{|
∏r
i=1(1−tdi )
(1−t)n |, 1}, where the supre-

mum is given by the coefficient-wise maximum. By the characterization of
sequences which are regular up to a particular degree given in Proposition

1 below, the sequence is then regular up to the degree of |
∏r
i=1(1−tdi )
(1−t)n |.

Applications on the analysis of algorithms

These observations have implications for the analysis of algorithms to com-
pute solutions of systems. For example, let us consider the following basic
algorithmic problem: The input consists of a system of homogeneous poly-
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nomials f1, . . . , fr of positive degrees over a finite field k such that either the
system f1, . . . , fr has no solution in Pn(k) or exactly one solution, counted
with multiplicities, which lies in k. (The latter condition is automatic if k
is perfect.) With other words, the assumption is that the projective scheme
defined by f1, . . . fn is either empty or consists of exactly one isolated and
reduced point which moreover is k-rational. The task is to determine if there
is a solution or not and if this is the case to compute the solution.

A possible algorithm for this is as follows: One determines the subspaces
(f1, . . . , fr)d inside k[x1, . . . , xn]d for increasing d (that is, one computes a
basis). If for some d, the subspace is the full space, one knows that there is
no solution. If on the other hand for some d the subspace has codimension
1, one computes a “potential solution” by linear algebra. If this “potential
solution” is correct, one has found the solution. If it is incorrect, the system
is not solvable. The algorithm terminates because the assumption can be
reformulated by saying that the Hilbert polynomial of S/(f1, . . . , fr) is either
0 or 1.

Let D be the minimal integer j > 1 for which the jth coefficient of

the series |
∏r
i=1(1−tdi )
(1−t)n | is ≤ 1. Then by the experimental observations, the

algorithm usually terminates at degree D.

Another – related – application is the analysis of appropriate variants
of the F5 algorithm ([Fau02]) for the computation of Gröbner bases. If a
sequence is regular up to a particular degree then no reduction to zero occurs
in the algorithm up to that degree. (This statement does however not hold
for the original algorithm; see Remark 8 for further information.)

3 Terminology and notations

We set N := {1, 2, 3, . . .} and N0 := {0, 1, 2, 3, . . .}. As already stated, by
an S-module we mean a graded S-module with grading in Z. For a module
M and d ∈ Z, we define M(d) by M(d)i := Md+i. By a homomorphism of
S-modules ϕ : M −→ N we mean a homogeneous homomorphism, that is, a
homomorphism from M to N as plain modules which preserves the grading
but which might change the degrees by a shift. By a free S-module we mean
a graded module which has a basis of homogeneous elements.

By a complex of S-modules, we mean a complex of S-modules of the
form · · · −→ C1 −→ C0. We denote such a complex by C•, and we denote
the ith differential of C• by δCi .

We emphasize that C•(d) is the complex obtained from C• by degree
shift as defined above, that is, (C•(d))i = Ci(d). We do not fix a notation
for “left-right shifts”.

Let now C• be a complex of finitely generated free S-modules, where
Ci =

⊕
j S(−j)γi,j . Then we define the Hilbert-Poincaré series of C• as

PC• :=
∑

i,j γi,js
itj ; cf. [PR09]. The Hilbert-Poincaré series of some finitely
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generated S-module M , PM , is then the Hilbert-Poincaré series of some
minimal free resolution of M .

We denote free resolutions of modules by F• and Koszul complexes of
sequences of homogeneous polynomials f1, . . . , fr byK(f1, . . . , fr)• or simply
by K•. The jth basis element of Sr is denoted by ej . Moreover, for j =

(j1, . . . , ji) ∈ {1, . . . , r}i, we set ej := ej1 ∧ · · · ∧ eji ∈
∧i Sr. We have

Ki =
∧iK1, thus the elements ej with strictly increasing j = (j1, . . . , jr) ∈

{1, . . . , r}i form a basis of Ki.
Finally, we mention that besides using the letter k to denote the field

already introduced we sometimes also use it to denote an integer.

4 Characterization with Hilbert series

We are going to compare Laurent series with integer coefficients. We have
the lexicographic order ≥l on the ring of Laurent series, and as usual, we
denote the corresponding strict order by >l. Moreover, for two such series
a, b we write a ≥ b if a is coefficient-wise greater-than-or-equal to b.

As above, let M be a non-trivial finitely generated S-module.

Proposition 1

a) Let f be a homogeneous polynomial of positive degree d. Then HM/fM ≥
(1− td)HM with equality if and only if f is regular on M .

b) Let f1, . . . , fr be homogeneous polynomials of positive degrees d1, . . . , dr.
Then HM/(f1,...,fr)M ≥l

∏r
i=1(1 − tdi) · HM . Equality holds

if and only if f1, . . . , fr is regular on M . Moreover,
HM/(f1,...,fr)M ≥l |

∏r
i=1(1− tdi) ·HM |.

c) Additionally to b), let D ∈ Z. Then HM/(f1,...,fr)M ≡∏r
i=1(1 − tdi) · HM mod tD+1 if and only if the sequence f1, . . . , fr is

regular up to degree D on M .

d) For M = S, suppose that S/(f1, . . . , fr) is Artinian. Then

HS/(f1,...,fr) = |
∏r
i=1(1−tdi )
(1−t)n | if and only if f1, . . . , fr is regular up to the

Castelnuovo-Mumford regularity of S/(f1, . . . , fr).

Note here that in the series on the right-hand sides of a), c) and the first
part of b) there might be negative coefficients. This does not matter – the
statements are still correct.

Statement a) of the proposition is immediate and statement d) is an
immediate consequence of statement c).

For b) and c), we need the following lemma.

6



Lemma 1 Let a, b be two Laurent series with integer coefficients and a >l b,
and let d ∈ N. Then (1− td)a >l (1− td)b, and the minimal index at which
the sequences a and b are different is equal to the minimal index at which
the sequences (1− td)a and (1− td)b are different.

Proof. Let j be minimal with aj 6= bj . Then for i < j, the ith coefficient of
(1− td)a, ai − ai−d, is equal to the ith coefficient of (1− td)b, bi − bi−d.

We have aj > bj by assumption. Thus the jth coefficient of (1 − td)a,
aj − aj−d, is larger than the jth coefficient of (1− td)bj , bj − bj−d. 2

We fix the following definition.

Definition 3 For a Laurent series a with integer coefficients and D ∈ Z
we define [a]≤D as the unique Laurent polynomial which is congruent to a
modulo tD+1.

We now prove statement b). If the sequence is regular, we clearly have
HM/(f1,...,fr)M =

∏r
i=1(1−tdi)HM . So, let us assume that the sequence is not

regular. Let q be minimal such that fq is not regular on M/(f1, . . . , fq−1)M .

Then HM/(f1,...,fq−1)M =
∏q−1
i=1 (1−tdi)·HM . By a), we have HM/(f1,...,fq)M >l∏q

i=1(1− tdi)HM . By repeatedly applying a) and the lemma it follows that

HM/(f1,...,fr)M ≥
l

r∏
i=q+1

(1− tdi)HM/(f1,...,fq)M >l
r∏
i=1

(1− tdi)HM .

The last statement in b) is trivial if
∏r
i=1(1 − tdi)HM =

|
∏r
i=1(1 − tdi)HM |. So let us assume that this is not the case and let

D := deg(|
∏r
i=1(1− tdi)HM |). Now HM/(f1,...,fr)M ≥ [HM/(f1,...,fr)M ]≤D ≥l

[
∏r
i=1(1− tdi)HM ]≤D = |

∏r
i=1(1− tdi)HM |.

The proof of c) is analogous to the one of b): By the lemma we have for
two Laurent series with integer coefficients a, b with [a]D >l [b]D and some
D ∈ Z that [(1− td)a]D >l [(1− td)b]D. The statement now follows just as
statement b).

Remark 1 For a, b ∈ Z[t] and n ∈ N the implication a ≤ b −→ (1− tn)a ≤
(1− tn)b does of course not hold in general. The converse implication, that
is a ≤ b −→ 1

1−tna ≤
1

1−tn b does however hold. (Just note that 1
1−tn =∑∞

i=0 t
in.)

With this observation one sees easily that in the context of b), one
has HM ≤ 1∏r

i=1(1−tdi )
HM/(f1,...,fr)M . Again equality holds if and only if

f1, . . . , fr is a regular sequence on M .

This statement was proven by R. Stanley in [Sta78].
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Remark 2 ForM = S, b) says in particular thatHS/(f1,...,fr) ≥l|
∏r
i=1(1−tdi )
(1−t)n |.

This is one of the key statements in [Frö85].
The characterization in d) is claimed in [BFSY05] and in [Bar04]. How-

ever, in both works, the arguments for the more difficult “reverse” direction
are incorrect. In fact, in [BFSY05] the argument for the difficult direction
is essentially a repetition of the correct proof of the easy direction.

In [Bar04], first there is an argument for r ≤ n which is the same as the
one in [BFSY05] and which is incorrect (see “Pour la réciproque ...” in the
proof of Proposition 1.7.4).

Later, in Corollaire 3.3.4, there is also an argument for arbitrary r, which
is however also false: The argument relies on the study of certain matrices
Md,r for d ∈ N0 up to the Castelnuovo-Mumford regularity of S/(f1, . . . , fr).
The mistake is that it is asserted without proof that for any such d the num-

ber of rows of such a matrix is equal to the dth coefficient of
∏r
i=1(1−tdi )
(1−t)n . No

argument is given why this statement should hold under the given conditions
on f1, . . . , fr, and clearly it does not hold if f1, . . . , fr is is arbitrary (under
the condition that S/(f1, . . . , fr) be Artinian) rather than regular up to the
Castelnuovo-Mumford regularity of S/(f1, . . . , fr).

Remark 3 It immediately follows from the proposition that f1, . . . , fr is
regular up to degree D on M if and only if every permutation is.

For d ∈ N, let ed be the number of fi with deg(fi) = d, and let N :=
(f1, . . . , fr)M . Then

∏r
i=1(1− tdi) ·HM =

∏
d∈N(1− td)ed ·HM . Therefore

f1, . . . , fr is regular on M if and only if HN = (1 −
∏
d∈N(1 − td)ed) · HM ,

and f1, . . . , fr is regular up to degree D on M if and only if HN ≡ (1 −∏
d∈N(1− td)ed) ·HM mod tD+1.

Remark 4 Let R be a local Noetherian domain with maximal ideal m and
N a finitely generated R-module. Let K := Quot(R), k := R/m, Nη :=
N⊗RK and Nm := N⊗Rk. By Nakayama, we have dimK(Nη) ≤ dimk(Nm).

Let now M be a finitely generated R[x1, . . . , xn]-module, and let Mη :=
M ⊗R K and Mm := M ⊗R k; these are K[x1, . . . , xn]- respectively
k[x1, . . . , xn]-modules. Now for every integer j, Mj is a finitely generated
R-module with generic fiber (Mη)j and special fiber (Mη)j . Therefore, we
have the coefficient-wise inequality HMη ≤ HMm .

As a special case, we can consider a finitely generated free R[x1, . . . , xn]-
module M and a sequence of homogeneous polynomials f1, . . . , fr ∈
R[x1, . . . , xn]. For f ∈ R[x1, . . . , xn], let f ∈ k[x1, . . . , xn] be the reduc-
tion of f modulo m. We then have HMη = HMm and HMη/(f1,...,fr)Mη

≤
HMm/(f1,...,fr)Mm

.
This implies in particular that in order to prove that a generic sequence

with degrees d1, . . . , dr in characteristic 0 is regular up to a particular bound,
one only has to establish that there exists one such sequence over some field.
Fröberg indeed originally stated his conjecture as an existence statement.
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5 Characterization with first syzygies

Let M still be a non-trivial finitely generated S-module. In this section we
characterize regularity up to some degree on M in terms of first syzygies.

Notation 1 For D ∈ Z we set M≤D :=
⊕

j≤DMj .

The following proposition is a variant of a well-known statement on the
vanishing of cohomology groups of Koszul complexes. The subsequent the-
orem is then a variant of a characterization of regularity in terms of first
syzygies; cf. Theorem 17.6 in [Eis95]. The proof of part a) of the proposition
is due to P. Roberts (see also Remark 5 below).

Proposition 2 Let f1, . . . , fr be a sequence of homogeneous polynomials of
positive degrees, and let D ∈ N and i ∈ N with Hi(M ⊗K(f1, . . . , fr)•)≤D =
0.

a) For q < r, Hi(M ⊗K(f1, . . . , fq)•)≤D = 0.

b) Let m := min{deg(f`) | ` = 1, . . . , r}. Then for k ∈ N,
Hi+k(M ⊗K(f1, . . . , fr)•)≤D+km = 0.

Proof. a) By induction, we only have to show the statement for q = r − 1.

Let dr := deg(fr). The complex M ⊗K(f1, . . . , fr)• is the mapping cone

of K(M ⊗ f1, . . . , fr−1)•(−dr)
fr·−→ M ⊗K(f1, . . . , fr−1)•. The short exact

sequence for the mapping cone induces a long exact sequence on Koszul
homology; cf. Sections 17.3 and A3.12 of [Eis95]. We consider the part

Hi(M ⊗K(f1, . . . , fr−1)•(−dr))
fr·−→ Hi(M ⊗K(f1, . . . , fr−1)•)

−→ Hi(M ⊗K(f1, . . . , fr)•)

of this sequence. Let us assume that Hi(M⊗K(f1, . . . , fr−1)•) 6= 0. Let j be
minimal with Hi(M ⊗ K(f1, . . . , fr−1)•)j 6= 0. Then
Hi(M ⊗K(f1, . . . , fr−1)•(−dr))j = Hi(M ⊗K(f1, . . . , fr−1)•)j−dr = 0 and
therefore Hi(M ⊗K(f1, . . . , fr)•)j 6= 0. With the assumption it follows that
j > D.

b) We only have to show the statement for k = 1, that is, we have to show
that under the given condition, Hi+1(M ⊗K(f1, . . . , fr)•)≤D+m = 0.

We show the statement by induction on r, using r = 0 as induction base.
Like this, the induction base is trivial.

On the induction step: Let f1, . . . , fr with r ≥ 1 and D, i be as in the
proposition, that is, Hi(M ⊗K(f1, . . . , fr)•)≤D = 0. We now consider the
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following part of the long exact sequence induced by the short exact sequence
for the mapping cone:

Hi+1(M ⊗K(f1, . . . , fr−1)•) −→ Hi+1(M ⊗K(f1, . . . , fr)•)

−→ Hi(M ⊗K(f1, . . . , fr−1)•(−dr))

We have Hi(M ⊗ K(f1, . . . , fr−1)•)≤D = 0 by a) and therefore
Hi+1(M ⊗K(f1, . . . , fr−1)•)≤D+m = 0 by induction hypothesis. Moreover,
Hi(M⊗K(f1, . . . , fr−1)•(−dr))≤D+m = Hi(M⊗K(f1, . . . , fr−1)•)≤D+m−dr =
0 as m ≤ dr. We conclude that Hi+1(M ⊗K(f1, . . . , fr)•)≤D+m = 0. 2

Theorem 1 LetM be a finitely generated non-trivial S-module. Let f1, . . . , fr
be a sequence of homogeneous polynomials of positive degrees d1, . . . , dr and
let D be a natural number.

The following statements are equivalent:

a) The sequence f1, . . . , fr is regular up to degree D.

b) HM/(f1,...,fr)M ≡
∏r
i=1(1− tdi) ·HM mod tD+1

c) H1(M ⊗K(f1, . . . , fr)•)≤D = 0.

Proof. We have already shown in the previous section that statements a)
and b) are equivalent.

On implication a) −→ c). We again use induction on r.
The induction base is r = 1. So let f1 be regular up to degree D on M .

The complex M ⊗K(f1)• is · · · −→ 0 −→ M −→ M . By assumption, the
complex 0 −→M≤D −→M≤D is exact and thus H1(M ⊗K(f1)•)≤D = 0.

On the induction step. Let a) be satisfied. We consider the exact se-
quence

H1(M ⊗K(f1, . . . , fr−1)•) −→ H1(M ⊗K(f1, . . . , fr)•) −→

(M/(f1, . . . , fr−1)M)(−dr)
fr·−→M/(f1, . . . , fr−1)M .

By induction hypothesis we have H1(M ⊗ K(f1, . . . , fr−1)•)≤D = 0.

Moreover, by assumption, the kernel of (M/(f1, . . . , fr−1)M)(−dr)≤D
fr·−→

(M/(f1, . . . , fr−1)M)≤D is trivial. We conclude that
H1(M ⊗K(f1, . . . , fr)•)≤D = 0.

On implication c) −→ a). Let c) be satisfied. Let q ∈ N with q ≤ r.
By Proposition 2 a) we have H1(M ⊗K(f1, . . . , fq)•)≤D = 0. By the exact
sequence

H1(M ⊗K(f1, . . . , fq)•) −→ (M/(f1, . . . , fq−1)M)(−dq−1)

fq ·−→M/(f1, . . . , fq−1)M

10



we conclude that the kernel of the map (M/(f1, . . . , fq−1)M)(−dr)≤D
fq ·−→

(M/(f1, . . . , fq−1)M)≤D is trivial. 2

Remark 5 In the last paragraph of Theorem 4.4 of [PR09] it is claimed, in
our terminology:

Let some natural number D be given. Let us assume that all first syzygies
of f1, . . . , fr of degree ≤ D are Koszul syzygies. Then the sequence f1, . . . , fr
is regular up to degree D.

Or with other words, it is claimed that implication c) −→ a) of Theorem
1 holds for M = S. However, there is a gap in the argument because
Proposition 2 a) is not proven but implicitly assumed to hold. This gap
was noticed by the author of this article and then closed by P. Roberts; cf.
[PR12].

6 Characterization with free resolutions

We now study sequences which are regular up to some degree on S itself via
free resolutions and Betti numbers.

Notation 2 Following [PR09], we denote the submodule of M generated
by M≤D by M(D).

Remark 6 Let M and D be as above. Then M≤D is a vector subspace of
M and a quotient of M as an S-module. For i > D we have (M(D))i =
(mM(D))i = m(M(D))i−1, and we have (M/mM)≤D ' M≤D/mM≤D '
M(D)/mM(D) as S-modules.

The following lemma holds by Nakayama.

Lemma 2 Let M be a finitely generated S-module and A be a set of homo-
geneous elements of M≤D. Then the following statements are equivalent:

a) A generates M≤D as an S-module.

b) A generates M(D) as an S-module.

c) A defines a generating set of the vector space (M/mM)≤D '
M≤D/mM≤D 'M(D)/mM(D).

Furthermore, the following statements are equivalent:

a) A is a minimal generating set of M≤D as an S-module.

b) A is a minimal generating set of M(D) as an S-module.

c) A defines a basis of (M/mM)≤D 'M≤D/mM≤D 'M(D)/mM(D).

11



The following lemma is easy.

Lemma 3 Let ϕ : M −→ N be a degree preserving homomorphism of S-
modules, and let D ∈ Z. Then we have ϕ(M≤D) = ϕ(M)≤D, ϕ(M(D)) =
ϕ(M)(D) and ϕ(M≤D) ⊆ N≤D, ϕ(M(D)) ⊆ N(D). Moreover, ϕ(M(D)) ⊆
mN if and only if ϕ(M(d)) ⊆ N(d−1) for all d ≤ D. In particular ϕ(M) ⊆
mN if and only if ϕ(M(d)) ⊆ N(d−1) for all d ∈ Z.

Let C• : · · · −→ C1 −→ C0 be a complex and D ∈ Z such that for
each i, δCi ((Ci)(D+i)) ⊆ (Ci−1)(D+i−1). We then have the restricted complex
· · · −→ (Ci)(D+i) −→ (Ci−1)(D+i−1) −→ · · · . The converse holds too.

Again following [PR09] we define:

Notation 3 We denote the complex just described by C
(D)
• . Therefore,

((C•)
(D))i = (Ci)(D+i).

Example 1 Let f1, . . . , fr be a sequence of homogeneous polynomials of
positive degrees, and let K• = K(f1, . . . , fr)• be the Koszul complex of the
sequence. Then δK• (K•) ⊆ (f1, . . . , fr)K• ⊆ mK•. Therefore, for all D ∈ Z
we have the complex K

(D)
• .

The following lemma characterizes the existence of C
(D)
• for free res-

olutions and more general complexes. The lemma generalizes an obvious
variant of Lemma 19.4 in [Eis95] for S-modules.

Lemma 4 Let C• be a complex of S-modules and D ∈ Z with Hi(C•)≤D+i+1 =
0 for all i ∈ N. Then the following statements are equivalent.

a) For all i ∈ N, δCi (Ci)≤D+i ⊆ mCi−1.

b) For all d ∈ Z with d ≤ D, the complex C
(d)
• exists.

c) For all i ∈ N, the differential map induces an isomorphism

(Ci/mCi)≤D+i+1 −→ (δCi (Ci)/m δ
C
i (Ci))≤D+i+1

and we have an induced isomorphism

(C0/mC0)≤D+1 −→ (H0(C•)/mH0(C•))≤D+1 .

If the modules Ci are finitely generated, the statements are also equivalent
to:

d) For all i ∈ N,

dimk((Ci/mCi)≤D+i+1) = dimk((δ
C
i (Ci)/m ker(δCi (Ci)))≤D+i+1)

and

dimk((C0/mC0)≤D+1) = dimk((H0(C•)/mH0(C•))≤D+1) .
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e) For all i ∈ N, any (or some) homogeneous minimal generating system of
(Ci)(D+i+1) is mapped to a minimal generating system of δCi (Ci)(D+i+1)

and any (or some) minimal homogeneous generating system of (C0)(D+1)

is mapped to a minimal generating system of H0(C•)(D+1).

Proof. Statements a) and b) are clearly equivalent.

We have

δCi (Ci)≤D+i+1 ' (Ci/ ker(δCi ))≤D+i+1 = (Ci/δ
C
i+1(Ci+1))≤D+i+1

as Hi(C•)≤D+i+1 ≤ 0. The statement in c) can thus be reformulated as
follows: For all i ∈ N0, the induced maps

(Ci/mCi)≤D+i+1 −→ (Ci/δ
C
i+1(Ci+1)

/
(m · Ci/δCi+1(Ci+1)))≤D+i+1

are isomorphisms. This means that the maps

(Ci/mCi)≤D+i+1 −→ (Ci/(mCi + δCi+1(Ci+1)))≤D+i+1

are isomorphisms. This is equivalent to (δCi+1(Ci+1))≤D+i+1 ⊆ (mCi)≤D+i+1,
that is, (δCi+1(Ci+1)≤D+i+1) ⊆ mCi for all i ∈ N0, which is the statement
in a).

The equivalence between statement c) and statement d) is obvious. The
equivalence with the last statement follows from Lemma 2. 2

Lemma 5 Let M be an S-module, C• a complex of finitely generated free
S-modules, ϕ : C0 −→M and D ∈ N such that

- the complex C• and the integer D satisfy the conditions of the previous
lemma,

- the complex C
(D)
• is equal to C•,

- ϕ induces an isomorphism H0(C•)≤D −→M≤D,

- ker(ϕ)≤D+1 = δC1 (C1)≤D+1.

Then there exists a minimal free resolution F• of M and an inclusion of
complexes C• ↪→ F• such that the diagram

F0

  
C0
?�

OO

//M

is commutative and C
(D)
• = F

(D)
• holds.
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Proof. We show by induction on i ∈ N the following statement: For j ≤ i,
there exist free modules Fj , inclusions Cj ↪→ Fj and maps δFj : Fj −→ Fj−1,
F0 −→M such that we have a complex

−→ Ci+2

δCi+2−→ Ci+1

δCi+1−→ Fi
δFi−→ Fi−1

δFi−1−→ Fi−2 −→ · · · −→ F0

with

- H0(F•) 'M , where a basis of F0 generates M minimally,

- the inclusions Cj −→ Fj define an inclusion from the complex C• to the
complex F• which is compatible with the maps to M ,

- Cj = (Cj)(D+j) = (Fj)(D+j) for all i ≤ j,

- for 0 < j ≤ i, the image of a basis of Fj in Fj−1 generates δFj (Fj) minimally.

Moreover, in the proof by induction, we do not change the Fj , the inclusions
Cj −→ Fj , the differential maps between the Fj and the map F0 −→ M
which have already been defined in previous steps. The desired free resolu-
tion of M is then F•.

The induction base is i = 1. We choose a homogeneous basis of C0

as S-module. As by assumption (C0)(D) = C0, the degrees of the basis
elements are at most D. Under map C0 −→ M the basis is mapped to
a homogeneous minimal generating system of the S-module M(D); see also
the previous lemma. We extend this minimal generating system of M(D)

to a minimal homogeneous generating system of M . We consider the free
module on this minimal homogeneous generating system of M and call it
F0. Like this, the map ϕ : C0 −→M extends to a surjective map F0 −→M .
We clearly have ker(ϕ)≤D = ker(F0 →M)≤D.

We claim that ker(ϕ)≤D+1 = ker(F0 → M)≤D+1. Let
MD+1 = (M(D))D+1 ⊕ kr. Then MD+1 = ϕ(C0)D+1 ⊕ kr,
(F0)(D+1) = C0 ⊕ S(−(D + 1))r, (F0)D+1 = (C0)D+1 ⊕ kr, and the map
(F0)D+1 −→M⊕kr is given by ϕ|(C0)D+1

× idkr . It follows that ker(ϕ)D+1 =
ker(F0 →M)D+1.

We now have ker(F0 → M)≤D+1 = ker(ϕ)≤D+1 = δC1 (C1)≤D+1 (the
second equality by the assumptions). Therefore ker(F0 → M)(D+1) =

ker(ϕ)(D+1) = δC1 (C1)(D+1) = δC1 ((C1)(D+1)) = δC1 (C1) and the map δC1 :
C1 −→ C0 defines a minimal homogeneous generating system of this mod-
ule. We extend this minimal generating system to a minimal homogeneous
generating system of ker(F0 → M). This defines F1 and the desired map
δF1 : F1 −→ F0. Clearly, (F1)(D+1) = (C1)(D+1) = C1.

On the induction step: Because of (Fi)≤D+i = (Ci)≤D+i and because of
the definition of the differential maps, we have ker(δFi )≤D+i = ker(δCi )≤D+i.
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We also have ker(δFi )≤D+i+1 = ker(δCi )≤D+i+1. The proof is just as the
proof for ker(ϕ)D+1 = ker(F0 →M)D+1.

It follows that ker(δFi )≤D+i+1 = ker(δCi )≤D+i+1 = δCi+1(Ci+1)≤D+i+1 and
thus ker(δFi )(D+i+1) = ker(δCi )(D+i+1) = δCi+1(Ci+1)(D+i+1) = δCi+1(Ci+1).

We choose a homogeneous basis of Ci+1 as S-module. This defines a
minimal generating system of δCi+1(Ci+1), which we extend to a minimal
homogeneous generating system of ker(δFi ). We define now Fi+1 as the free
module on this homogeneous generating system. We obtain an inclusion
Ci+1 ↪→ Fi+1 and a differential map Fi+1 −→ Fi. We have (Fi+1)(D+i+1) =
(Ci+1)(D+i+1), and the new differential map agrees with the old one on this
space. 2

We now study the Koszul complex of a system of homogeneous polyno-
mials. Let us first mention the following statement which seems to be well
known to the experts. As we cannot find a proof in the literature, we state
it here with proof.

Lemma 6 Let f1, . . . , fr be a sequence of homogeneous polynomials of de-
grees d1, . . . , dr. Let K• be the Koszul complex of f1, . . . , dr. Then we have
PK• =

∏r
i=1(1 + stdi).

Proof. We have

Ki =
i∧
K1 =

i∧ r⊕
k=1

S(−dk) =

⊕
a∈{1,...,r}i with a1<···<ai

S(−(da1 + · · ·+ dai)) =
⊕

e∈{0,1}r with |e|=i

S(−etd) .

The (i, j)th coefficient of PK• is therefore equal to #{e ∈ Nr0 | |e| = i,
etd = j}. This is also the (i, j)th-coefficient of

∏r
`=1(1 + std`). 2

The following lemmata are easy generalizations of statements proven for
Theorem 4.4 in [PR09].

Lemma 7 Let R be any commutative ring (with unity), and let f1, . . . , fr
be a system of ring elements. Let us assume that the system f1, . . . , fr
generates the ideal (f1, . . . , fr) minimally, that is, for no q = 1, . . . , r, fq is

contained in (f1, . . . ,
∨
f q, . . . , fr). Let K• := K(f1, . . . , fr)•. Then for each

i, the image of δKi in Ki−1 is minimally generated by the images of elements
ej with |j| = i and strictly increasing j = (j1, . . . , ji) ∈ {1, . . . , r}i.

Proof. Let us assume that the statement is wrong for some i ∈ N. Let us
wlog. assume that the image of e(1,2,...,i) is an S-linear combination of the
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images of the other elements:

δKi (e(1,2,...,i)) =
∑

j 6=(1,2,...,i)

gjδ
K
i (ej)

with gj ∈ S, where the sum is over strictly increasing j. We now consider
the coefficient of e(1,2,...,i−1). We have:

fi =
r∑

k=i+1

±g(1,2,...,i−1,k)fk ,

a contradiction. 2

Lemma 8 Let f1, . . . , fr be a system of homogeneous polynomials which
generates the ideal I := (f1, . . . , fr) minimally. Let K• be the Koszul com-
plex of the sequence, let F• be a minimal free resolution of S/I with Fi =⊕

j S(−j)βi,j . Let i,D ∈ N. Then the following statements are equivalent:

a) (Ki+1)(D) ≈ (Fi+1)(D).

b) For j ≤ D, βi+1,j is the coefficient of si+1tj in
∏r
k=1(1 + stdeg(fk)).

c) Hi(K•)≤D = 0.

Proof. The first two statements are clearly equivalent.

For the equivalence between these statements and the third statement,
we need the following easy fact (cf. Lemma 4.3 in [PR09]).

Let M ⊆ N be finitely generated S-modules such that minimal generat-
ing sets for M and for N have the same number of elements for each degree.
Then M = N .

The third statement is equivalent to ker(δKi )≤D = δKi+1(Ki+1)≤D which
is equivalent to: The system consisting of ej with |j| = i, jtd ≤ D and

strictly increasing j generates ker(δKi )(D). By the previous lemmata and the
fact just mentioned, this is equivalent to the second statement. 2

Finally, we obtain our main theorem on the characterization of bounded
regularity on S itself.

Theorem 2 Let f1, . . . , fr be a sequence of homogeneous polynomials of
positive degrees d1, . . . , fr and letD be a natural number. Let I := (f1, . . . , fr),
and let K• be the Koszul complex of the sequence. Furthermore, let F• be
a minimal free resolution of S/I, and let Fi =

⊕
j S(−j)βi,j .

The following statements are equivalent:

a) The sequence f1, . . . , fr is regular up to degree D.
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b) HS/I ≡
∏r
i=1(1−tdi )
(1−t)n mod tD+1

c) H1(K•)≤D = 0.

d) For j ≤ D, β1,j agrees with the coefficient of stj in
∏r
i=1(1 + stdi) and

β2,j agrees with the coefficient of s2tj in
∏r
i=1(1 + stdi).

e) The subsystem of degree ≤ D of the system of polynomials f1, . . . , fr

generates the ideal I(D) minimally and the complexes K
(D−2)
• and F

(D−2)
•

are isomorphic.

Proof. We already know by Theorem 1 that a), b) and c) are equivalent.
We show that each of the statements d) or e) is equivalent to the first three
statements.

On implication a) −→ d). Let a) be satisfied. Let wlog. f1, . . . , fs be the
subsystem of polynomials of degree ≤ D of f1, . . . , fr. Now f1, . . . , fs gener-
ates the ideal (f1, . . . , fs) minimally and we have H1(K(f1, . . . , fs))≤D = 0.
By Lemma 8 the second part of statement d) follows. The first part is exactly
the statement that f1, . . . , fs generates the ideal (f1, . . . , fs) minimally.

On implication d) −→ a). Lemma 8 immediately gives the implication
d) −→ c).

On implication a) −→ e). Let a) hold. The system of polynomials fi of
degree ≤ D generates I(D) minimally. By c), H1(K•)≤D = 0 and therefore
also Hi(K•)≤D+i−1 = 0 for all i ∈ N by Proposition 2. With Lemma 5

applied to the complex K
(D−2)
• and the canonical map (K0)(D−2) = S −→

S/I the result follows.

On implication e) −→ a). We obviously have the implication e) −→ d)
and therefore also e) −→ a). 2

Remark 7 Let f1, . . . , fr be a sequence of homogeneous polynomials of
positive degrees d1, . . . , dr, where r ≥ n. Let again I := (f1, . . . , fr). Let us

now assume that HS/I = |
∏r
i=1(1−tdi )
(1−t)n |. Let ρ := deg(|

∏r
i=1(1−tdi )
(1−t)n |); this is

the Castelnuovo-Mumford regularity of S/I. Then the sequence f1, . . . , fr
is regular up to degree ρ. With the notations of the theorem we then have

K
(ρ−2)
• ≈ F (ρ−2)

• . If moreover the first non-positive coefficient of
∏r
i=1(1−tdi )
(1−t)n

is zero, the sequence is regular up to degree ρ+1, and then K
(ρ−1)
• ≈ F (ρ−1)

• .

These statements are very closely related to Theorem 3.6 of [PR09]: In
this theorem the same conclusions are stated under the assumption that the
sequence is semi-regular.
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We remark that there is the following mistake in the arguments for The-
orem 3.6 in [PR09]: In the notation above, it is claimed that (Ĩ : fr)j = Ĩj
for all j ≤ D, where the correct statement is that (Ĩ : fr)j = Ĩj for all
j ≤ D − dr. This mistake is implicitly corrected in the following. More-
over, the induction argument arguably is a bit unclear. With the obvious
corrections, one obtains an alternative proof of implication a) −→ e); cf.
[PR12].

Remark 8 Faugère’s F5 algorithm to compute Gröbner bases of homoge-
neous systems is presented in the short paper [Fau02]. In the algorithm,
given f1, . . . , fr, Gröbner bases of f1, . . . , fq are computed for increasing q.1

For each q, the Gröbner bases are computed by increasing degree, using the
already computed Gröbner basis of (f1, . . . , fq−1). We call this computation
the new computation for f1, . . . , fq.

In the algorithm tuples (meq, f) with a monomial m, a standard vector eq
and a homogeneous polynomial f are considered. Here meq is the so-called
signature of f .

Theorem 4 of [Fau02] states:

If any (meq, f) is reduced to zero in a reduction step of the algorithm,
then meq is the head term of a syzygy of f1, . . . , fr which is not a Koszul
syzygy.

This is not established. In fact, what is established is this:

Let us assume that a Gröbner base of (f1, . . . , fq−1) has already been
computed and let us assume that currently the Gröbner base of (f1, . . . , fq)
is being computed. Let us assume that there occurs a reduction to zero,
(meq, f) −→ 0. Then meq is the head term of a syzygy of f1, . . . , fq which
is not a Koszul syzygy of f1, . . . , fq.

It is however not clear whether such a syzygy is a Koszul syzygy of
f1, . . . , fr of not. To study this question, one should consider the canonical
map H1(K(f1, . . . , fq)•) −→ H1(K(f1, . . . , fr)•) which factors as
H1(K(f1, . . . , fq)•) −→ H1(K(f1, . . . , fq+1)•) −→ · · · −→
H1(K(f1, . . . , fr−1)•) −→ H1(K(f1, . . . , fr)•). Let the degrees of the input
polynomials be positive. (Otherwise {1} or the empty set is a Gröbner base.)
By the proof of Proposition 2 we see: If H1(K(f1, . . . , fq)•) is non-trivial and
a is an element of minimal degree, then the image of a in H1(K(f1, . . . , fr)•)
is non-trivial. It is however not obvious what this means for a computation
with the F5 algorithm.

What holds in any case is: If f1, . . . , fr is a regular sequence, then there
is no reduction to zero. As mentioned in the introduction, one can change
the algorithm in the following way: An outer loop is on the degree, and for
each degree the computation is performed by increasing the system. Like

1In the algorithm in [Fau02] the order of polynomials is reversed. For our modification,
the order on S has to be reversed as well.
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this one can obtain an algorithm which computes a Gröbner basis up to
degree D of some input system in such a way that no reduction to zero
occurs for systems which are regular up to degree D.

We make some more comments on the F5 algorithm as presented in
[Fau02].

There are some gaps, misprints and mistakes in this paper. In partic-
ular, there is problem with the assurance of termination. This problem is
addressed in [EGP11].

There is also room for improvement: One should be aware of the fact
that the algorithm computes a Gröbner basis and not a reduced Gröbner
basis. And even for computations up to degree D for systems which are
regular up to degree D and with the interchanged order of the loops, the
algorithm might compute polynomials which turn out to be redundant. An
improvement of the algorithm which addresses these redundancies is [EP10].
A good overview over various algorithms similar to F5 is [Ede12].
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