
On the notion of bit complexity

Claus Diem

August 21, 2010

Abstract

In many works in the fields of computational complexity, algorith-
mic number theory and mathematical cryptology as well as in related
areas, claims on the running times of algorithms are made. However,
often no computational model is given and the analysis is performed
in a more or less ad hoc way, counting in an intuitive way “bit oper-
ations”. On the other hand, the computational model of a successor
RAM with logarithmic cost function provides an adequate and for-
mal basis for the analysis of the complexity of algorithms from a “bit
oriented” point of view.

This motivates the search for a result on the simulation of machines
in a suitably defined general model by successor RAMs. In this work, a
very general RAM model is defined, and then a “quasi-optimal” result
on the simulation of such machines by successor RAMs is given.

1 Introduction

In a large body of works in the fields of computational complexity, algo-

rithmic number theory and mathematical cryptography as well as in related

areas, claims on the running times or time complexity of algorithms are

made. However, in a substantial part of these works, the analysis of the

algorithms is performed in a more or less intuitive and ad hoc way without

reference to a specific model of computation.

Often, the running time (or expected running time) is computed by

counting in some intuitive way “bit operations”. Or to phrase it differently:

in a certain intuitive way, the bit complexity of algorithms is considered.

Such an approach is clearly sufficient if one is merely interested in questions

on complexity from a “qualitative” point of view (disregarding exponents)

– as is often the case in complexity theory. However, often more concrete

statements are made, and then the question poses itself whether the claimed

running time holds true in a particular “bit-oriented” model of computation.

The situation concerning space requirements or space complexity is simi-

lar but in fact – as we will discuss below – it is even worse because it is even

less clear what is exactly meant by claims concerning space requirements.

1

This is by far a new phenomenon. Already in 1980 Arnold Schönhage

observed; see [Sch80]:

Many of the concrete algorithms given in the literature are (at

least implicitly) designed for multitape Turing machines, some-

times the higher flexibility of random access machines (with a

variety of instruction sets) is required, and frequently it is totally

left to the reader’s imagination what the model of computation

should look like.

Let us fix the following terminology: By a machine type we mean a type

of Turing machines, random access machines, etc.1 A model of computation

is then a machine type together with a time and a space measure. In some

cases, these measures are obvious (e.g. for Turing machines), but in other

cases – in particular for RAM models – they are not, and care has to be

taken which measure is used.

It is intuitively obvious that if one speaks about running time without

further comments, one should have a sequential machine type with a bit-

oriented storage and atomistic instruction set in mind, and the time measure

must reflect the number of bit operations required. Of course, we cannot

give a rigorous definition of these intuitive notions but some requirements

seem to be obvious: First, the machine type must have a most reduced

set of instructions. Second, the time needed for one instruction must by

definition reflect the lengths of the numbers which have to be considered for

its execution.2

One such model is the multi-tape Turing machine model (with various

similar definitions). Another model is the successor RAM with logarithmic

cost measure (again with various similar definitions).

We note here that the bit-oriented point of view of this work is slightly

different from the atomistic point of view in [Sch80]. An atomistic model

according to Schönhage is for example the Storage Modification Machine

(SSM). However, from our point of view, the SSM model is not bit-oriented

because it misses a bit-oriented (a priori) storage. Also, the successor RAM

types (as defined in [Sch80]) with uniform time measure deserve to be called

atomistic but not bit-oriented, because in one time unit arbitrarily many

bits might be changed. Note here that it is shown in [Sch80] that the SSM

1We do not give a rigorous general definition of “machine type”, and – consistent with
this – we do not claim any general mathematical propositions on machine types. The
mathematical propositions are rather for specific machine types.

2We assume here implicitly that the machines have a program. Let us note here that
in an obvious way, Turing machines can also be based on programs. This point of view is
emphasized by Schönhage, cf. [Sch80] and [SGV94].

2

type (with obvious time measure) is real time equivalent to certain successor

RAM types with uniform time measure.3

In many works on the complexity of computational problems arising in

algorithmic number theory, cryptography and related areas, it seems to be

assumed that the underlying model is on the one hand bit-oriented and on

the other hand, storage access is more or less immediate. These require-

ments are met by successor RAMs with logarithmic time measure. The

very limited instruction set of these models does however often not make it

possible to obtain the claimed running times in a straightforward way. For

example, very often the algorithms and their analyzes require the presence

of commands for addition and subtraction of registers.

This situation motivates the search for a general result which transforms

a result for any kind of random access machine model with “reasonable”

time and space measures to a result for successor RAMs.

In this work, we give a rigorous definition of a RAM type with a very

general instruction set (whose machines we call RAM with extended instruc-

tion set). With an adequate (and intuitive) time measure, we show that

machines of this type can be simulated “quasi-optimally” (optimally up to

“logarithmic factors”) by successor RAMs with logarithmic cost measure.

Concerning space complexity, the result is “quasi-optimal” too and in fact

relates a particularly strong space measure on successor RAMs with a weak

space measure for the general RAM type. The result on time complexity

shows in particular that RAMs with additional commands for addition and

subtraction and / or for concatination and shifts can be simulated “quasi-

optimally” by successor RAMs with respect to the logarithmic cost function.

The simulation is straightforward, and in fact, it essentially already ap-

peared in the literature before; cf. the proof of [WW86, Theorem 19.28].

However, an extensive search in the literature did not reveal a result as the

one given in this work even for the simulation of RAMs with commands

for addition and subtraction by successor RAMs. It is exactly the lack of a

suitable reference which motivated the author to write this work.

Acknowledgment

I thank Pierrick Gaudry for discussions on computational models.

3The use of the notion “real time equivalent” in [Sch80] is different for its use at other
places in the literature, e.g., in [vEB92] and [WW86]. In the spirit of [vEB92], one might
say that these models simulate each other in linear time. With the definitions of [WW86],
the time measures of the models are linearly related.

3

2 Basic definitions and observations

We assume that the reader is familiar with RAM models, at least on an

intuitive basis. Briefly, a successor RAM type is a RAM type with only one

arithmetic instruction: the computation of the successor.4

In [Sch80] two such types are defined, called RAM0 and RAM1. Let us

recall the particular definitions in [Sch80] on a conceptual level and compare

them to other definitions of RAM types in literature.

Let us define the set of natural numbers N as the set {0, 1, 2, . . .}.

All machines defined in [Sch80] operate on the alphabet {0, 1} for input

and output. Each machine has an input and output tape, which are read

respectively write only. Furthermore, they have a program based on some

instruction set. The instruction sets contain instructions based on the codes

input, output, goto, halt. The input instruction reads a bit from the

input tape and – according to the bit – jumps to one of two labels. The

output instruction prints a bit.

As usual for random access machines, a machine of type RAM1 has reg-

isters, an accumulator, instructions to load a fixed natural number and to

load and store data directly and indirectly, and an instruction for compari-

son. All registers and the accumulator can store arbitrary natural numbers

(or bit strings). The registers are indexed by natural numbers, and the ac-

cumulator is by definition not a register. Different from other random access

machine types, the RAM1 type only has one “arithmetic” (or operational)

instruction: the computation of the successor. The type RAM0 is similar to

the type RAM1. The essential differences are that the type RAM0 does not

have an instruction for indirect addressing but it has an additional address

register instead.

Usually, random access machine types defined in the literature have ad-

ditional “arithmetic instructions”. The most cited type in the literature

seems to be the one by Aho, Hopcroft, and Ullman ([AHU74]). This type

has instructions for addition, subtraction, multiplication and division. Other

types have instructions for bitwise OR, AND and XOR, and still others have

an instruction for concatenation; cf. [WW86, Section 1.2].

Let a RAM0 or RAM1 Π be given, and let x be an input to Π. Then

there are essentially two different definitions of running time of Π for x:

the uniform and the logarithmic running time. With the uniform running

time, each instruction executed is given the time 1. In order to define the

logarithmic running time, we first define the size of a natural number n as 0

if n = 0 and ⌊log2(n)⌋+1 otherwise.5 Now for the logarithmic running time,

4In [WW86] a machine type called successor RAM is defined which has instructions
for computation of the successor and the predecessor. We do not follow this definition.

5This definition of the size of a number follows the definitions in [WW86]. In [vEB92]

4

each instruction not involving registers or the accumulator is given the time

1, and the instructions involving registers or the accumulator are given as

time 1 + the sum of sizes of the numbers in the accumulator or the registers

in question involved (the accumulator for comparison and computation of

the successor, the accumulator and one register for direct access and the

accumulator and two registers for indirect access).

We define the uniform or logarithmic time measure for Π as the function

on the natural numbers assigning to each natural number x the correspond-

ing running time of Π upon input of x.

On the other hand, when we speak of the state of the machine at a

particular time, we refer to the state after a particular number of operations

has been executed, that is, after a particular uniform time has passed.

From a bit-oriented point of view, the logarithmic time measure is clearly

the more adequate one. After all it really measures the bits involved in the

execution of a particular instruction. Because of this, in the following we

base our results for time complexity on this measure. We therefore call the

logarithmic measure also the time complexity and denote it by T .

We have already mentioned that it is shown in [Sch80] that the two suc-

cessor RAM types RAM0 and RAM1 are real time equivalent with respect

to the uniform time measure. In fact, the simulation in [Sch80] reveals that

they are also real time equivalent with the logarithmic time measure, thus

it does not matter which type we choose. Let us – somewhat arbitrarily –

define a successor RAM as a machine of type RAM1.

There are various measures of space complexity for RAMs defined in the

literature. In this work, for successor RAMs we use three space measures

S1, S2, S3 which are again functions on the inputs and are defined as follows:

Let us fix a successor RAM Π and some input x to it. Let Ri,t be the

content of register Ri at time t. Let ut(i) := sgn(size(Ri,t)), that is, ut(i)

indicates if register i is used at time t. Further, let

b := sup{i ∈ N | register Ri is used during the computation}

= sup{i ∈ N | ∃t ∈ N : ut(i) = 1} .

the size of 0 is by definition 1. The logarithmic function in [AHU74] is the same as the
size in [vEB92]; see also Section 4.

5

We now define:

S1(x) := sup
t∈N

∞
∑

i=0

(

size(Ri,t) + size(i) · ut(i)
)

S2(x) :=
∞

∑

i=0

sup
t∈N

(

size(Ri,t) + size(i) · ut(i)
)

S3(x) :=
b

∑

i=0

sup
t∈N

(

size(Ri,t) + size(i)
)

Clearly,

S1 ≤ S2 ≤ S3 .

Measure S2 seems to be the most accepted measure in the literature; cf.

[vEB92], [WW86]. Measures as S1 and S2 but without the term for the size

of the register number are also often used in the literature. For example,

in [AHU74] the corresponding variant of measure S2 is used. From a bit-

oriented point of view, measure S2 is however more natural.

In contrast to the definitions in [WW86], the space measures are also

defined for inputs for which the machine does not terminate. For inputs for

which the machine terminates, the measure is always finite, for inputs for

which the machine does not terminate it might be finite or infinite.

Let – as define above – T be the time complexity of Π. Then

S3 ∈ O(T) .

Indeed, let us fix some input x upon which Π terminates. Wlog. we can

assume that numbers > 0 are only loaded directly and indirectly (no fixed

number n > 0 is loaded). Then the successors of 0, . . . , b − 1 have to be

computed. The logarithmic running time for this is
∑b−1

i=0
(1 + size(i)) ≥

∑b
i=0

size(i). Furthermore, if Ri,t is 6= 0, then at some time s < t, Ri,t has

to be stored in register Ri, and the logarithmic time needed for this is at

least size(Ri,t).

3 Discussion and further definitions

We now strive for a general result which transfers propositions on a type

of random access machines with a very broad arithmetic instruction set to

propositions for successor RAMs. The instruction set should contain all

instructions of the successor RAM type and additional instructions which

we call higher arithmetic instructions. These higher arithmetic instructions

define partial functions from N
n to N for some n, as for example do the

6

usual addition and subtraction instructions.6

In order that one can obtain a transfer result as desired, clearly, the

partial functions defined by the higher arithmetic instructions must be com-

putable. A subtle question is then what time and space requirements one

should charge for the execution of an instruction at a particular time.

We now describe the machines and the time and space measures we

consider in detail.

First, we generalize the definition of successor RAM (i.e. RAM1) in the

following way: We do not anymore have just one input tape but several

input tapes. Correspondingly, the input instructions now take the following

form:

input m, λ0, λ1

Here m is a natural number ≤ the number of input tapes, and as before

λ0, λ1 are labels. The operation given by this instruction is as follows: One

symbol is read from tape m and then according to the symbol being 0 or 1,

the program is continued at label λ0 or λ1.

We call the resulting machine type multi-inputtape successor RAM type

(mi-successor RAM type for short).

We now define a type of computational machines which we call RAM

with extended instruction set as well as time and space measures on them.

The set of instructions of the new type has two parts. The first part

consists of the instructions of the successor RAM model; we call these in-

structions basic instructions. The second part is given as follows: For each

successor RAM P , we introduce an instruction cP . We call these instruc-

tions higher arithmetic instructions. The arithmetic instruction are then

the instruction for computation of the successor and the higher arithmetic

instructions.

The syntactic requirements for a (program of a) RAM with extended

instruction set are as for successor RAMs.7

Let now a (program for a) RAM with extended instruction set Π be

given. Then the operation of Π is as follows: The basic instructions operate

as usual. The operation of cP for a successor RAM P is as follows: This

instruction causes P to be executed in the following way. If P has n input

tapes, P takes as input the content of registers 1, . . . , n of Π. The output

tape of P is the accumulator of Π. If P terminates, Π continues with the

next instruction, as usual. If P does not terminate, Π does not terminate

either.

6The instructions one usually considers in RAM models define functions, not only
partial functions.

7One can (formally) define RAMs and programs of RAMs in such a way that a RAM
and the corresponding program are (by definition) identical.

7

We define three time measures for such a machine Π.

• simple uniform time simply counts the number of instructions of Π.

• extended uniform time is defined as follows: The time for each basic

instruction is 1, and the time for some instruction cP is the uniform

time needed for the execution of P with the inputs currently present

in the respective registers of Π.

• extended logarithmic time is defined in exactly the same manner based

on logarithmic time: The time for each basic instruction is measured in

logarithmic time, and the time for cP is the logarithmic time needed for

the execution of P with the inputs currently present in the respective

registers of Π.

It is extended logarithmic time which captures best the intuitive idea of a

bit-oriented measure for this machine type, and therefore, similarly to above,

we call this measure time complexity and denote it by T .

Let still some RAM machine with extended instruction set Π above be

given, and let x be an input for Π. Let i = 1, 2, 3. The ith basic space

measure of Π applied to x is defined as Si(x) above applied to Π; let us

denote this measure by SBi.

We define the 1st space measure of the execution of some arithmetic in-

struction P at a particular (simple uniform) time of Π as the first space

measure applied to P and the corresponding input (present in the corre-

sponding registers of Π). Now S1(x) is the supremum of SB1(x) and the

first space measure applied to the executions of the arithmetic instructions.

The definition of the measures S2 and S3 is a bit more complicated:

Let i = 2, 3. Let P be a successor RAM such that cP occurs in (the pro-

gram of) Π (it might occur several times). Then we define Si,P (x) as Si(x)

above but with respect to all states of P for all executions of P during

the execution of Π. Let cP1
, . . . , cPk

with distinct machines P1, . . . , Pk be

all instructions occurring in the (program of) Π. Then we define Si(x) :=

SBi(x) +
∑k

j=1
Si,Pj

(x).

Again we have

S1 ≤ S2 ≤ S3 ,

and it is not difficult to see that

S2 ∈ O(T) .

However, there are machines for which it does not hold that S3 ∈ O(T). In

fact, S3 can be exponentially large with respect to T . For example, there

exists a successor RAM E which computes 2n in a time of O(n). Now

8

using the instruction cE , one immediately obtains a RAM with extended

instruction set which upon input of n ∈ N stores 1 in register 2n and then

terminates. For this machine we have T ∈ O(n) and S3 ≥ SB3 ≥ 2n.

4 The result

In order to formulate the main result, it is convenient to use the following

function, called logarithmic function in [AHU74].

Definition For some n ∈ N, we define l(n) := 1 if n = 0 and l(n) :=

⌊log2(n)⌋ + 1 otherwise.

Theorem Let some RAM with extended instruction set Π be given. Then

there exists a successor RAM Π′ such that the following holds:

Π′ terminates if and only if Π terminates, and the output of Π′ is equal

to the output of Π. Furthermore:

Let T be the time complexity of Π and T ′ the time complexity of Π′, and

let S1 be the 1st space measure for Π and S′

3
the 3rd space measure for Π′.

Then

T ′ ∈ O(T · l(S1)) ⊆ O(T · l(T))

and

S′

3 ∈ O(S1 · l(S1)) .

We give the proof in two parts: We first only show the result for the case

that Π is a successor RAM, and then we address the simulation of arbitrary

RAMs with extended instruction set. Note that the first result is non-trivial

because of the bound on the third space measure of Π′. The simulation for

the first result contains the essential idea for the general result as well.

The result for successor RAMs

The simulation Let a successor RAM Π be given. We now describe the

machine Π′ used for the simulation.

A key idea for the simulation is to simulate the registers and the accu-

mulator of Π in the following way: There are cells for data, and they always

only contain 0 or 1. As a very naive approach to this idea, one might try to

store the register cells in arrays. There are however some problems with this

approach: First, how does one cope with “overflow” of arrays and second,

how does one use indirect addressing in an efficient way? One possibility for

9

the second problem would be to try to transfer such an array into one reg-

ister. But note that we do note have an addition command at our disposal,

so it is unclear how to implement this idea in a sufficiently efficient way.

Rather than storing the data of one register of Π in an array, we store

it in a linked list: Each node of the list contains two entries which are each

stored in one register of Π′: The first entry is a data element (being 0 or 1),

and the second entry is the address of the next node.

In the same way, we simulate the accumulator of Π, and furthermore, also

in this way, we implement an address register used for indirect addressing.

We use a binary tree to guarantee fast access to the simulated registers.

The tree is as follows: Each vertex of the tree has at most two children, and

the edges to the children are labeled with 0 or 1.8 Let us assume that at

some time t, register Rx of Π contains data d > 0, and let xk · · ·x0 be the

binary expansion of x and dℓ · · · d0 be the binary expansion of d. Then at

the corresponding time of the simulation, there is a path from the root of

the tree following the labels x0, . . . , xk. The end of the path is the beginning

of the linked list, and the data cells of the list contain d0, . . . , dℓ. If on the

other hand d = 0, there is no such path. (There might be a partial path

in the tree but not a full path.) It is this tree structure which allows for

efficient manipulation of data of Π.

During the operation, new vertices are inserted into the tree if some

register is used which previously contains 0, and vertices are deleted if a

register is set back to 0.

The structure just described is stored in the registers with even addresses,

and one vertex occupies two consecutive even registers.

In order to access the storage efficiently, we use a stack and a counter.

These are stored in the registers with odd addresses. Addresses of (tuples

of) registers of Π′ which were used for the tree or the data cells and are

deleted are put onto the stack for reuse. (The stack is stored as an array,

and each address occupies one register – as usual.) The counter stores the

largest address used for the tree and the lists. If the stack is empty, the

counter is incremented, and its value is used as an address.

Illustration If for example all registers from 0 to 15 of Π are occupied, the

tree looks like this. Here the edges with the numbers are the beginnings of

the lists for the contents of the corresponding registers of Π. (The numbers

8We only use this labeling for the present informal description of the simulation. Only
the children but not the labels are stored.

10

are not stored but only printed here for orientation.)

0
0

��~~
~~

~~
~~

1

��
>>

>>
>>

>

◦
0

}}||
||

||
||

1

��

1

0

��

1

��
@@

@@
@@

@@

◦
0

vvnnnnnnnnnnnnnnn

1
}}||

||
||

||
2

0

}}||
||

||
||

1

��

◦

0

��

1

��
@@

@@
@@

@@
3

0
!!

BB
BB

BB
BB

1

((QQQQQQQQQQQQQQQQ

◦

1

��

4

1

��

◦

1

��

6

1

��

◦

1

��

5

1

��

◦

1

��

7

1

��

8 12 10 14 9 13 11 15

If only registers 8, 12, 5 and 15 are occupied, the tree looks as follows:

◦
0

����
��

��
��

1

��
??

??
??

?

◦
0

����
��

��
��

1

��

1

��
??

??
??

?

◦
0

wwnnnnnnnnnnnnnnn

1
~~}}

}}
}}

}}
◦

1

��
??

??
??

? ◦
1

''NNNNNNNNNNNNN

◦

1

��

◦

1

��

5 ◦

1

��

8 12 15

Again the numbers indicate that at these edges linked lists start.

If now, for example register, 15 is cleared, the corresponding edge as well

as the two edges above are deleted, and the corresponding addresses of Π′

are put on the stack for reuse.

The time and space requirements We now outline the results on time

and space requirements obtained via the simulation.

The number of registers of Π′ used for the simulation is in O(S1). Because

of the use of the stack for storage management, the supremum of addresses

used is in O(S1) as well. It follows that at during the whole computation

the supremum of numbers stored in the registers is in O(S1).

Therefore S′

3
∈ O(S1 · l(S1)).

Now, in order to load the content of the simulation of register Ri of Π

at (simple uniform) time t into the simulation of the accumulator or the

11

simulated address registers we have to go along O(l(Ri,t)+ l(i)) nodes of the

search tree and the linked list for the register.

Again, the supremum of numbers stored in a register of Π′ used for the

tree or the linked lists is in O(S1). This implies that the logarithmic time

for such an operation is in O((l(Ri,t) + l(i)) · l(S1)).

Analogous considerations apply to the computation of the successor and

comparison.

All in all, the time complexity of Π′ is in O(T · l(S1)).

As already remarked, S1 ∈ O(T) and thus T ′ ∈ O(T ·l(S1)) ⊆ O(T ·l(T)).

The general case

The outline for the general case is in fact nearly as the one for the restricted

case. We however also have to simulate the arithmetic instructions cP , and

for this we use the simulation for successor RAMs just outlined.

We simulate the storage of Π′ exactly as just described, but we only

use registers Ri with odd i. The registers Ri with even i are then used to

simulate the higher arithmetic instructions. If cP is such a higher arithmetic

instruction, then we simulate it by a successor RAM P ′ as described in the

first part of the proof.

We now outline the results on time and space complexity for the general

case. In fact, with minor modifications, the analysis in the special case still

applies.

The number of registers of Π′ used for the simulation of the registers,

the accumulator, the stack, the counter and the address register of Π is now

in O(SB1), and the supremum of addresses used for these structures is in

O(SB1). Thus the supremum of numbers stored in any register of Π′ used

for these structures is in O(SB1) as well.

By the previous result, there exists a constant C1 > 0 such that the

supremum of addresses of Π′ and the supremum of numbers stored in the

registers of Π′ used for the simulation of the arithmetic instructions is ≤

C1S1.

All in all, we obtain S′

3
∈ O(S1 · l(S1)).

The logarithmic time for the simulation of loading or storing in registers

of Π′ is in O((l(Ri,t) + l(i)) · l(SB1)), and again we have an analogous result

for the computation of the successor and comparison.

Furthermore, there exists a constant C2 > 0 such that the simulation of

any higher arithmetic instruction CP of Π′ at any particular time of Π′ can

be performed in logarithmic time ≤ C2 times the logarithmic time of the

execution of P ′ with the particular input.

All in all, the time complexity of Π′ is in O(T · l(S1)).

12

As already remarked, S1 ∈ O(T). 2

5 Some further remarks

We now make some further remarks related to the Theorem.

• As usual, one also can define non-deterministic RAMs with extended

instruction set. There are in fact two approaches: First, one can still

leave instruction set as above (in particular, for each deterministic

successor RAM P , we have a command cP) but allow non-determinism

in the same way as one usually does for RAM models. And second, one

can in fact also extend the instruction set, also allowing instructions

corresponding to non-deterministic successor RAMs. In any case, the

Theorem in an obvious way also leads to results on the simulation of

non-deterministic RAMs.

• As a variant of this, one can consider randomized RAMs. Here the

same comments as above apply. In particular, we can use the Theorem

to transfer propositions on the running times of Monte Carlo or Las

Vegas algorithms. Propositions concerning Las Vegas algorithms are

often formulated via expected running times in the following sense:

For each input x the time complexity T (x) is now a random variable,

and one considers the function assigning to each input x the expected

value of T (x). Propositions on expected running times defined like this

can then also easily be transferred. The same applies to propositions

on space complexity with respect to the various measures.

• A usual RAM type is as the successor RAM types but with two arith-

metic commands: addition and subtraction. (In [vEB92] and [WW86]

this is called the standard RAM). Now, there exist mi-successor RAMs

A and S which can perform addition and subtraction in linear time

and with constant storage. Thus every such RAM immediately gives

a RAM with extended instruction set with linearly related time com-

plexity (with the logarithmic resp. extended logarithmic measures) and

linearly related space complexities (with respect to the various mea-

sures). We can then apply the Theorem to obtain a “quasi-optimal”

simulation by successor RAMs.

• If one substitutes logarithmic by uniform time and extended loga-

rithmic by extended uniform time, the simulation does not lead to a

“quasi-optimal” result. Indeed, let Π and Π′ be as in the simulation,

and let Tu and T ′

u be the extended uniform resp. uniform time mea-

sures. If now Π is a successor RAM, the supremum of addresses used

13

and the supremum of values in any register are ≤ Tu. One then ob-

tains T ′ ∈ O(Tu · l(Tu)). If however Π is some RAM with extended

instruction set, one only has that the supremum of addresses used and

the supremum of values in any register of Π are ≤ 2Tu . One then

merely obtains T ′

u ∈ O(T 2
u).

• Of course, with RAMs with extended instruction set and the simple

uniform time measure, one can obtain nearly arbitrarily small running

times. Two special cases are however worthwhile mentioning:

Let Π is a “standard RAM” with simple uniform time measure Ts.

Then with the simulation we obtain a successor RAM Π with simple

uniform time measure T ′

s and T ′

s ∈ O(T 2
s). The argument for this

is exactly as the one for the previous item. This result is given in

[WW86, Theorem 19.28].

However, if one allows all four arithmetic instructions, one obtains a

dramatically different model; see [BMS85], [Sch79] and [WW86, The-

orem 20.12], [WW86, Theorem 20.35]: The set of languages which

can be recognized in polynomially bounded time on a nondetermin-

istic machine can then also be recognized in polynomially bounded

time on a deterministic machine and is equal to the set of languages

which can be recognized in polynomially bounded space on a Turing

machine. From a complexity theoretic point of view, this model can

be considered as a parallel model.

• One can “iterate” the definition of the machine type “RAM with ex-

tended instruction” set by defining a new type which has as arithmetic

all instructions of the RAM with extended instruction set. By iterat-

ing this procedure, we obtain a sequence RAM types indexed by the

natural numbers; let us call any machine of these types a RAM with

iteratively extended instruction set. We can now also iterate the defini-

tion of the extended logarithmic time measure and the space measures,

obtaining in this way measures for all these machines. Let now such a

RAM Π be given. Then one can also apply the simulation iteratively.

Finally, one obtains a successor RAM Π′ which simulates Π such that

the following holds: With the notations as in the Theorem and the

usual Õ-notation to capture logarithmic factors, we have:

T ′ ∈ T · Poly(log(S1)) ⊆ Õ(T) and S′

3 ∈ Õ(S1)

• It would be very interesting to have a general “quasi-optimal” result

on the simulation of random access machines in some model by Turing

machines. However, no such result is known. The following statement

14

is however obvious: Let Π be a RAM with extended instruction set.

Then there exists a Turing machine (with 1-dimensional tapes) simu-

lating Π with a time complexity of O(T · S1) ⊆ O(T 2).

6 Summary

We give a summary of the definitions and results of this work on an intuitive

level.

The starting point of this work is the observation that often the analysis

of algorithms is performed in an ad-hoc way without reference to a specific

model of computation. Implicitly however, the algorithms are usually ana-

lyzed in some kind of random access machine (RAM) model with some kind

of instruction set. This motivates the search for a general transfer result

to a truly bit-oriented model of computation. Such a result is given in this

work.

Briefly, the result can be stated as follows: If one defines the time and

space requirements of the instructions of the model in a bit-oriented way,

one can obtain a transfer which is “quasi-optimal”, i.e. “optimal up to a

logarithmic factor”.

Generally speaking, the result shows that if one employs the usual Õ

or O∗ notation, it really is justified to take an intuitive and not too formal

approach to complexity of algorithms.

Two aspects should however be added to caution the reader:

First, if one uses the O-notation and gives explicit “logarithmic terms”,

it really is necessary to first state the corresponding computational model.

(At least as long as no stronger simulation result is known.)

Second, one might argue that a more adequate model of computation

for algorithms with large space requirements is the multitape Turing model.

There is however no general “quasi-optimal” transfer result from RAM mod-

els to the Turing model known.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of

computer algorithms. Addison-Wesley, 1974.

[BMS85] A. Berton, G Mauri, and N. Sabadini. Simulations among classes of

random access machines and equivalence among numbers succinctly

represented. Ann. Discrete Math., 25:65–90, 1985.

15

[Sch79] A. Schönhage. On the power of random access machines. In H.

Maurer, editor, Proc. 6th Internat. Coll. on Automata, Languages

and Programming, volume 71 of LNCS. Springer, 1979.

[Sch80] A. Schönhage. Storage Modification Machines. SIAM J. Computing,

9:490–508, 1980.

[SGV94] A. Schönhage, A. Grotefeld, and E. Vetter. Fast algorithms – a

multitape Turing machine implementation. BI Wissenschaftsverlag,

Mannheim, 1994.

[vEB92] P. van Emide Boas. Machine Models and Simulations. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-

ume A: Algorithms and Complexity. Elsevier, 1992.

[WW86] K. Wagner and G. Wechsung. Computational Complexity. VEB

Verlag der Wissenschaften, Berlin, 1986.

Claus Diem

Universität Leipzig

Mathematisches Institut

Johannisgasse 26

04103 Leipzig

Deutschland

diem@math.uni-leipzig.de

16

