Families of elliptic curves with genus 2 covers of degree 2

Claus Diem

November 8, 2005

Abstract

We study genus 2 covers of relative elliptic curves over an arbitrary base in which 2 is invertible. Particular emphasis lies on the case that the covering degree is 2 . We show that the data in the "basic construction" of genus 2 covers of relative elliptic curves determine the cover in a unique way (up to isomorphism).

A classical theorem says that a genus 2 cover of an elliptic curve of degree 2 over a field of characteristic $\neq 2$ is birational to a product of two elliptic curves over the projective line. We formulate and prove a generalization of this theorem for the relative situation.

We also prove a Torelli theorem for genus 2 curves over an arbitrary base.

Key words: Elliptic curves, covers of curves, families of curves, curves of genus 2, curves with split Jacobian.

MSC2000: 14H45, 14H10, 14H30.

Introduction

The purpose of this article is to study covers $f: C \longrightarrow E$ where C / S is a (relative, smooth, proper) genus 2 curve, E / S is a (relative) elliptic curve and the base S is a locally noetherian scheme over $\mathbb{Z}[1 / 2]$. Particular emphasis lies on the case that the covering degree N is 2 .

If one studies genus 2 covers of (relative) elliptic curves, it is convenient to restrict ones attention to so-called minimal covers. These are covers $C \longrightarrow E$ which do not factor over a non-trivial isogeny $\tilde{E} \longrightarrow E$. If now $f: C \longrightarrow E$ is a minimal cover and $x \in E(S)$, then $T_{x} \circ f$ is also one. This ambiguity motivates the notion of a normalized cover introduced in [10]: By definition, such a cover is minimal and satisfies a certain condition concerning the direct image of the Weierstraß divisor of C on E (for precise
definition see below). Now for every minimal cover $f: C \longrightarrow E$ there is exactly one $x \in E(S)$ such that $T_{x} \circ f: C \longrightarrow E$ is normalized.

To every minimal cover $f: C \longrightarrow E$ one can associate in a canonical way an elliptic curve E_{f}^{\prime} / S and an isomorphism of S-group schemes $\psi_{f}: E[N] \stackrel{\sim}{\longrightarrow} E_{f}^{\prime}[N]$ which is anti-isometric with respect to the Weil pairing; see [10]. It is shown in [10] that for fixed $S, E / S$ and $N \geq 3$, the assignment $f \mapsto\left(E_{f}, \psi_{f}\right)$ induces a monomorphism from the set of isomorphism classes of normalized genus 2 covers of degree N of E / S to the set of isomorphism classes of tuples $\left(E^{\prime}, \psi\right)$ of elliptic curves E / S with an anti-isometric isomorphism $\psi: E[N] \xrightarrow{\sim} E^{\prime}[N]$. Explicit conditions are given when a tuple $\left(E^{\prime}, \psi\right)$ corresponds to a normalized genus 2 cover $C \longrightarrow E$ of degree N over S this is called "basic construction" in [10].

In this work, we show that the above assignment is in fact a monomorphism for all $N \geq 2$. Our starting point is a Torelli theorem (Theorem 1) for relative genus 2 curves which follows rather easily from the detailed appendix of [10]. With the help of this theorem, we prove a Torelli theorem for normalized genus 2 covers of (relative) elliptic curves; see Proposition 2.3. This result implies immediately that the "Torelli map" of [10] is a monomorphism for arbitrary $N \geq 2$. In [10], the corresponding statement is only proved for $N \geq 3$ and the proof is more involved; cf. [10, Proposition 5.12]. The injectivity of the above assignment then follows with other results of [10].

For $N=2$ (and fixed S and E / S), tuples $\left(E^{\prime}, \psi\right)$ as well as normalized covers $C \longrightarrow E$ have a non-trivial automorphism of order 2 . This leads to a certain "non-rigidity" in the "basic construction": Any two covers corresponding to the same tuple $\left(E^{\prime}, \psi\right)$ are isomorphic, but the isomorphism is not unique. We propose a "symmetric basic construction" which leads to a more rigid statement (and is more explicit than the "basic construction").

We then fully concentrate on the case that $N=2$. We show in particular that for every normalized cover $f: C \longrightarrow E$ of degree 2 , one has a canonical commutative diagram

where $\mathbf{P}:=E /\langle[-1]\rangle$ is a \mathbb{P}^{1}-bundle over S and all morphisms are covers of degree 2 such that the induced morphism $C \longrightarrow E \times_{\mathbf{P}} E_{f}^{\prime}$ induces birational morphisms on the fibers over S; see Theorem 2 in Section 3 and Corollary 3.6. This generalizes a classical result on genus 2 curves with elliptic differentials of degree 2 over a field of characteristic $\neq 2$ which follows immediately
from Kummer theory applied to the extension $\kappa(C) / \kappa(E /\langle[-1]\rangle)$.
Finally, we discuss a reinterpretation of this result and show that it is closely related to a general statement on \mathbb{P}^{1}-bundles which we prove in an appendix.

The study of genus 2 curves with split Jacobian has a long history which arguably started with the task of reducing hyperelliptic integrals of genus 2 of the first kind to sums of elliptic integrals. Here a substitution of variables gives rise to a genus 2 cover of an elliptic curve. The study for degree 2 dates back to Legendre who gave the first examples and Jacobi. More information on this classical material can be found in [11], pp.477-482.

It is now also classical that to every minimal cover $f: C \longrightarrow E$ one can in a canonical way associate a "complementary" minimal cover $C \longrightarrow E_{f}^{\prime}$ of the same degree (unique up to translation on E); see e.g. [12]. The idea to describe genus 2 covers of a fixed elliptic curve E (over a field) by giving the complementary elliptic curve E_{f}^{\prime} and a suitable anti-isometric isomorphism $E[N] \stackrel{\sim}{\sim} E_{f}^{\prime}[N]$, where N is the covering degree, is due to G. Frey and E. Kani; see [4] and also [9]. The basic results for genus 2 covers of relative elliptic curves were obtained by E. Kani in [10].

An application of some results presented in this article can be found in [3]. In this work, examples of relative, non-isotrivial genus 2 curves C / S which possess an infinite tower of non-trivial étale covers $\cdots \longrightarrow C_{i} \longrightarrow$ $\ldots C_{0}=C$ such that for all $i, C_{i} \longrightarrow C$ is Galois and C_{i} / S is also a curve (in particular has geometrically connected fibers) are given. The genus 2 curves in question are covers of elliptic curves with covering degree 2 , the base schemes are affine curves over finite fields of odd characteristic.

Terminology and notation

This work is closely related to [10]. With the exception of the following assumption, the following three definitions and Definition 2.7, all definitions and notations follow this work. We thus advise the reader to have [10] at hand when he goes through the details of this article. Note that although the primary emphasis of [10] lies on genus 2 covers of elliptic curves E_{S}, where E / K is an elliptic curve over a field K of characteristic $\neq 2$ and S is a K-scheme, as stated in various places of [10], the results of [10] hold for genus 2 covers of elliptic curves over arbitrary locally noetherian schemes over $\mathbb{Z}[1 / 2]$.

If not stated otherwise, all schemes we consider are assumed to be locally noetherian.

If $g \in \mathbb{N}_{0}$, then a (relative) curve of genus g over S is a smooth, proper morphism $C \longrightarrow S$ whose fibers are geometrically connected curves of genus g. (We thus do not assume that the genus is ≥ 1 or that for $g=1 C / S$ has
a section.)
If C / S is a curve and $N \in \mathbb{N}, g \in \mathbb{N}_{0}$, then a genus g cover of degree N of C is an S-morphism $f: C^{\prime} \longrightarrow C$, where C^{\prime} / S is a genus g curve, which induces morphisms of the same degree N on the fibers over S. (Note that f is automatically finite, flat and surjective; cf. [10, Section 7, 7)].)

If C / S and C^{\prime} / S are two curves of genus ≥ 2, we denote the scheme of S-isomorphisms from C to C^{\prime} by $\mathbf{I s o}_{S}\left(C, C^{\prime}\right)$; cf. [2].

Following [14], a curve C / S is called hyperelliptic if it has a (by Lemma 1.1 necessarily unique) automorphism $\sigma_{C / S}$ which induces hyperelliptic involutions on the geometric fibers. For equivalent definitions of $\sigma_{C / S}$, see [14, Theorem 5.5].

We have used the following definition in the introduction; cf. [10]:
Let S be a scheme over $\mathbb{Z}[1 / 2]$, let C / S be a genus 2 curve and let E / S be an elliptic curve. Then a cover $f: C \longrightarrow E$ is minimal if it does not factor over a non-trivial isogeny $\tilde{E} \longrightarrow E$, and it is normalized if it is minimal and we have the equality of relative effective Cartier divisors

$$
f_{*}\left(W_{C / S}\right)=3 \epsilon\left[0_{E / S}\right]+(2-\epsilon) E[2]^{\#}
$$

where $W_{C / S}$ is the Weierstraß divisor of $C / S, E[2]^{\#}:=E[2]-\left[0_{E / S}\right]$ and $\epsilon=0$ if $\operatorname{deg}(f)$ is even and $\epsilon=1$ if $\operatorname{deg}(f)$ is odd. ${ }^{1}$ Note that a normalized cover satisfies

$$
\begin{equation*}
f \circ \sigma_{C / S}=[-1] \circ f ; \tag{1}
\end{equation*}
$$

cf. [10, Theorem 3.2 (c)].
We frequently use the following notation:
If $f: T \longrightarrow S$ is a morphism of schemes and $\varphi: X \longrightarrow Y$ is a morphism of S-schemes, we denote the morphism induced by base change via f by $f^{*} \varphi: f^{*} X \longrightarrow f^{*} Y$ or just $\varphi_{T}: X_{T} \longrightarrow Y_{T}$.

We use two different symbols to denote isomorphisms: If we just want to state that two objects X, Y in some category are isomorphic, we write $X \approx Y$. If X and Y are isomorphic with respect to a canonical isomorphism or with respect to a fixed isomorphism which is obvious from the context, we write $X \simeq Y$.

Acknowledgments. The author would like to thank G. Frey, E. Kani and E. Viehweg for various discussions related to this work.

1 A Torelli theorem for relative genus 2 curves

The purpose of this section is to prove the following theorem.

[^0]Theorem 1 Let S be a scheme, let C / S and C^{\prime} / S be two genus 2 curves. Then the map $\operatorname{Iso}_{S}\left(C, C^{\prime}\right) \longrightarrow \operatorname{Iso}_{S}\left(\left(J_{C}, \lambda_{C}\right),\left(J_{C^{\prime}}, \lambda_{C^{\prime}}\right)\right), \varphi \mapsto \varphi_{*}$ is an isomorphism.

Here, by λ_{C} we denote the canonical polarization of the Jacobian J_{C} of a genus 2 curve C / S and for an isomorphism $\varphi: C \longrightarrow C^{\prime}$ of two genus 2 curves over S, we define $\varphi_{*}:=\lambda_{C^{\prime}}^{-1} \circ\left(\varphi^{*}\right) \circ \lambda_{C}=\left(\varphi^{*}\right)^{-1}$.

This Torelli theorem for (relative) genus 2 curves is well known in the case that S is the spectrum of an (algebraically closed) field; cf. e.g. [16, Theorem 12.1] where it is stated with a slightly different formulation for arbitrary hyperelliptic curves over algebraically closed fields.

Theorem 1 follows from Lemmata 1.2 and 1.6 which are proved below.
Let S be a scheme, and let C / S and C^{\prime} / S be curves.
We will frequently use the fact that the formation of the Jacobian commutes with arbitrary base-change: Let $f: T \longrightarrow S$ be a morphism of schemes. Then we have canonical isomorphisms $\left(J_{C_{T}}, \lambda_{C_{T}}\right) \simeq\left(\left(J_{C}\right)_{T},\left(\lambda_{C}\right)_{T}\right)$, $\left(J_{C_{T}^{\prime}}, \lambda_{C_{T}^{\prime}}\right) \simeq\left(\left(J_{C^{\prime}}\right)_{T},\left(\lambda_{C^{\prime}}\right)_{T}\right)$. Moreover, under the obvious identification, we have

$$
\begin{equation*}
\left(\varphi_{*}\right)_{T}=\left(\varphi_{T}\right)_{*}: J_{C_{T}} \longrightarrow J_{C_{T}^{\prime}} \text { i.e. } f^{*}\left(\varphi_{*}\right)=\left(f^{*} \varphi\right)_{*} \tag{2}
\end{equation*}
$$

Lemma 1.1 Let S be a connected scheme, let $s \in S$. Then the restriction map $\operatorname{Iso}_{S}\left(C, C^{\prime}\right) \longrightarrow \mathrm{Iso}_{\kappa(s)}\left(C_{s}, C_{s}^{\prime}\right)$ is injective.

Proof. The S-isomorphisms between C and C^{\prime} correspond to sections of the S-scheme $\operatorname{Iso}_{S}\left(C, C^{\prime}\right)$. As this scheme is unramified over S (see [2, Theorem 1.11]), the result follows with [5, Exposé I, Corollaire 5.3.].

Lemma 1.2 Let S be a connected scheme, let $s \in S$. Then the map $\operatorname{Iso}_{S}\left(C, C^{\prime}\right) \longrightarrow \operatorname{Iso}_{\kappa(s)}\left(\left(J_{C_{s}}, \lambda_{C_{s}}\right),\left(J_{C_{s}^{\prime}}, \lambda_{C_{s}^{\prime}}\right)\right), \varphi \mapsto\left(\varphi_{s}\right)_{*}=\left(\varphi_{*}\right)_{s}$ is injective.

Proof. This follows from the previous lemma and the classical Torelli Theorem (see [16, Theorem 12.1]).

Lemma 1.3 Let $S^{\prime} \longrightarrow S$ be faithfully flat and quasi compact. Let φ^{\prime} : $C_{S^{\prime}} \longrightarrow C_{S^{\prime}}^{\prime}$ be an S^{\prime}-isomorphism, and let $\alpha: J_{C} \longrightarrow J_{C^{\prime}}$ be a homomorphism with $\alpha_{S^{\prime}}=\varphi_{*}^{\prime}$. Then there exists an S-isomorphism $\varphi: C \longrightarrow C^{\prime}$ with $\varphi_{S^{\prime}}=\varphi^{\prime}$ and $\alpha=\varphi_{*}$.
Proof. Let $S^{\prime \prime}:=S^{\prime} \times{ }_{S} S^{\prime}$, let $p_{1}, p_{2}: S^{\prime \prime} \longrightarrow S^{\prime}$ be the two projections. We want to show that $p_{1}^{*} \varphi^{\prime}=p_{2}^{*} \varphi^{\prime}$. Then the statement follows by faithfully flat descent; see [1, Section 6.1., Theorem 6].

By assumption we have $p_{1}^{*}\left(\varphi_{*}^{\prime}\right)=p_{2}^{*}\left(\varphi_{*}^{\prime}\right)$. Together with (2) this implies that $\left(p_{1}^{*} \varphi^{\prime}\right)_{*}=\left(p_{2}^{*} \varphi^{\prime}\right)_{*}$. Now the equality $p_{1}^{*} \varphi^{\prime}=p_{2}^{*} \varphi^{\prime}$ follows with the previous lemma.

The following lemma is a special case of [17, Proposition 6.1], the "Rigidity Lemma".

Lemma 1.4 Let S be a connected scheme, let $s \in S$. Let $A / S, A^{\prime} / S$ be two abelian schemes. Then the map $\operatorname{Hom}_{S}\left(A, A^{\prime}\right) \longrightarrow \operatorname{Hom}_{\kappa(s)}\left(A_{s}, A_{s}^{\prime}\right)$ is injective.

Lemma 1.5 Let C / S and C^{\prime} / S be genus 2 curves, and assume that both curves have a section. Then the map $\operatorname{Iso}_{S}\left(C, C^{\prime}\right) \longrightarrow \operatorname{Iso}_{S}\left(\left(J_{C}, \lambda_{C}\right),\left(J_{C^{\prime}}, \lambda_{C^{\prime}}\right)\right)$, $\varphi \mapsto \varphi_{*}$ is surjective.

Proof. Let $a: S \longrightarrow C$ be a section. Let $j_{a}: C \longrightarrow J_{C}$ be the immersion associated to a; cf. [10, Section 7, 6)]. Analogously, let $a^{\prime}: S \longrightarrow C^{\prime}$ be a section, and let $j_{a^{\prime}}: C^{\prime} \longrightarrow J_{C^{\prime}}$ be the associated immersion. Now $j_{a}(C)$ is a Cartier divisor on J_{C} which defines the principal polarization λ_{C}. (Indeed, for all $s \in S$, we have $\lambda_{C_{s}}=\lambda_{\mathcal{O}\left(j_{a}(C)_{s}\right)}: J_{C_{s}} \longrightarrow J_{C_{s}^{\prime}}$. The equality $\lambda_{C}=\lambda_{\mathcal{O}\left(j_{a}(C)\right)}$ follows with Lemma 1.4.) Analogously, $j_{a^{\prime}}\left(C^{\prime}\right)$ is an a Cartier divisor on $J_{C^{\prime}}$ which defines the principal polarization $\lambda_{C^{\prime}}$.

Let $\alpha: J_{C} \longrightarrow J_{C^{\prime}}$ be an isomorphism which preserves the principal polarizations, i.e. which satisfies $\hat{\alpha} \circ \lambda_{C^{\prime}} \circ \alpha=\lambda_{C}$.

Then λ_{C} is given by the divisor $\alpha^{-1}\left(j_{a^{\prime}}\left(C^{\prime}\right)\right)$. It follows from [10, Lemma 7.1] that $\alpha^{-1}\left(j_{a^{\prime}}\left(C^{\prime}\right)\right)=T_{x}^{-1}\left(j_{a}(C)\right)$ for some $x \in J_{C}(S)$. This can be rewritten as $\left(\alpha^{-1} \circ j_{a^{\prime}}\right)\left(C^{\prime}\right)=\left(T_{-x} \circ j_{a}\right)(C)$. Note here that $\alpha^{-1} \circ j_{a^{\prime}}: C^{\prime} \longrightarrow$ J_{C} and $T_{-x} \circ j_{a}: C \longrightarrow J_{C}$ are closed immersions, and we have an equality of the associated closed subschemes of $J_{C^{\prime}}$. This means that there exists an isomorphism of schemes $\varphi: C \longrightarrow C^{\prime}$ such that $\alpha^{-1} \circ j_{a^{\prime}} \circ \varphi=T_{-x} \circ j_{a}$, i.e. $j_{a^{\prime}} \circ \varphi=\alpha \circ T_{-x} \circ j_{a}$. A short calculation shows that φ is in fact an S-isomorphism.

The equality $j_{a^{\prime}} \circ \varphi=\alpha \circ T_{-x} \circ j_{a}$ immediately implies that $\varphi_{*}=\alpha$.

Lemma 1.6 Let $C / S, C^{\prime} / S$ be two genus 2 curves. Then the map $\operatorname{Iso}_{S}\left(C, C^{\prime}\right) \longrightarrow \operatorname{Iso}_{S}\left(\left(J_{C}, \lambda_{C}\right),\left(J_{C^{\prime}}, \lambda_{C^{\prime}}\right)\right), \varphi \mapsto \varphi_{*}$ is surjective.

Proof. Let $W_{C / S}, W_{C^{\prime} / S}$ be the Weierstraß divisors of C / S and C^{\prime} / S respectively and let $W:=W_{C / S} \times_{S} W_{C^{\prime} / S}$. Now the canonical map $W \longrightarrow$ S is faithfully flat and quasi compact (in fact it is finite flat of degree 36), and C_{W} / W as well as C_{W}^{\prime} / W have sections (namely the sections induced by $\left.W_{C / S} \hookrightarrow C, W_{C^{\prime} / S} \hookrightarrow C^{\prime}\right)$. It follows by the above lemma that Isow $_{W}\left(C_{W}, C_{W}^{\prime}\right) \longrightarrow \operatorname{Iso}_{W}\left(\left(J_{C_{W}}, \lambda_{C_{W}}\right),\left(J_{C_{W}}, \lambda_{C_{W}}\right)\right), \varphi \mapsto \varphi_{*}$ is surjective. The claim now follows with Lemma 1.3.

The above considerations easily imply:

Corollary 1.7 Let $C / S, C^{\prime} / S$ be hyperelliptic curves, let $\varphi: C \longrightarrow C^{\prime}$ be an S-isomorphism. Then

$$
\sigma_{C^{\prime} / S} \circ \varphi=\varphi \circ \sigma_{C / S}
$$

Proof. We can assume that S is connected. Let $s \in S$. It is well known that $\left(\sigma_{C_{s}}\right)_{*}=[-1],\left(\sigma_{C_{s}^{\prime}}\right)_{*}=[-1]$. This implies $\left(\sigma_{C_{s}^{\prime}}\right)_{*} \circ\left(\varphi_{s}\right)_{*}=-\left(\varphi_{s}\right)_{*}=$ $\left(\varphi_{s}\right)_{*} \circ\left(\sigma_{C_{s}}\right)_{*}$. The result now follows with Lemma 1.2.

We also have:
Lemma 1.8 Let C / S be a hyperelliptic curve. Then $\left(\sigma_{C / S}\right)_{*}=[-1]$.
Proof. This follows from the well known result over the spectrum of a field by Lemma 1.4.

2 Review of the "basic construction"

Theorem 1 can be used to prove a Torelli theorem for normalized genus 2 covers of elliptic curves which in turn can be used to simplify some proofs in [10] as well as to strengthen the results for the case that the covering degree N is 2 . This is done in the first half of this section. Throughout the section, we freely use results from [10].

Let S be a scheme over $\mathbb{Z}[1 / 2]$. The following definition is analogous to the "notation" in Section 3 of [10].

Definition 2.1 Let E / S be an elliptic curve. Let $f_{1}: C_{1} \longrightarrow E, f_{2}: C_{2} \longrightarrow$ E be two genus 2 covers. Then an isomorphism between f_{1} and f_{2} is an S-isomorphism $\varphi: C_{1} \longrightarrow C_{2}$ such that $f_{1}=f_{2} \circ \varphi$.

The following lemma shows (in particular) that given two isomorphic genus 2 covers of the same elliptic curve, one of the covers is normalized if and only if the other is.

Lemma 2.2 Let $E_{1} / S, E_{2} / S$ be an elliptic curves, let $C_{1} / S, C_{2} / S$ be genus 2 curves. Let $f: C_{2} \longrightarrow E_{2}$ be a normalized cover, let $\varphi: C_{1} \longrightarrow C_{2}$ be an S-isomorphism and $\alpha: E_{2} \longrightarrow E_{1}$ an isomorphism of elliptic curves. Then $\alpha \circ f \circ \varphi: C_{1} \longrightarrow E_{1}$ is normalized.

Proof. We can assume that S is connected. Obviously, $\alpha \circ f \circ \varphi$ is minimal. By Corollary 1.7 and (1), we have $\alpha \circ f \circ \varphi \circ \sigma_{C_{1} / S}=\alpha \circ f \circ \sigma_{C_{2} / S} \circ \varphi=$ $\alpha \circ[-1]_{E_{2} / S} \circ f \circ \varphi=[-1]_{E_{1} / S} \circ \alpha \circ f \circ \varphi: C_{1} \longrightarrow E_{1}$. By [10, Theorem 3.2 (c)] we have to show that for some geometric point $s \in S,(\alpha \circ f \circ \varphi)_{s}$: $\left(C_{1}\right)_{s} \longrightarrow\left(E_{1}\right)_{s}$ is normalized. ${ }^{2}$

[^1]Let $s \in S$. It is well-known that $\varphi_{s}^{-1}\left(W_{\left(C_{2}\right)_{s}}\right)=W_{\left(C_{1}\right)_{s}}$. We have $\#\left(f^{-1}\left(\left[0_{\left(E_{2}\right)_{s}}\right]\right) \cap W_{\left(C_{2}\right)_{s}}\right)=\#\left(\varphi_{s}^{-1}\left(f^{-1}\left(\alpha^{-1}\left(\left[0_{\left(E_{1}\right)_{s}}\right]\right)\right) \cap W_{\left(C_{2}\right)_{s}}\right)\right)=$ $\#\left(\varphi_{s}^{-1}\left(f^{-1}\left(\alpha^{-1}\left(\left[0_{\left(E_{1}\right)_{s}}\right]\right)\right)\right) \cap \varphi_{s}^{-1}\left(W_{\left(C_{2}\right)_{s}}\right)\right)=\#\left(\left(\alpha \circ f \circ \varphi_{s}\right)^{-1}\left(\left[0_{\left(E_{1}\right)_{s}}\right]\right) \cap\right.$ $W_{\left.\left(C_{1}\right)_{s}\right)}$. Now with [10, Corollary 2.3], the result follows.

The following proposition can be viewed as a Torelli theorem for normalized genus 2 covers of (relative) elliptic curves.

Proposition 2.3 Let E / S be an elliptic curve, and let $f_{1}: C_{1} \longrightarrow E, f_{2}$: $C_{2} \longrightarrow E$ be two normalized genus 2 covers. Then the bijection $\operatorname{Iso}_{S}\left(C_{1}, C_{2}\right) \longrightarrow \operatorname{Iso}{ }_{S}\left(\left(J_{C_{1}}, \lambda_{C_{1}}\right),\left(J_{C_{2}}, \lambda_{C_{2}}\right)\right), \varphi \mapsto \varphi_{*}$ of Theorem 1 induces a bijection between

- the set of isomorphisms between the normalized genus 2 covers f_{1} and f_{2}
and
- the set of isomorphisms α between the principally polarized abelian varieties $\left(J_{C_{1}}, \lambda_{C_{1}}\right)$ and $\left(J_{C_{2}}, \lambda_{C_{2}}\right)$ satisfying $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*} \circ \alpha$.

Proof. We only have to show the surjectivity.
Let α be an isomorphism between ($J_{C_{1}}, \lambda_{C_{1}}$) and ($J_{C_{2}}, \lambda_{C_{2}}$) satisfying $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*} \circ \alpha: J_{C_{1}} \longrightarrow E$. Let φ be the unique S-isomorphism $C_{1} \longrightarrow C_{2}$ with $\varphi_{*}=\alpha$. We thus have $\left(f_{1}\right)_{*}=\left(f_{2} \circ \varphi\right)_{*}$. By [10, Lemma 7.2], there exists a unique $x \in E(S)$ such that $T_{x} \circ f_{1}=f_{2} \circ \varphi$. As by Lemma 2.2 both f_{1} and $f_{2} \circ \varphi$ are normalized, we have in fact $f_{1}=f_{2} \circ \varphi$.

Remark 2.4 The equality $\left(f_{1}\right)_{*}=\left(f_{2}\right)_{*} \circ \alpha$ in the above proposition can be restated as $\alpha \circ f_{1}^{*}=f_{2}^{*}$; cf. the calculation in the proof of [10, Theorem 2.6].

Remark 2.5 If $\operatorname{deg}\left(f_{1}\right) \geq 3$ (or $\operatorname{deg}\left(f_{2}\right) \geq 3$), there is in fact at most one isomorphism between f_{1} and f_{2}; cf. [10, Proposition 3.3].

Application to the study of the Hurwitz functor

As in [10], let E / K be an elliptic curve over a field of characteristic $\neq 2$ (or more generally over a ring in which 2 is invertible or even a scheme over $\mathbb{Z}[1 / 2])$. As always, we use the notation of [10].

Proposition 2.3 and Remark 2.4 immediately imply that the "Torelli map" $\tau: \mathcal{H}_{E / K, N} \longrightarrow \mathcal{A}_{E / K, N}$ of [10] is a monomorphism for arbitrary $N>1$; cf. [10, Proposition 5.12].

The functor $\Psi: \mathcal{H}_{E / K, N} \longrightarrow \mathcal{X}_{E, N,-1}$ of [10, Corollary 5.13] is thus in fact a monomorphism for arbitrary $N>1$. Furthermore, the functor $\mathcal{H}_{E / K, N} \longrightarrow \mathcal{J}_{E / K, N}$ of [10, Proposition 5.17] is an isomorphism for arbitrary $N>1$, and $\tau: \mathcal{H}_{E / K, N} \longrightarrow \mathcal{A}_{E / K, N}$ is always an open immersion of
functors. This of course shortens the proof of Theorem 1.1. at the end of Section 5 in [10].

It follows that the covers obtained with the "basic construction" ([10, Corollary 5.19]) are always unique up to isomorphism for any $N>1$. For $N \geq 3$, one sees with [10, Proposition 5.4] that given two covers associated to the same anti-isometry $\psi: E[N] \longrightarrow E^{\prime}[N]$, there is a unique isomorphism between them.

Let us again consider genus 2 covers $f: C \longrightarrow E$ of an elliptic curve E / S, where S is a scheme over $\mathbb{Z}[1 / 2]$. The "basic construction" now reads as follows (as always, we use the notations of [10], in particular $E_{f}^{\prime}:=\operatorname{ker}\left(f_{*}\right)$).

Proposition 2.6 (Basic construction) Let $N>1$ be a natural number. Let $E / S, E^{\prime} / S$ be two elliptic curves, and let $\psi: E[N] \longrightarrow E^{\prime}[N]$ be an anti-isometry which is "theta-smooth" (in the sense that the induced principal polarization λ_{J} on $J_{\psi}:=\left(E \times E^{\prime}\right) / \operatorname{Graph}(\psi)$ is theta-smooth $)$. Then there is a normalized genus 2 cover $f: C \longrightarrow E$ of degree N such that $\left(E^{\prime}, \psi\right)$ is equivalent to $\left(E_{f}^{\prime}, \psi_{f}\right)$ (where $\psi_{f}: E[N] \longrightarrow E_{f}^{\prime}[N]$ is the induced anti-isometry). The cover f is unique up to isomorphism (up to unique isomorphism if $N \geq 3$). Moreover, every normalized genus 2 cover of degree N arises in this way.

We now give a more symmetric formulation of the "basic construction". This "symmetric basic construction" has the advantage that it is more rigid than the basic construction for $N=2$.

For this "symmetric basic construction", we fix two elliptic curves E / S, E^{\prime} / S.

Definition 2.7 A symmetric pair (with respect to E / S and E^{\prime} / S) is a triple $\left(C, f, f^{\prime}\right)$, where C / S is a genus 2 curve and $f: C \longrightarrow E, f^{\prime}: C \longrightarrow E^{\prime}$ are minimal covers such that $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$ and $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$. We say that a symmetric pair is normalized if both f and f^{\prime} are normalized. By an isomorphism of two symmetric pairs $\left(C_{1}, f_{1}, f_{1}^{\prime}\right),\left(C_{2}, f_{2}, f_{2}^{\prime}\right)$ we mean an S-isomorphism $\varphi: C_{1} \longrightarrow C_{2}$ such that $f_{1}=f_{2} \circ \varphi$ and $f_{1}^{\prime}=f_{2}^{\prime} \circ \varphi$.

Remark 2.8 It follows from Lemma 2.2 that given two isomorphic symmetric pairs, one of the symmetric pairs is normalized if and only if the other is.

Remark 2.9 If C / S is a genus 2 curve and $f: C \longrightarrow E, f^{\prime}: C \longrightarrow E^{\prime}$ are minimal covers such that $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$, then by dualization, one also has $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$, i.e. $\left(C, f, f^{\prime}\right)$ is a symmetric pair.

Remark 2.10 If $\left(C, f, f^{\prime}\right)$ is a symmetric pair, then E^{\prime} (with $\left(f^{\prime}\right)^{*} \circ \lambda_{E^{\prime}}$: $E^{\prime} \longrightarrow J_{C}$) is (canonically isomorphic to) $\operatorname{ker}\left(f_{*}\right)=E_{f}^{\prime}$. (If E / S is some elliptic curve, we denote the canonical polarization $E \longrightarrow J_{E}=\hat{E}$ by λ_{E}.)

Lemma and Definition 2.11 If $\left(C, f, f^{\prime}\right)$ is a symmetric pair, then the degrees of f and f^{\prime} are equal; this number is called the degree of the symmetric pair.

Proof. Let $N:=\operatorname{deg}(f)$. Then by [10, Theorem $3.2(\mathrm{f})], f^{*}$ also has degree N. By [10, Corollary 5.3] and Remark 2.10, $\left(f^{\prime}\right)^{*} \circ \lambda_{E^{\prime}}: E^{\prime} \hookrightarrow J_{C}$ has also degree N, and it follows again with [10, Theorem 3.2 (f)] that $\operatorname{deg}\left(f^{\prime}\right)=$ $\operatorname{deg}\left(\left(f^{\prime}\right)^{*}\right)=N$.

Lemma 2.12 Let E / S be an elliptic curve, let C / S be a genus 2 curve, and let $f: C \longrightarrow E$ be a minimal cover. Then there exists a unique normalized cover $c_{f}: C \longrightarrow E_{f}^{\prime}$ such that $\left(c_{f}\right)^{*} \circ \lambda_{E_{f}^{\prime}}$ is the canonical immersion $E_{f}^{\prime} \hookrightarrow J_{C} .{ }^{3}$ In particular, if f is normalized, then $\left(C, f, c_{f}\right)$ is a normalized symmetric pair.

Proof. This is a special case of $[10$, Theorem 3.2 (f)].
Proposition 2.13 Let $E / S, E^{\prime} / S$ be two elliptic curves, let $\left(C, f, f^{\prime}\right)$ be a symmetric pair of degree N associated to E / S and E^{\prime} / S. Then there is a unique $\psi: E[N] \xrightarrow{\sim} E^{\prime}[N]$ with $\left(f^{*}\right)_{\mid E[N]}=\left(f^{\prime}\right)^{*} \circ \psi{ }^{4} \quad$ This ψ is an antiisometry. Moreover, ψ only depends on the isomorphism class of $\left(C, f, f^{\prime}\right)$.

Proof. By Remark 2.10, the existence and uniqueness is [10, Proposition 5.2]. The fact that ψ only depends on the isomorphism class of $\left(C, f, f^{\prime}\right)$ is straightforward.

Proposition 2.14 With the notation of the previous proposition, let

$$
\pi:=f^{*} \circ \lambda_{E} \circ \operatorname{pr}+\left(f^{\prime}\right)^{*} \circ \lambda_{E^{\prime}} \circ \mathrm{pr}^{\prime}: E \times_{S} E^{\prime} \longrightarrow J_{C}
$$

where $\mathrm{pr}: E \times_{S} E^{\prime} \longrightarrow E$ and pr: $E \times_{S} E^{\prime} \longrightarrow E^{\prime}$ are the two projections. Then π has kernel Graph $(-\psi)$. The pull-back to the canonical principal polarization of J_{C} under π is N-times the canonical product polarization. In particular, ψ is theta-smooth.

Proof. This is [10, Proposition 5.5].

The following "symmetric basic construction" can be viewed as a converse to Proposition 2.13.

Proposition 2.15 (Symmetric basic construction) Let $N>1$ be a natural number. Let $E / S, E^{\prime} / S$ be two elliptic curves, and let $\psi: E[N] \longrightarrow$ $E^{\prime}[N]$ be an anti-isometry which is theta-smooth. Then there exists a normalized symmetric pair $\left(C, f, f^{\prime}\right)$ with respect to E / S and E^{\prime} / S with $\left(f^{*}\right)_{\mid E[N]}$

[^2]$=\left(f^{\prime}\right)^{*} \circ \psi$. The normalized symmetric pair with these properties is essentially unique, i.e. it is unique up to unique isomorphism.

Proof. Let $N, E / S, E^{\prime} / S$ and $\psi: E[N] \longrightarrow E^{\prime}[N]$ be as in the assertion.
To show the existence, one could use the "basic construction". There is however also the following more direct approach:

Consider the abelian variety $J_{\psi}:=\left(E \times_{S} E^{\prime}\right) / \operatorname{Graph}(-\psi)$. By [10, Proposition 5.7] there exists a unique principal polarization λ_{J} on J_{ψ} whose pull-back to $E \times{ }_{S} E^{\prime}$ via the projection map is N-times the canonical product polarization. By assumption and [10, Proposition 5.14], $\left(J_{\psi}, \lambda_{J}\right)$ is isomorphic to a Jacobian variety of a curve C / S. By [10, Theorem 3.2 $(f)]$ there exist normalized covers $f: C \longrightarrow E$ and $f^{\prime}: C \longrightarrow E^{\prime}$ with $f^{*} \circ \lambda_{E}=h_{\psi},\left(f^{\prime}\right)^{*} \circ \lambda_{E^{\prime}}=h_{\psi}^{\prime}$, where $h_{\psi}: E \longrightarrow J_{\psi}$ and $h_{\psi}^{\prime}: E^{\prime} \longrightarrow J_{\psi}$ are defined by inclusion into $E \times{ }_{S} E^{\prime}$ composed with the projection onto J_{ψ}; cf. [10, Corollary 5.9]. By the exact sequences (28) in [10, Corollary 5.9], the conditions $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$ and $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$ are fulfilled.

We now show the uniqueness. Let $\left(C_{1}, f_{1}, f_{1}^{\prime}\right),\left(C_{2}, f_{2}, f_{2}^{\prime}\right)$ be two normalized symmetric pairs associated to E, E^{\prime} and ψ. We claim that there exists a unique isomorphism $\alpha: J_{C_{1}} \longrightarrow J_{C_{2}}$ of abelian varieties with $\alpha \circ f_{1}^{*}=f_{2}^{*}$ and $\alpha \circ\left(f_{1}^{\prime}\right)^{*}=\left(f_{2}^{\prime}\right)^{*}$.

Let

$$
\begin{array}{ll}
\pi_{1}:=f_{1}^{*} \circ \lambda_{E} \circ \operatorname{pr}+\left(f_{1}^{\prime}\right)^{*} \circ \lambda_{E^{\prime}} \circ \operatorname{pr}^{\prime}: & E \times_{S} E^{\prime} \longrightarrow J_{C_{1} / S}, \\
\pi_{2}:=f_{2}^{*} \circ \lambda_{E} \circ \operatorname{pr}+\left(f_{2}^{\prime}\right)^{*} \circ \lambda_{E^{\prime}} \circ \operatorname{pr}^{\prime}: & E \times_{S} E^{\prime} \longrightarrow J_{C_{2} / S},
\end{array}
$$

where pr : $E \times_{S} E^{\prime} \longrightarrow E$ and $\mathrm{pr}^{\prime}: E \times_{S} E^{\prime} \longrightarrow E^{\prime}$ are the two projections.
The two conditions on α are equivalent to $\alpha \circ \pi_{1}=\pi_{2}: E \times{ }_{S} E^{\prime} \longrightarrow J_{C_{2} / S}$. The assertion follows since by Proposition $2.14 \pi_{1}: E \times_{S} E^{\prime} \longrightarrow J_{C_{1} / S}$ and $\pi_{2}: E \times{ }_{S} E^{\prime} \longrightarrow J_{C_{2} / S}$ both have kernel $\operatorname{Graph}(-\psi)$.

The fact that $f_{1}, f_{1}^{\prime}, f_{2}$ and f_{2}^{\prime} all have degree N implies that the pullbacks of $\lambda_{C_{1}}$ and $\lambda_{C_{2}}$ to $E \times_{S} E^{\prime}$ via π_{1} and π_{2} respectively are N-times the canonical product polarizations. Together with the definition of α, this in turn implies that $\hat{\alpha} \circ \lambda_{C_{2}} \circ \alpha=\lambda_{C_{1}}$, i.e. α preserves the principal polarizations.

Let $\varphi: C_{1} \longrightarrow C_{2}$ be the unique S-isomorphism such that $\varphi_{*}=\alpha$; cf. Theorem 1. By Proposition 2.3 and Remark 2.4, we have $f_{1}=f_{2} \circ \varphi$ and $f_{1}^{\prime}=f_{2}^{\prime} \circ \varphi$. The uniqueness of α implies that $\varphi: C_{1} \longrightarrow C_{2}$ with these two properties is unique.

Remark 2.16 Let $S, E / S, E^{\prime} / S$ and $\psi: E[N] \longrightarrow E^{\prime}[N]$ be as in the "symmetric basic construction" but without the assumption that ψ is thetasmooth. Then by [10, Corollary 5.16] there exists a uniquely determined largest open subscheme U of S such that $\psi_{\mid U}$ is theta-smooth. Now U is the largest open subscheme of S over which a symmetric pair with respect to E_{U} / U and E_{U}^{\prime} / U corresponding to ψ exists; this is obvious from Proposition 2.14 and the very definition of theta-smoothness.

3 Genus 2 covers of degree 2

We now concentrate on the case that the covering degree N is 2 . As above, let S be a scheme over $\mathbb{Z}[1 / 2]$.

In the sequel, by an isomorphism $E[2] \longrightarrow E^{\prime}[2]$, where E / S and E^{\prime} / S are elliptic curves, we always mean an isomorphism of S-group schemes. Note that every such isomorphism is an anti-isogeny. The following proposition is a special case of [9, Theorem 3].

Proposition 3.1 Let $E / S, E^{\prime} / S$ be two elliptic curves, let $\psi: E[2] \longrightarrow$ $E^{\prime}[2]$ be an isomorphism. Then ψ is theta-smooth if and only if for no geometric point s of S, there exists an isomorphism $\alpha: E_{s} \longrightarrow E_{s}^{\prime}$ such that $\alpha_{\mid E_{s}[2]}=\psi_{s}: E_{s}[2] \longrightarrow E_{s}^{\prime}[2]$.

Remark 3.2 Under the conditions of the proposition, let s be a geometric point of S. Assume that E_{s} has j-invariant $\neq 0,1728$. Then if E_{s}^{\prime} is isomorphic to E_{s} (i.e. if the j-invariants of the two curves are equal), there exist exactly two isomorphisms between E_{s} and E_{s}^{\prime}. If α is one of these, $-\alpha$ is the other. This means that the isomorphisms between E_{s} and E_{s}^{\prime} induce a canonical identification of $E_{s}[2]$ and $E_{s}^{\prime}[2]$. Under the above assumption on the j-invariant of E_{s}, the following assertions are thus equivalent.

- There does not exist an isomorphism $\alpha: E_{s} \longrightarrow E_{s}^{\prime}$ such that $\alpha_{\mid E_{s}[2]}=$ $\psi_{s}: E_{s}[2] \longrightarrow E_{s}^{\prime}[2]$.
- $j\left(E_{s}\right) \neq j\left(E_{s}^{\prime}\right)$ or $j\left(E_{s}\right)=j\left(E_{s}^{\prime}\right)$ and, under the canonical identification of $E_{S}[2]$ and $E_{s}^{\prime}[2], \psi_{s} \neq \operatorname{id}_{E_{s}[2]}$.

Proposition 3.3 Let $E / S, E^{\prime} / S$ be two elliptic curves with an isomorphism $\psi: E[2] \longrightarrow E^{\prime}[2]$. Let C / S be a genus 2 curve, and let $\left(C, f, f^{\prime}\right)$ be a normalized symmetric pair for E / S and E^{\prime} / S. Then $\left(f^{*}\right)_{\mid E[2]}=\left(f^{\prime}\right)^{*} \circ \psi$ if and only if $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$.

Proof. Let $E / S, E^{\prime} / S, \psi, C, f$ and f^{\prime} be as in the proposition. We only have to show the equivalence after a faithfully flat base change. We can thus assume that C / S has 6 distinct Weierstraß sections. Now by [10, Theorem $3.2(\mathrm{~d})$], there exists an embedding $j: C \longrightarrow J_{C}$ which satisfies $j \circ \sigma_{C}=$ $[-1] \circ j,\left[0_{J_{C}}\right] \cap j(C)=\emptyset$. This implies in particular that $j\left(W_{C / S}\right) \subset J_{C}[2]^{\#}$, where $J_{C}[2]^{\#}:=J_{C}[2]-\left[0_{J / S}\right]$.

Assume that $\left.f^{*}\right|_{E[2]}=\left(f^{\prime}\right)^{*} \circ \psi$. Then $f_{* \mid J_{C}[2]}=\lambda_{E}^{-1} \circ\left(f^{*}\right) \circ\left(\lambda_{C}\right)_{\mid J_{C}[2]}=$ $\lambda_{E}^{-1} \circ \hat{\psi} \circ\left(\left(f^{\prime}\right)^{*}\right) \circ\left(\lambda_{C}\right)_{\mid J_{C}[2]}=\psi^{-1} \circ f_{* \mid J_{C}[2]}^{\prime}: J_{C}[2] \longrightarrow E[2]$. (We make the usual identification of $E[2]$ with $\hat{E}[2]$ and $J_{C}[2]$ with $\hat{J}_{C}[2]$. .) Composition with $j_{\mid W_{C / S}}$ implies $f_{\mid W_{C / S}}=\psi^{-1} \circ\left(f^{\prime}\right)_{\mid W_{C / S}}$, i.e. $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$.

Let us now assume that $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$. We want to show that $\psi \circ f_{* \mid J_{C}[2]^{\#}}=f_{* \mid J_{C}[2]^{\#}}^{\prime}$. As $J_{C}[2]=\left[0_{J / S}\right] \dot{\cup} J_{C}[2]^{\#}$ and clearly $\psi \circ f_{*\left[0_{J / S}\right]}=f_{*\left[0_{J / S}\right]}^{\prime}$, this implies that $\psi \circ f_{* \mid J_{C}[2]}=f_{* \mid J_{C}[2]}^{\prime}: J_{C}[2] \longrightarrow E[2]$. The equality $\left(f^{*}\right)_{\mid E[2]}=\left(\left(f^{\prime}\right)^{*}\right)_{E[2]} \circ \psi$ then follows by "dualization" similarly to above.

By the fact that $\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair, we have $\operatorname{ker}\left(f_{*}\right)[2]=\operatorname{ker}\left(f_{*}^{\prime}\right)[2]$, i.e. $\operatorname{ker}\left(f_{* \mid J_{C}[2]}\right)=\operatorname{ker}\left(f_{* \mid J_{C}[2]}^{\prime}\right]$. Let these (equal) kernels be denoted by K. Then $f_{* \mid J_{C}[2]}$ and $f_{* \mid J_{C}[2]}^{\prime}$ induce homomorphisms $\overline{f_{* \mid J_{C}[2]}}: J_{C}[2] / K \longrightarrow E[2], \overline{f_{* \mid J_{C}[2]}^{\prime}}: J_{C}[2] / K \longrightarrow E^{\prime}[2]$. Since these homomorphisms are surjective and $J_{C}[2] / K, E[2]$ and $E^{\prime}[2]$ are étale over S of degree 4, they are in fact isomorphisms. Let $p: J_{C}[2] \longrightarrow J_{C}[2] / K$ be the canonical projection. Then the equality $\psi \circ f_{* \mid J[2]}=f_{* \mid J[2]}^{\prime}$ implies

$$
\psi \circ \overline{f_{* \mid J_{C}[2]}} \circ p \circ j_{\mid W_{C / S}}=\overline{f_{* \mid J_{C}[2]}^{\prime}} \circ p \circ j_{\mid W_{C / S}}
$$

We claim that $p \circ j_{\mid W_{C / S}}: W_{C / S} \longrightarrow\left(J_{C}[2] / K\right)^{\#}$ is an étale cover.
We have $f_{\mid W_{C / S}}=\overline{f_{* \mid J_{C}[2]}} \circ p \circ j_{\mid W_{C / S}}$. Since $f_{\mid W_{C / S}}$ induces an étale cover $W_{C / S} \longrightarrow E[2]^{\#}$ of degree 2 and $\overline{f_{* \mid J_{C}[2]}}$ is an isomorphism, $p \circ j_{\mid W_{C / S}}$: $W_{C / S} \longrightarrow\left(J_{C}[2] / K\right)^{\#}$ is also an étale cover of degree 2.

As any surjective étale S-cover is an epimorphism in the category of S schemes (see [5, Exposé V, Proposition 3.6.]), we can thus derive that $\psi \circ$
 $J_{C}[2]^{\#} \longrightarrow E[2]^{\#}$.

With the above two propositions, the "symmetric basic construction" can be restated as follows:

Proposition 3.4 (Symmetric basic construction for degree 2 second form) Let S be a scheme over $\mathbb{Z}[1 / 2]$. Let $E / S, E^{\prime} / S$ be two elliptic curves, and let $\psi: E[2] \longrightarrow E^{\prime}[2]$ be an isomorphism such that for no geometric point s of S, there exists an isomorphism $\alpha: E_{s} \longrightarrow E_{s}^{\prime}$ such that $\alpha_{\left[E_{s}[2]\right.}=\psi_{s}$. Then there exists an essentially unique (i.e. unique up to unique isomorphism) normalized symmetric pair (C, f, f^{\prime}) with $\psi \circ f_{\mid W_{C / S}}=$ $\left(f^{\prime}\right)_{\mid W_{C / S}}$.

Let $E / S, E^{\prime} / S$ be elliptic curves, and let C / S be a genus 2 curve. Let $\left(C, f, f^{\prime}\right)$ be a normalized symmetric pair with respect to E / S and E^{\prime} / S.

Our goal is now to show that there exists a \mathbb{P}^{1}-bundle \mathbf{P} and covers of degree $2 E \longrightarrow \mathbf{P}, E^{\prime} \longrightarrow \mathbf{P}$ such that the induced morphism $C \longrightarrow E \times_{\mathbf{P}} E^{\prime}$ induces birational morphisms on the fibers over S.

Let $\tilde{q}: C \longrightarrow S, q: E \longrightarrow S, q^{\prime}: E^{\prime} \longrightarrow S$ be the structure morphisms. Let $\omega_{C / S}:=\tilde{q}_{*} \Omega_{C / S}$. By Riemann-Roch and "cohomology and base change" ($[18, \S 5$, Corollary 3] and $[7$, Theorem 12.11]), this is a locally free sheaf of
rank 2 , and the canonical S-morphism $\tilde{\rho}: C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right)$ is a cover of degree 2.

By the same general theorems $q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)$ is a locally free sheaf of rank 2 , and the canonical S-morphism $\rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ is a cover of degree 2. Analogously, the canonical S-morphism $\rho^{\prime}: E^{\prime} \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ is a cover of degree 2 .

Note that $\left(C, f,[-1] \circ f^{\prime}\right),\left(C,[-1] \circ f, f^{\prime}\right)$ and $\left(C,[-1] \circ f,[-1] \circ f^{\prime}\right)$ are also normalized symmetric pairs with respect to E / S and E^{\prime} / S corresponding to ψ.

There thus exist unique S-automorphisms $\tau, \tau^{\prime}, \tilde{\tau}: C \longrightarrow C$ with

$$
\begin{aligned}
f \circ \tau & =f,
\end{aligned} \begin{aligned}
f^{\prime} \circ \tau & =[-1] \circ f^{\prime}, \\
f \circ \tau^{\prime} & =[-1] \circ f, \\
f \circ & f^{\prime} \circ \tau^{\prime}
\end{aligned}=f^{\prime}, \quad\left[-\tilde{\tau}=[-1] \circ f, \quad f^{\prime} \circ \tilde{\tau}=[-1] \circ f^{\prime} .\right.
$$

Obviously, $\tau \circ \tau^{\prime}=\tilde{\tau}=\tau^{\prime} \circ \tau$ and $\tilde{\tau}=\sigma_{C / S}$.
The automorphisms τ and τ^{\prime} are automorphisms of the covers f and f^{\prime} respectively, and $\sigma_{C / S}$ is an automorphism of the cover $C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right)$. We need the following lemma which is a special case of [14, Lemma 5.6].

Lemma 3.5 Let X and Y be connected schemes over $\mathbb{Z}[1 / 2]$. Let $h: X \longrightarrow$ Y be a finite and flat morphism of degree 2. Then the automorphism group of h is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$, and h is a geometric quotient of X under $\operatorname{Aut}(h)$.

As a special case of this lemma we obtain: The cover $f: C \longrightarrow E$ is a geometric quotient of C under $\langle\tau\rangle$, and $f^{\prime}: C \longrightarrow E^{\prime}$ is a geometric quotient of C under $\left\langle\tau^{\prime}\right\rangle$.

Furthermore, the canonical morphism $\tilde{\rho}: C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right)$ is a geometric quotient of C under $\left\langle\sigma_{C / S}\right\rangle$ (see also [10, Lemma 3.1] and [14, Theorem $5.5])$, and the canonical morphisms $\rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right), \rho^{\prime}: E^{\prime} \longrightarrow$ $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ are geometric quotients of E and E^{\prime} under $\langle[-1]\rangle$ respectively.

By (1), the automorphism $[-1]$ on E is induced by $\sigma_{C / S}$, and this implies that $\rho \circ f: C \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ is a geometric quotient of C under $\left\langle\tau, \tau^{\prime}\right\rangle=\left\langle\tau, \sigma_{C / S}\right\rangle$. Similarly, $\rho^{\prime} \circ f^{\prime}: C \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ is also a geometric quotient of C under $\left\langle\tau, \tau^{\prime}\right\rangle$. Keeping in mind that a geometric quotient is also a categorial quotient (see [5, Exposé V, Proposition 1.3.]), this implies the following theorem.

Theorem 2 Let S be a scheme over $\mathbb{Z}[1 / 2]$. Let C / S be a genus 2 curve, $E / S, E^{\prime} / S$ elliptic curves and $f: C \longrightarrow E, f^{\prime}: C \longrightarrow E^{\prime}$ normalized covers of degree 2 with $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$, $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$. Let q : $C \longrightarrow S, q: E \longrightarrow S, q^{\prime}: E^{\prime} \longrightarrow S$ be the structure morphisms, and let $\tilde{\rho}: C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right), \rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right), \rho^{\prime}: E^{\prime} \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ be the canonical covers of degree 2.

Then f and f^{\prime} have unique automorphisms τ and τ^{\prime} respectively which operate non-trivially on all connected components of C. These automorphisms have order 2 and satisfy $\tau \circ \tau^{\prime}=\tau^{\prime} \circ \tau=\sigma_{C / S}$. The cover $f: C \longrightarrow E$ is a geometric quotient of C under $\langle\tau\rangle, f^{\prime}: C \longrightarrow E^{\prime}$ is a geometric quotient of C under $\left\langle\tau^{\prime}\right\rangle$, and $\tilde{\rho}: C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right)$ is a geometric quotient of C under $\left\langle\sigma_{C / S}\right\rangle$.

Now $\rho \circ f: C \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ as well as $\rho^{\prime} \circ f^{\prime}: C \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ are geometric quotients of C under $\left\langle\tau, \tau^{\prime}\right\rangle$. We thus have a unique isomorphism $\gamma: \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right) \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ such that $\gamma \circ \rho \circ f=\rho^{\prime} \circ f$, and we have unique morphisms $\bar{f}: \mathbb{P}\left(\omega_{C / S}\right) \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ and $\overline{f^{\prime}}$: $\mathbb{P}\left(\omega_{C / S}\right) \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ such that $\rho \circ f=\bar{f} \circ \tilde{\rho}$ and $\rho^{\prime} \circ f^{\prime}=\overline{f^{\prime}} \circ \tilde{\rho}$. All these morphisms are S-morphisms, and $\bar{f}, \overline{f^{\prime}}$ are covers of degree 2.

Corollary 3.6 Let S be a scheme over $\mathbb{Z}[1 / 2]$, let C / S be a genus 2 curve, let E / S be an elliptic curve, and let $f: C \longrightarrow E$ be a normalized cover of degree 2. Let $\mathbf{P}:=E /\langle[-1]\rangle=\mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$, let $\rho: E \longrightarrow \mathbf{P}$ be the canonical cover of degree 2, and let $c_{f}: C \longrightarrow E_{f}^{\prime}$ be the normalized cover of degree 2 associated to f by Lemma 2.12. Then there exists a unique S morphism $\phi^{\prime}: E_{f}^{\prime} \longrightarrow \mathbf{P}$ such that $\rho \circ f=\phi^{\prime} \circ c_{f}$. The morphism ϕ^{\prime} is a cover of degree 2.

The induced morphism $C \longrightarrow E \times_{\mathbf{P}} E_{f}^{\prime}$ induces birational morphisms on the fibers over S.

Remark 3.7 Let S be a scheme over $\mathbb{Z}[1 / 2]$, let C / S be a genus 2 curve, let E / S be an elliptic curve and let $f: C \longrightarrow E$ be a normalized cover of some degree N. Let $\tilde{\rho}: C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right), \rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ be as above. Then just as in the case that the covering degree is 2 , there exists a unique morphism $\bar{f}: \mathbb{P}\left(\omega_{C / S}\right) \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ with

$$
\bar{f} \circ \tilde{\rho}=\rho \circ f,
$$

and this morphism is a cover of degree N.
Indeed, the normalized cover f satisfies $f \circ \sigma_{C / S}=[-1] \circ f$ by (1). This implies that $\rho \circ f \circ \sigma_{C / S}=\rho \circ f$. Note that as above $\tilde{\rho}$ is a geometric quotient of C under $\sigma_{C / S}$. The existence and uniqueness of \bar{f} is now immediate, and it is straightforward to check that f is in fact a cover of degree N.

Let us assume that we are in the situation of the theorem.
The canonical maps $\rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ and $\rho^{\prime}: E^{\prime} \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ are ramified at $E[2], E^{\prime}[2]$ respectively - these are étale covers of S of degree 4 -, and the canonical map $C \longrightarrow \mathbb{P}\left(\omega_{C / S}\right)$ is ramified at $W_{C / S}$ - this is an étale cover of S of degree 6 . (We use that S is a scheme over $\mathbb{Z}[1 / 2]$).

Let P and P^{\prime} be the relative effective Cartier divisors of $\mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right) / S$ and $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right) / S$ associated to the sections $\rho \circ 0_{E}: S \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ and $\rho^{\prime} \circ 0_{E^{\prime}}: S \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$.

The maps $\rho_{\mid E[2] \#}: E[2]^{\#} \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ and $\left(\rho^{\prime}\right)_{\mid E^{\prime}[2]{ }^{\#}}: E^{\prime}[2]^{\#} \longrightarrow$ $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ are closed immersions. Let D and D^{\prime} be the corresponding relative effective Cartier divisors - they are étale covers of degree 3 of S.

Using the theorem, the isomorphism $\psi: E[2] \xrightarrow{\sim} E^{\prime}[2]$ corresponding to the isomorphism class of $\left(C, f, f^{\prime}\right)$ can be determined in yet another way.

Proposition 3.8 Let $\psi: E[2] \stackrel{\sim}{\longrightarrow} E^{\prime}[2]$. Then $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$ if and only if $\rho^{\prime} \circ \psi_{\mid E[2] \#}=\gamma \circ \rho_{\mid E[2] \#}$.

Proof. The equality $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$ implies $\rho^{\prime} \circ \psi \circ f_{\mid W_{C / S}}=$ $\rho^{\prime} \circ\left(f^{\prime}\right)_{\mid W_{C / S}}$, and this implies $\rho^{\prime} \circ \psi \circ f_{\mid W_{C / S}}=\gamma \circ \rho \circ f_{\mid W_{C / S}}$. As $f_{\mid W_{C / S}}$: $W_{C / S} \longrightarrow E[2]^{\#}$ is an étale cover of degree 2 (thus in particular an epimorphism in the category of étale S-covers) and $\rho^{\prime} \circ \psi_{\mid E[2] \#}: E[2]^{\#} \longrightarrow D^{\prime}$ as well as $\gamma \circ \rho_{\mid E[2] \#}: E[2]^{\#} \longrightarrow D^{\prime}$ are isomorphisms, we can conclude that $\rho^{\prime} \circ \psi_{\mid E[2]}=\gamma \circ \rho_{\mid E[2] \#}$.

Now let $\psi: E[2] \longrightarrow E^{\prime}[2]$ satisfy $\rho^{\prime} \circ \psi_{\mid E[2]^{\#}}=\gamma \circ \rho_{\mid E[2] \#}$. We have $\rho^{\prime} \circ \psi \circ f_{\mid W_{C / S}}=\gamma \circ \rho \circ f_{\mid W_{C / S}}=\rho^{\prime} \circ\left(f^{\prime}\right)_{\mid W_{C / S}}$. As $\left(\rho^{\prime}\right)_{\mid E[2] \#}{ }^{\#}: E^{\prime}[2]^{\#} \longrightarrow D^{\prime}$ is an isomorphism, this implies that $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$.

Let V be the Kähler different divisor of f. By definition, this is the closed subscheme of C which is defined by the zero'th Fitting ideal $F^{0}\left(\Omega_{C / E}\right)$ of $\Omega_{C / E}=\Omega_{f}$. (For further information on Kähler different divisors see [13], [14] or the appendix of [8].)

In Section 6 of [14], the Weierstraß divisor of a relative hyperelliptic curve H / S has been defined as the Kähler different divisor of the canonical map $H \longrightarrow \mathbb{P}\left(\omega_{H / S}\right)$. Now the discussion starting at the exact sequence (6.2) until the end of section 6 in [14] carries over to our case (the only difference being that V has degree 2 and not $2 g+2$ over S). We thus have:

Lemma 3.9

- $F^{0}\left(\Omega_{C / E}\right)=\operatorname{Ann}\left(\Omega_{C / E}\right)$.
- V is a relative effective Cartier divisor of degree 2 over S.
- V is the fixed point subscheme of C under the action of τ, i.e. V is the largest subscheme of C with the property that τ restricts to V and $\tau_{\mid V}=\mathrm{id}_{V}$.
- V is étale over S.

Proof. The first assertion, which is written in [14, Remark 6.4], follows from the exact sequence (6.2) in [14] and the definition of the Kähler different divisor. The second, third and forth assertion can be adopted from the text below (6.2) in [14], [14, Proposition 6.5] and [14, Proposition 6.8] respectively.

Lemma 3.10 If S is reduced, then V is equal to the ramification locus of f endowed with the reduced induced scheme structure.

Proof. By the first assertion the previous lemma, the support of V is equal to the set of points where f is ramified, i.e. to the ramification locus of f. Now since S is reduced and by the previous lemma V is étale over S, V is reduced (see [5, Exposé I, Proposition 9.2.]), and so the assertion follows.

Proposition 3.11 Under the conditions of Theorem 2, let $\iota: V \hookrightarrow C$ be the canonical closed immersion. Then $\left(f^{\prime}\right)_{\mid V}=f^{\prime} \circ \iota: V \longrightarrow E^{\prime}$ is the zero-element in the abelian group $E^{\prime}(V)$.

Proof. Let $p: V \longrightarrow S$ be the canonical morphism. We have to show that $f^{\prime} \circ \iota=0_{E^{\prime}} \circ p$.

The fact that $\tau_{\mid V}=\operatorname{id}_{V}$ implies that $[-1] \circ f^{\prime} \circ \iota=f^{\prime} \circ \tau \circ \iota=f^{\prime} \circ \iota$. As $E^{\prime}[2]$ is the largest closed subscheme X of E^{\prime} with $[-1]_{\mid X}=\mathrm{id}_{X}$, this implies that $f^{\prime} \circ \iota$ factors through $E^{\prime}[2]$.

Let us now assume that S is connected and let s be some geometric point of S. As $E^{\prime}[2]$ and V are étale over S, the map $E^{\prime}[2](V) \longrightarrow E_{s}^{\prime}[2]\left(V_{s}\right)$ is injective. We thus only have to check that $\left(f^{\prime} \circ \iota\right)_{s}=0_{E_{s}^{\prime}} \circ p_{s}: V_{s} \longrightarrow E_{s}^{\prime}$, i.e. $f_{s}^{\prime}\left(V_{s}\right)=\left[0_{E_{s}^{\prime}}\right]$. This is equation (4) in Appendix A.

Remark 3.12 Essentially the same statement as in the above proposition holds if V is replaced by the ramification locus endowed with the reduced induced scheme structure (independently of S being reduced). This follows immediately from the proposition because by definition the canonical immersion of this scheme into C factors through V.

Remark 3.13 Let $\Delta:=f_{*}(V)$ be the discriminant divisor of f. Then Δ is a relative effective Cartier divisor of E / S of degree 2. As the geometric fibers over S consist of exactly 2 topological points, it is also étale of degree 2 over S. In particular, the map $f_{\mid V}: V \longrightarrow \Delta$ is an isomorphism. Furthermore, if S is reduced, Δ is equal to the branch locus of f endowed with the reduced induced scheme structure. This can be proved analogously to Lemma 3.10.

4 A reformulation of Theorem 2

Together with the "symmetric basic construction" (Proposition 2.15) and Proposition 3.8, a consequence of Theorem 2 is:

Let S be a scheme over $\mathbb{Z}[1 / 2]$, and let $E / S, E^{\prime} / S$ be two elliptic curves and $\psi: E[2] \longrightarrow E^{\prime}[2]$ a theta-smooth isomorphism. Then with the notations of the previous sections, there is an S-isomorphism $\gamma: \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right) \xrightarrow{\sim}$ $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ such that $\rho^{\prime} \circ \psi_{\mid E[2] \#}=\gamma \circ \rho_{\mid E[2] \#}$ holds.

The existence of this isomorphism, which is canonically attached to $\left(E, E^{\prime}, \psi\right)$ maybe at first sight seems a little bit a mystery. In fact, it can easily be derived from a general statement on \mathbb{P}^{1}-bundles:

Let $E / S, E^{\prime} / S$ be two elliptic curves with an isomorphism $\psi: E[2] \longrightarrow E^{\prime}[2]$ (not necessarily theta-smooth). Let $\rho: E \longrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right), \rho^{\prime}: E^{\prime} \longrightarrow$ $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ be the corresponding canonical projections. The maps ρ and ρ^{\prime} are ramified at $E[2]$ and $E^{\prime}[2]$ respectively. In particular, $\rho_{\mid E[2] \#}$: $E[2]^{\#} \hookrightarrow \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$ and $\left(\rho^{\prime}\right)_{\mid E^{\prime}[2] \#}: E^{\prime}[2]^{\#} \hookrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ are closed immersions. Let D and D^{\prime} be the corresponding closed subschemes - these are étale covers of S of degree 3 . (We use that S is a scheme over $\mathbb{Z}[1 / 2]$.) Now $\psi_{\mid E[2] \#}: E[2]^{\#} \xrightarrow{\sim} E^{\prime}[2]^{\#}$ induces a canonical isomorphism between D and D^{\prime}. With Proposition B.4, we conclude:

Proposition 4.1 There is a unique S-isomorphism $\gamma: \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right) \xrightarrow{\sim}$ $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ such that the equality $\rho^{\prime} \circ \psi_{\mid E[2] \#}=\gamma \circ \rho_{\mid E[2] \#}$ holds.

Let us again assume that $\psi: E[2] \longrightarrow E^{\prime}[2]$ is theta-smooth, and let γ be as in the proposition. Then we have the following alternative criterion for a triple $\left(C, f, f^{\prime}\right)$ to be a normalized symmetric pair.

Proposition 4.2 Let C / S be a genus 2 curve, let $f: C \longrightarrow E, f^{\prime}: C \longrightarrow$ E^{\prime} be covers of degree 2. Then $\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair corresponding to ψ if and only if $\gamma \circ \rho \circ f=\rho^{\prime} \circ f^{\prime}$.

Proof. By Theorem 2, Proposition 3.8 and the uniqueness of γ, it is immediate that a normalized symmetric pair $\left(C, f, f^{\prime}\right)$ corresponding to γ satisfies $\gamma \circ \rho \circ f=\rho^{\prime} \circ f^{\prime}: C \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$.

Let this equality be satisfied. If S is the spectrum of an algebraically closed field, the statement is proved in Lemma A.2.

In the general case, we can assume that S is connected. As a morphism between (relative) elliptic curves over a connected base is either an isogeny or zero and we already know that $f_{*} \circ\left(f^{\prime}\right)^{*}$ is zero fiberwise, $f_{*} \circ\left(f^{\prime}\right)^{*}$ is zero. As f^{\prime} is obviously minimal, this implies that $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$. Similarly, we have $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$.

We now want to show that f is normalized. Let τ be the unique nontrivial automorphism of f which exists by Lemma 3.5 , similarly let τ^{\prime} be the unique non-trivial automorphism of f^{\prime}. Then $\tau \circ \tau^{\prime}=\sigma_{C / S}, \tau^{\prime} \circ \tau=\sigma_{C / S}$.
(It is not difficult to check these equalities fiberwise, and this suffices by [10, Lemma 3.1].)

We claim that $[-1] \circ f=f \circ \sigma_{C / S}$. Indeed, as $\tau \circ \tau^{\prime}=\tau^{\prime} \circ \tau, \tau^{\prime}$ induces an automorphism on E over $\mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right)$. By looking at the fibers, one sees that this is not the trivial automorphism. It follows that the induced automorphism is $[-1]$. We thus have $[-1] \circ f=f \circ \sigma_{C / S}$.

By [10, Theorem 3.2] to show that f is normalized it now suffices to check that for some $s \in S, f_{s}: C_{s} \longrightarrow E_{s}$ is normalized. For this statement, we again refer to Lemma A.2.

The proof that f^{\prime} is normalized is analogous.
We have $\rho^{\prime} \circ \psi \circ f_{\mid W_{C / S}}=\gamma \circ \rho \circ f_{\mid W_{C / S}}=\rho^{\prime} \circ\left(f^{\prime}\right)_{\mid W_{C / S}} . \operatorname{As}\left(\rho^{\prime}\right)_{\mid E^{\prime}[2] \#}$: $E^{\prime}[2]^{\#} \longrightarrow D$ is an isomorphism, it follows that that $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$.

By Proposition 3.3, $\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair corresponding to ψ.

With the help of Lemma A.1, we can give a third form of the "symmetric basic construction" for $N=2$.

Proposition 4.3 (Symmetric basic construction for degree 2 third form) Let S be a scheme over $\mathbb{Z}[1 / 2]$, let E / S, E^{\prime} / S be two elliptic curves, and let $\psi: E[2] \longrightarrow E^{\prime}[2]$ be an isomorphism. Let $\rho: E \longrightarrow$ $\mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right), \rho^{\prime}: E^{\prime} \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ be the canonical covers of degree 2. Let $\gamma: \mathbb{P}\left(q_{*} \mathcal{L}\left(2\left[0_{E}\right]\right)\right) \longrightarrow \mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)$ be the unique S-isomorphism which satisfies $\rho^{\prime} \circ \psi_{[E[2] \#}=\gamma \circ \rho_{\mid E[2] \#}$. Assume the following two equivalent conditions are satisfied:

- For no geometric point s of S, there exists an isomorphism $\alpha: E_{s} \longrightarrow$ E_{s}^{\prime} with $\alpha_{\left[E_{s}[2]\right.}=\psi_{s}$.
- The images of the sections $\rho^{\prime} \circ 0_{E^{\prime}}$ and $\gamma \circ \rho \circ 0_{E}$ of $\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right) \longrightarrow S$ are disjoint.

Then there exists a curve C / S and covers $f: C \longrightarrow E, f^{\prime}: C \longrightarrow E^{\prime}$ of degree 2 such that $\gamma \circ \rho \circ f=f^{\prime} \circ \rho^{\prime}$. Any such triple $\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair corresponding to ψ, and it is unique up to unique isomorphism.

If one assumes that the base-scheme is regular, one can give a more concrete description of the curve C and the covers f, f^{\prime} (as well as to prove its existence in an alternative way).

Proposition 4.4 Under the conditions of the above proposition, let S be regular. Then $E \times_{\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)} E^{\prime}$ (where the product is with respect to $\gamma \circ \rho$ and $\left.\rho^{\prime}\right)$ is reduced with total quotient ring $\kappa(E) \times_{\kappa\left(\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)\right)} \kappa\left(E^{\prime}\right)$. The normalization C of $E \times_{\mathbb{P}\left(q_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)\right)} E^{\prime}$ is a genus 2 curve, and the induced
maps $f: C \longrightarrow E, f^{\prime}: C \longrightarrow E^{\prime}$ are degree 2 covers which satisfy $\gamma \circ \rho \circ f=$ $f^{\prime} \circ \rho^{\prime}$.

Proof. As S is regular, it is also locally integral, in particular, its connected components are integral; see [15, Theorem 14.3], [6, I (4.5.6)]. We can thus assume that S is integral.

Let $\mathcal{F}:=\rho_{*}^{\prime} \mathcal{L}\left(2\left[0_{E^{\prime}}\right]\right)$. We first show that $E \times_{\mathbb{P}(\mathcal{F})} E^{\prime}$ is integral and that its function field is $\kappa(E) \otimes_{\kappa(\mathbb{P}(\mathcal{F}))} \kappa\left(E^{\prime}\right)$.

The ring $\kappa(E) \otimes_{\kappa(\mathbb{P}(\mathcal{F}))} \kappa\left(E^{\prime}\right)$ is a field because by assumption, the generic points of $\rho^{\prime}\left(\left[0_{E^{\prime}}\right]\right)$ and $\gamma\left(\rho\left(\left[0_{E}\right]\right)\right)$ are distinct.

Let A be the coordinate ring of an affine open part U of $\mathbb{P}(\mathcal{F})$, let B and C the corresponding rings of the preimages of U in E and E^{\prime}. We claim that the canonical map $B \otimes_{A} C \longrightarrow \kappa(B) \otimes_{\kappa(A)} \kappa(C) \simeq \kappa(E) \times_{\kappa(\mathbb{P}(\mathcal{F}))} \kappa\left(E^{\prime}\right)$ is injective.

We have $\kappa(B) \otimes_{\kappa(A)} \kappa(C) \simeq\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A)$ as B and C are finite over A. We thus have to show that the map $A \otimes_{B} C \longrightarrow\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A)$ is injective. Now, $A \longrightarrow \kappa(A)$ is injective and $B \otimes_{A} C$ is flat over A (C is flat over A, thus $C \otimes_{A} B$ is flat over B, and as B is flat over $A, B \otimes_{A} C$ is flat over A). This implies that $B \otimes_{A} C \longrightarrow\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A)$ is injective. It follows that $B \otimes_{A} C$ is reduced.

We have seen that $B \otimes_{A} C$ is contained in the field $\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A)$, and obviously $\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A)$ is contained in the function field of $B \otimes_{A} C$. This implies that $\left(B \otimes_{A} C\right) \otimes_{A} \kappa(A) \simeq \kappa(E) \otimes_{\kappa(\mathbb{P}(\mathcal{F}))} \kappa\left(E^{\prime}\right)$ is the function field of $B \otimes_{A} C$.

We have seen that $E \times_{\mathbb{P}(\mathcal{F})} E^{\prime}$ is integral (in particular reduced) and its function field is indeed $\kappa(E) \otimes_{\kappa(\mathbb{P}(\mathcal{F}))} \kappa\left(E^{\prime}\right)$.

We now show the statements on C.
The field $\kappa(S)$ is algebraically closed in $\kappa(E) \times_{\mathbb{P}(\kappa(\mathcal{F}))} \kappa\left(E^{\prime}\right)$, and as S is regular, S is normal; see [15, Theorem 19.4]. This implies with [6, III (4.3.12)] that the geometric fibers of C over S are connected.

Let W be the different divisor of $E \times_{\mathbb{P}(\mathcal{F})} E^{\prime} \longrightarrow \mathbb{P}(\mathcal{F})$. Then $\left(E \times_{\mathbb{P}^{1}}\right.$ $\left.E^{\prime}\right)-W$ is normal, because the domain of an étale morphism mapping to a normal scheme is normal; see [5, Exposé I, Corollaire 9.11.]. It follows that $C \longrightarrow E \times_{\mathbb{P}(\mathcal{F})} E^{\prime}$ induces an isomorphism between the complement of the preimage of W in C and $\left(E \times_{\mathbb{P}(\mathcal{F})} E^{\prime}\right)-W$. Since the restriction of W to the fibers over S is zero-dimensional, it follows that $C \longrightarrow E \times_{\mathbb{P}(\mathcal{F})} E^{\prime}$ induces birational morphisms on the fibers over S.

By Abhyankar's Lemma ([5, Exposé X, Lemme 3.6]) and "purity of the branch locus" ([5, Exposé X , Théorème 3.1.]), f is étale outside $\left.\left(f^{\prime}\right)^{-1}\left(\left[0_{E^{\prime}}\right]\right)\right)$ and f^{\prime} is étale outside $f^{-1}\left(\left[0_{E}\right]\right)$. Let x be a topological point of C. As by assumption $\gamma\left(\rho\left(\left[0_{E}\right]\right)\right)$ and $\rho^{\prime}\left(\left[0_{E^{\prime}}\right]\right)$ are disjoint, $x \notin\left(f^{\prime}\right)^{-1}\left(\left[0_{E^{\prime}}\right]\right)$ or $x \notin f^{-1}\left(\left[0_{E}\right]\right)$. In the first case, the morphism f is étale at x, and since E is smooth over S, C over S is smooth at x. In the second case, the argument
is analogous and the conclusion is the same. It follows that C is smooth over S.

Let s be a geometric point of S. We have already shown that C_{s} is connected, and by what we have just seen, C_{s} is non-singular. We have to show that the genus of this curve is 2 . We already know that $C_{s} \longrightarrow$ $E_{s} \times_{\mathbb{P}_{\kappa(s)}^{1}} E_{s}^{\prime}$ is birational. It follows that $C_{s} \longrightarrow E_{s}$ has degree 2. Since $\gamma\left(\rho\left(\left[0_{E}\right]\right)\right) \neq \rho^{\prime}\left(\left[0_{E^{\prime}}\right]\right)$, the morphism $C_{s} \longrightarrow E_{s}$ is ramified exactly at the preimages of $\rho^{\prime}\left(\left[0_{E^{\prime}}\right]\right)$ in E_{s} (here we use again Abhyankar's Lemma). This preimage consists of exactly two closed points. It follows that the genus of C_{s} is 2 .

A Genus 2 covers of degree 2 over fields

In this part of the appendix, we provide some results on genus 2 covers of elliptic curves of degree 2 over algebraically closed fields of characteristic $\neq 2$.

In the following, let $\bar{\kappa}$ be an algebraically closed field of characteristic $\neq 2$. Let $E / \bar{\kappa}, E^{\prime} / \bar{\kappa}$ be two elliptic curves, $\psi: E[2] \xrightarrow{\sim} E^{\prime}[2]$. Let $\phi: E \longrightarrow$ $\mathbb{P}_{\bar{\kappa}}^{1}, \phi^{\prime}: E^{\prime} \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ be two covers of degree 2 which are ramified at $E[2]$ and $E^{\prime}[2]$ respectively such that $\phi^{\prime} \circ \psi_{\mid E[2] \#}=\phi_{\mid E[2] \#}$. Let C be the normalization of $E \times_{\mathbb{P}_{\frac{1}{\kappa}}} E^{\prime}$.

Let $P:=\phi\left(\left[0_{E}\right]\right), P^{\prime}:=\phi^{\prime}\left(\left[0_{E^{\prime}}\right]\right)$. By assumption, $\rho\left(E[2]^{\#}\right)=\rho^{\prime}\left(E^{\prime}[2]^{\#}\right)$; let this divisor be denoted by D.

Lemma A. 1 The following assertions are equivalent.
a) The points P and P^{\prime} are distinct.
b) $E \times_{\mathbb{P}_{\frac{1}{\kappa}}} E^{\prime}$ is irreducible.
c) $C / \bar{\kappa}$ is a genus 2 curve.
d) The two covers $\phi: E \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ and $\phi^{\prime}: E^{\prime} \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ are not isomorphic (i.e. there does not exist $a \bar{\kappa}$-isomorphism $\alpha: E \longrightarrow E^{\prime}$ with $\phi=\phi^{\prime} \circ \alpha$).
e) There does not exist an isomorphism of elliptic curves $\alpha: E \longrightarrow E^{\prime}$ with $\alpha_{\mid E[2]}=\psi$.

Proof. Keeping in mind that C is regular, i.e. smooth over $\operatorname{Spec}(\bar{\kappa})$, the equivalence of the first four assertions is not difficult to show.

Assume that the covers are isomorphic via $\alpha: E \longrightarrow E^{\prime}$. Then in particular $P=P^{\prime}$. We have the isomorphisms $\phi_{\mid E[2]}: E[2] \longrightarrow D \cup P$, $\left(\phi^{\prime}\right)_{\mid E[2]}: E[2] \longrightarrow D \cup P$. It follows that $\alpha_{\mid E[2]}=\left(\phi_{\mid D \cup P}^{\prime}\right)^{-1} \circ \phi_{E[2]}=\psi$. In particular, α is an isomorphism of elliptic curves.

On the other hand, assume that there exists an isomorphism of elliptic curves $\alpha: E \longrightarrow E^{\prime}$ with $\alpha_{\mid E[2]}=\psi$. Then $\phi_{\mid E[2]}=\phi^{\prime} \circ \alpha_{\mid E[2]}$. It is wellknown that this implies that $\phi=\phi^{\prime} \circ \alpha$.

Let us assume that the equivalent conditions of the lemma are satisfied. Then we have a commutative diagram

where all morphisms are covers of degree 2 . We have that

- $\bar{f}: \mathbb{P}_{\bar{\kappa}}^{1} \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ is branched exactly at the set $P \cup P^{\prime}$,
- $\tilde{\phi}: C \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ is branched exactly at the set $\bar{f}^{-1}(D)$,
- $f: C \longrightarrow E$ is branched exactly at the set $\phi^{-1}\left(P^{\prime}\right)$,
- $f^{\prime}: C \longrightarrow E^{\prime}$ is branched exactly at the set $\left(\phi^{\prime}\right)^{-1}\left(P^{\prime}\right)$.

These statements can for example easily be proved with Abhyankar's Lemma.
Let $V \subset C$ be the ramification locus of f. Then $(\phi \circ f)(V)=P^{\prime}$, i.e. $\left(\phi^{\prime} \circ f^{\prime}\right)(V)=P^{\prime}$, and this implies

$$
\begin{equation*}
f^{\prime}(V)=\left[0_{E^{\prime}}\right] \tag{4}
\end{equation*}
$$

Lemma A. $2\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair with respect to E and E^{\prime} corresponding to ψ.

Proof. It is not difficult to show that we have a commutative diagram

This implies that $f_{*} \circ\left(f^{\prime}\right)^{*}$ is zero. As f^{\prime} is obviously minimal, this implies that $\operatorname{ker}\left(f_{*}\right)=\operatorname{Im}\left(\left(f^{\prime}\right)^{*}\right)$. Similarly, we have $\operatorname{ker}\left(f_{*}^{\prime}\right)=\operatorname{Im}\left(f^{*}\right)$.

By the above statements on the branching of \bar{f} and $\tilde{\phi}$, over each point of D, there lie exactly 2 Weierstraß points. This implies that over each point of $E[2]^{\#}$ there also lie exactly 2 Weierstraß points. It follows that f is normalized.

The proof that f^{\prime} is normalized is analogous.
We have $\phi^{\prime} \circ \psi \circ f_{\mid W_{C / S}}=\phi \circ f_{\mid W_{C / S}}=\phi^{\prime} \circ\left(f^{\prime}\right)_{\mid W_{C / S}}$. As $\left(\phi^{\prime}\right)_{\mid E[2]]^{\#}}$: $E^{\prime}[2]^{\#} \longrightarrow D$ is an isomorphism, we can conclude that $\psi \circ f_{\mid W_{C / S}}=\left(f^{\prime}\right)_{\mid W_{C / S}}$.

By Proposition 3.3, it follows that $\left(C, f, f^{\prime}\right)$ is a normalized symmetric pair corresponding to ψ.

Remark A. 3 By Proposition 3.1, the last assertion of Lemma A. 1 is equivalent to ψ being irreducible (i.e. theta-smooth).

Lemmata A. 1 and A. 2 can however also be used to prove Proposition 3.1 (i.e. [9 , Theorem 3] in the special case that the covering degree is 2). By the definition of Theta-smoothness, we can thereby restrict ourselves to the case that $S=\bar{k}$.

If ψ satisfies the conditions of Lemma A.1, then by Lemma A. 2 and Proposition 2.14, ψ is irreducible.

On the other hand, if ψ is irreducible and $\left(C, f, f^{\prime}\right)$ is the corresponding symmetric pair, then we have degree 2 covers $\phi: E \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}, E^{\prime} \longrightarrow \mathbb{P}_{\bar{\kappa}}^{1}$ which ramify at $E[2]$ and $E^{\prime}[2]$ respectively with $\phi \circ f=\phi^{\prime} \circ f^{\prime}$ (for example by Theorem 2). Consequently, the equivalent conditions of Lemma A. 1 hold.

Also Remark 2.16 can - for covering degree 2 - be derived from Lemma A.2: The open subset U of S where P and P^{\prime} do not meet obviously has the correct properties.

B Some results on projective space bundles

In the following, let S be an arbitrary (not necessarily locally noetherian) scheme. Let $\mathbb{P}_{S}^{1}:=\operatorname{Proj}\left(\mathbb{Z}\left[X_{0}, X_{1}\right]\right) \times_{\text {Spec }(\mathbb{Z})} S$. Then $\mathcal{O}(1)$ on \mathbb{P}_{S}^{1} has two canonical global generators, X_{0} and X_{1}.

Lemma B. 1 Let $s_{1}, s_{2}, s_{3}, s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}: S \longrightarrow \mathbb{P}_{S}^{1}$ be six sections of $\mathbb{P}_{S}^{1} \longrightarrow S$ such that the images of s_{1}, s_{2}, s_{3} as well as of $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}$ are pairwise disjoint. Then there exists a unique S-automorphism β of \mathbb{P}_{S}^{1} with $\beta \circ s_{i}=s_{i}^{\prime}$ for $i=1,2,3$.

Proof. By considering an open affine covering, we can restrict ourselves to the case that S is affine. The general case then follows by the uniqueness of α.

Each of the s_{i}, s_{i}^{\prime} is given by an invertible sheaf with two global sections which generate it; cf. [7, II, Theorem 7.1.]. Let $U=\operatorname{Spec}(A)$ be an affine open subset such that all these sheaves are trivial. We are going to show the result for $\left(s_{i}\right)_{\mid U},\left(s_{i}^{\prime}\right)_{\mid U}$ over U. Again the result in the lemma then follows
by the uniqueness of α on U via the consideration of an open affine covering. Let us denote $\left(s_{i}\right)_{\mid U}$ by $s_{i},\left(s_{i}^{\prime}\right)_{\mid U}$ by s_{i}^{\prime}.

If $\beta: \mathbb{P}_{A}^{1} \longrightarrow \mathbb{P}_{A}^{1}$ is an automorphism, then $\beta^{*}(\mathcal{O}(1)) \approx \mathcal{O}(1) \otimes p^{*}(\mathcal{L})$, where $p: \mathbb{P}_{A}^{1} \longrightarrow \operatorname{Spec}(A)$ is the structure morphism and \mathcal{L} is an invertible sheaf on $\operatorname{Spec}(A)$; see $[17,0 . \S 5 \mathrm{~b})]$.

Let us assume that $\beta \in \operatorname{Aut}_{A}\left(\mathbb{P}_{A}^{1}\right)$ satisfies $\beta \circ s_{i}=s_{i}^{\prime}$ for some i, and let \mathcal{L} be as above. Then $\mathcal{L}=\left(s_{i}\right)^{*} p^{*}(\mathcal{L})=\left(s_{i}\right)^{*} \beta^{*}(\mathcal{O}(1))=\left(s_{i}^{\prime}\right)^{*}(\mathcal{O}(1))=\mathcal{O}_{\operatorname{Spec}(A)}$ by the above assumption on A.

We can thus restrict ourselves to automorphisms β with $\beta^{*}(\mathcal{O}(1)) \approx$ $\mathcal{O}(1)$. Fixing an isomorphism of $\beta^{*}(\mathcal{O}(1))$ with $\mathcal{O}(1), \beta^{*} X_{0}$ and $\beta^{*} X_{1}$ define two global sections of $\mathcal{O}(1)$. Thus β corresponds to two global section of $\mathcal{O}(1)$ which are unique up to multiplication by an element of A^{*}. Such elements can be written as $a X_{0}+b X_{1}, c X_{0}+d X_{1}(a, b, c, d \in A)$ such that the matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is invertible. The matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is thereby unique up to multiplication by an element of A^{*}.

By assumption on U, any of the sections s_{i}, s_{i}^{\prime} is given by a tuple of two elements of A which generate the unit ideal. Furthermore, each of these tuples is unique up to multiplication by an element of A^{*}. We can thus uniquely represent any of the s_{i}, s_{i}^{\prime} by an element in A^{2} / A^{*}.

Let $(f, g) \in A^{2} / A^{*}$ be such an element corresponding to s_{i}. Then $\beta \circ s_{i}$ is given by $(f a+g b, f c+g d) \in A^{2} / A^{*}$, i.e. it is given by the usual application of $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ on (f, g) from the right.

Note that the assumption on the images of the s_{i} and s_{i}^{\prime} is equivalent to the condition that for all $t \in S$, the restrictions of s_{1}, s_{2}, s_{3} to the fiber over t as well as the restrictions of the $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}$ are distinct. This in turn is equivalent to the condition that for all prime ideals P of A, the tuples (f, g) as above stay distinct in $(A / P)^{2} /(A / P)^{*}$.

Now the result of this lemma follows from the following lemma which for convenience - we formulate with the usual left operation.

We introduce the following notation: For $v \in A^{2}$, we write \tilde{v} for the reduction of v modulo A^{*}.

Lemma B. 2 Let $\binom{a_{i}}{b_{i}},\binom{a_{i}^{\prime}}{b_{i}^{\prime}} \in A^{2}$ for $i=1,2,3$ be given such that for all prime ideals P of A, the $\binom{a_{i}}{b_{i}}$ for $i=1,2,3$ as well as the $\binom{a_{i}^{\prime}}{b_{i}^{\prime}}$ for $i=1,2,3$ define pairwise distinct elements in $(A / P)^{2} /(A / P)^{*}$. Then there exists an invertible matrix $B \in M_{2 \times 2}(A)$, unique up to multiplication by an element of A^{*}, such that $B \overline{\binom{a_{i}}{b_{i}}}=\widehat{\binom{a_{i}^{\prime}}{b_{i}^{\prime}}} \in A^{2} / A^{*}$.

Proof. We show the existence first.
We only have to show the existence for $\widetilde{\binom{a_{1}^{\prime}}{b_{1}^{\prime}}}=\widetilde{\binom{1}{0}}, \widetilde{\binom{a_{2}^{\prime}}{b_{2}^{\prime}}}=$ $\widetilde{\binom{0}{1}}, \widetilde{\binom{a_{3}^{\prime}}{a_{3}^{\prime}}}=\widetilde{\binom{1}{1}}$.

We claim that the matrix $M:=\left(\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right) \in M_{2 \times 2}(A)$ is invertible. Let d be the determinant of this matrix. By assumption, for all prime ideals P of A, the reduction of d modulo P is non-zero. It follows that d does not lie in any prime ideal, thus it is a unit (as otherwise it would lie in a maximal ideal).

Now M^{-1} maps $\binom{a_{1}}{b_{1}}$ to $\binom{1}{0}$ and $\binom{a_{2}}{b_{2}}$ to $\binom{0}{1}$. Let $\binom{a}{b}$ be the image of $\binom{a_{3}}{b_{3}}$. The assumption remains valid for the images of $\binom{a_{i}}{b_{i}}$ under M^{-1}, and it says that a and b are not divisible by any prime ideal, i.e. they are units. The invertible matrix $M^{\prime}:=\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & b^{-1}\end{array}\right)$ fixes $\widetilde{\binom{1}{0}}$ and $\widetilde{\binom{0}{1}}$ and maps $\binom{a}{b}$ to $\binom{1}{1}$, so $B:=M^{\prime} M^{-1}$ has the desired properties.

Given what we have already shown, for the uniqueness it suffices to remark that only matrixes of the form $a I\left(a \in A^{*}\right)$ fix $\widetilde{\binom{1}{0}}, \widetilde{\binom{0}{1}}$ and $\widetilde{\binom{1}{1}}$.

Lemma B. 3 Let D, D^{\prime} be two subschemes of \mathbb{P}_{S}^{1} such that $D \longrightarrow S, D^{\prime} \longrightarrow$ S are étale covers of degree 3 , let $\eta: D \longrightarrow D^{\prime}$ be an S-isomorphism. Then there exists a unique S-automorphism of \mathbb{P}_{S}^{1} such that $\alpha_{\mid D}=\eta$.

Proof. As $D \longrightarrow S$ is an étale cover, there exists a Galois cover $T \longrightarrow S$ such that $D_{T}=D \times{ }_{S} T \simeq T \cup T \cup T$ (isomorphism over T); cf. [5, Exposé $\mathrm{V}, 4 \mathrm{~g})$].

Let $t_{1}, t_{2}, t_{3}: T \longrightarrow D_{T}$ be the three immersions. Then for any $\alpha \in \mathbb{P}_{T}^{1}$, the condition $\alpha_{\mid D_{T}}=\eta_{T}$ is equivalent to $\alpha \circ t_{i}=\eta_{T} \circ t_{i}$ for $i=1,2,3$.

It follows from Lemma B. 1 that there exists a unique automorphism α of \mathbb{P}_{T}^{1} such that $\alpha_{D_{T}}=\eta_{T}$.

This implies by Galois descent that there exists a unique automorphism α of \mathbb{P}_{S}^{1} with $\alpha_{\mid D}=\eta$.

Proposition B. 4 Let $\mathbf{P}, \mathbf{P}^{\prime}$ be two \mathbb{P}^{1}-bundles over S. Let D be a subscheme of \mathbf{P}, D^{\prime} a subscheme of \mathbf{P}^{\prime} such that $D \longrightarrow S$ and $D^{\prime} \longrightarrow S$ are étale covers of degree 3. Let $\eta: D \longrightarrow D^{\prime}$ be an S-isomorphism. Then there exists a unique S-isomorphism $\alpha: \mathbf{P} \longrightarrow \mathbf{P}^{\prime}$ such that $\alpha_{\mid D}=\eta$.

In particular, if \mathbf{P} has three sections over S which do not meet, it is S-isomorphic to \mathbb{P}_{S}^{1}.

Proof. If \mathbf{P} and \mathbf{P}^{\prime} are trivial bundles (i.e. S-isomorphic to \mathbb{P}_{S}^{1}), the result follows immediately from the previous lemma. The general case follows from the uniqueness of α by a glueing argument.

Remark B. 5 The subscheme D of \mathbf{P} in the proposition is in fact a relative effective Cartier divisor of \mathbf{P}. This follows from [16, Corollary 3.9].

References

[1] S. Bosch, W. Lütkebohmert, and M. Raynaud. Néron Models. SpringerVerlag, 1980.
[2] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Etudes Sci. Publ. Math., pages 75-109, 1969.
[3] C. Diem and G. Frey. Non-constant genus 2 curves with pro-Galois covers. To appear.
[4] G. Frey and E. Kani. Curves of genus 2 covering elliptic curves and an arithmetical application. In Arithmetic Algebraic Geometry (Texel Conf., 1989), volume 89 of Prog. Math., pages 153-176, Boston, 1991. Birkhäuser.
[5] A. Grothendieck. Revêtements étales et groupe fondamental (SGA I), volume 1960/61 of Séminaire de Géométrie Algébrique. Institut des Hautes Études Scientifiques, Paris.
[6] A. Grothendieck with J. Dieudonné. Eléments de Géométrie Algébrique (I-IV). ch. I: Springer-Verlag, Berlin, 1971; ch. II-IV: Publ. Math. Inst. Hautes Etud. Sci. 8,11, 17, 20,24, 28, 32, 1961-68.
[7] R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977.
[8] E. Kani. The number of genus 2 covers of an elliptic curve. To appear.
[9] E. Kani. The number of curves of genus two with elliptic differentials. J. reine angew. Math., 485:93-121, 1997.
[10] E. Kani. Hurwitz spaces of genus 2 covers of an elliptic curve. Collect. Math., 54(1):1-51, 2003.
[11] A. Krazer. Lehrbuch der Thetafunktionen. Chelsea Publishing Company, 1970. Reprint of the 1903 edition.
[12] R. Kuhn. Curves of genus 2 with split Jacobian. Trans. Am. Math. Soc., 307:41-49, 1988.
[13] E. Kunz. Kähler Differentials. Vieweg, Wiesbaden, 1986.
[14] K. Lønsted and S. Kleiman. Basics on families of hyperelliptic curves. Compos. Math., 38:83-111, 1979.
[15] H. Matsumura. Commutative ring theory. Cambidge University Press, Cambridge, UK, 1986.
[16] J. Milne. Jacobian varieties. In G. Cornell and J. Silverman, editors, Arithmetic Geometry, pages 167-212. Springer-Verlag, 1986.
[17] D. Mumford. Geometric Invariant Theory. Springer-Verlag, 1965.
[18] D. Mumford. Abelian Varieties. Tata Institute for Fundamental Research, 1970.

Universität Leipzig, Fakultät für Mathematik und Informatik, Augustusplatz 10, 04109 Leipzig, Germany.
email: diem@math.uni-leipzig.de

[^0]: ${ }^{1}$ There are misprints in the definitions in $[10$, Section 2$]$ and $[10$, Section 3$]$.

[^1]: ${ }^{2}$ In $[10$, Theorem 3.2 (c)], the condition that S be connected should be inserted.

[^2]: ${ }^{3}$ In [10, Corollary 5.13], $\left(c_{f}\right)^{*} \circ \lambda_{E_{f}^{\prime}}$ is denoted by $\left(f^{\prime}\right)^{*}$.
 ${ }^{4}$ Note that just as in $[10]$ we tacitly identify $E[N]$ with $J_{E}[N]$.

