
The second closed geodesic on the complex

projective plane ∗

Hans-Bert Rademacher

Abstract

We show the existence of at least two geometrically distinct closed
geodesics on a complex projective plane with a bumpy and non-reversible
Finsler metric
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1 Introduction

On a compact and simply-connected manifold M with a non-reversible

Finsler metric there always exists a closed geodesic. There are non-reversible

Finsler metrics on compact rank one symmetric spaces carrying only finitely

many (geometrically distinct) closed geodesics, the geometry of this so-called

Katok examples is explained in [Zi]. To prove the existence of several ge-

ometrically distinct closed geodesics one can consider bumpy metrics. For

a bumpy metric all closed geodesics are non-degenerate, i.e. there are no

non-trivial and periodic Jacobi fields along a closed geodesic. In this case

the energy functional on the free loop space is a Morse function with non-

degenerate critical S1-orbits. In [Ra1, ch.4] the author has shown that on

the 2-sphere with a bumpy metric there are at least two closed geodesics.

Recently Bangert and Long proved in [BL] that for every non-reversible

Finsler metric on S2 there are two geometrically distinct closed geodesics.
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Independently Duan and Long [DL] and the author [Ra3] showed that on

an n-dimensional sphere with a bumpy non-reversible Finsler metric there

are at least two geometrically distinct closed geodesic for all n > 2. A recent

survey on existence results for closed geodesics on Finsler manifolds is [Lo].

In this short note we show that one can obtain a similar result for manifolds

of the rational homotopy type of the complex projective plane CP 2.

Theorem. Let M be a compact and simply-connected manifold of the ra-

tional homotopy type of the complex projective plane CP 2 carrying a bumpy

and non-reversible Finsler metric. Then there are at least two geometrically

distinct closed geodesics.

It is likely that two is not the optimal number, the Katok examples on CP 2

carry six closed geodesics. Existence results for closed geodesics for metrics

with positive flag curvature are given in [Ra3].

2 The Proof

We assume that the manifold M satisfies the assumptions of the Theorem

and we assume that there is only a single closed geodesic c. Hence there is

a prime closed geodesic c : S1 → M such that any other closed geodesic

is geometrically equivalent to c. In other words any closed geodesic c̃ is up

to the choice of a starting point of the form c̃ = cm for some m ≥ 1, here

cm(t) = c(mt) is the m-th iterate of the prime closed geodesic c. Let

vi := #{m ≥ 1; ind(cm) = i ≡ ind(c) (mod 2)} . (1)

If γ = γc ∈ {±1/2,±1} is defined by γ > 0 if and only if ind(c) is even and

|γ| = 1/2 if and only if ind(c2)− ind(c) is odd then we can also express the

number vi of homologically visible critical points of index i as follows:

vi = #{m ≥ 1; ind(cm) = i and mγ ∈ Z}.

Then the Morse inequalities are

vi = bi + qi + qi−1 (2)

for a sequence qi of non-negative integers, cf. [Ra1, (2.3)]. Here bi =

bi
(
ΛCP 2/S1,Λ0CP 2;Q

)
are the rational Betti numbers of the quotient

ΛCP 2/S1 of the free loop space ΛCP 2 of the complex projective plane CP 2

with respect to the canonical S1 action. These Betti numbers are determined
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in [Ra1, (2.6)]:

bi =


1 ; i = 1
2 ; i = 3
3 ; i = 2k + 5 ; k ≥ 0
0 ; i = 2k ; k ≥ 0

(3)

Therefore the topological invariant B(CP 2) = B(2, 2) introduced in [Ra1,

(2.1)] satisfies:

B(2, 2) = lim
k→∞

k∑
i=0

(−1)kbk = −3

2
. (4)

Equation 2 implies that vi > 0 only if i is odd. Therefore the sequence qi
vanishes identically, i.e. for all i ≥ 0 :

vi = bi . (5)

The average index

α = αc = lim
m→∞

ind(cm)

m

satisfies

α =
2

3
|γ| ∈

{
1

3
,
2

3

}
, (6)

cf. [Ra1, Thm. 31] and Equation 4. The sequence ind(cm) can be expressed

by Bott’s formula in terms of a function I = Ic : S1 = {z ∈ C; |z| = 1} →
Z≥0 as follows:

ind(cm) =
∑
zm=1

I(z) . (7)

with the following properties:

(a) I(z) = I(z) .

(b) The function I is locally constant with the possible exception at points

z belonging to the set Spec(Pc) of eigenvalues of the linearized Poincaré

mapping.

(c) Let F be a bumpy metric and let 0 = t0 < t1 < t2 < . . . < tl < tl+1 =

1/2 be the Poincaré exponents. Hence the set of eigenvalues z with

|z| = 1, Im(z) > 0 is given by
{
exp

(
2π

√
−1 t1

)
. . . , exp

(
2π

√
−1 tl

)}
for some l ∈ {0, 1, 2, 3} and the numbers tj are irrational.
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(d) With the help of the function Ic we get the following expression for

the average index. Let I1 = Ic(0) = Ic(exp(2πit)); t ∈ [0, t1) and for

j ∈ {1, 2, . . . , l − 1} : Ij := Ic (exp (2πit)) ; t ∈ (tj−1, tj) and Il+1 :=

Ic(−1) = Ic (exp (2πit)) ; t ∈ (tl, 1/2]. Hence{
Ic (exp(z)) |z ∈ S1 − Spec(Pc)

}
= {I1, I2, . . . , Il+1} .

Then Bott’s formula Equation 7 implies

αc =

∫ 1

0
Ic (exp (2πit)) dt = 2 I1t1 + 2

l−1∑
j=1

Ij (tj − tj−1) + Il (1− 2tl)

(8)

(e) The total splitting number S = Sc of a closed geodesic on an 4-

dimensional manifold satisfies

S =

l∑
j=1

|Ij − Ij+1| ≤ 3 . (9)

We define the function e : [0, 1/2] → C, e(a) = exp
(
2π

√
−1 a

)
. Now we

determine the values I(e(p/q)) for q = 1, 2, . . . until we obtain with the help

of Bott’s formula 7 a contradiction to Equation 5 derived from the Morse

inequalities. We divide the proof into the following steps:

Claim 1. I(e(0)) = I(0) = ind(c) = 1 ; ind(cm) ≥ 2 for all m ≥ 2.

Proof. Since ind(cm) ≥ ind(c) for all m ≥ 1 we conclude from Equation 5

and Equation 3 that

I(1) = I(e(0)) = I1 = 1. (10)

Since v1 = b1 = 1 we conclude that ind(cm) ≥ 2 for all m ≥ 2.

Claim 2. I(e(1/2)) = I(−1) = 2 ; ind(c2) = 3 ; γ = −1 ; α = 2/3 ; t2 − t1 >

1/6 ; tl > 1/3

Proof. Since b1 = v1 = 1 it also follows that ind(cm) > 1 for all m > 1. Since

α ∈ (0, 1) by Equation 6 we conclude from Equation 9 and Equation 8 that

I(e(1/2)) ≤ 2 which implies: ind(c2) ∈ {2, 3} . If γ = −1/2 then ind(c2) is

even, i.e. ind(c2) = 2 resp. I(e(1/2)) = 1. Since S ≤ 3 it follows in this case

that max{I1, . . . , Il} = 1, i.e.

ind(c3) = 1 + 2I(e(1/3)) = 3. (11)
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On the other hand Equation 6 implies α = 1/3, therefore l = 2 and I1 =

1, I2 = 0, I3 = 1. Equation 8 implies t2 − t1 = 1/3 from which we conclude

that 1/3 ∈ (t1, t2) i.e. I(e(1/3)) = 0 contradicting Equation 11. Therefore

γ = −1, I0 = 1, I1 = 0, l ∈ {2, 3} and

I(e(1/2)) = Il = 2 ; ind(c2) = 3 . (12)

Since α = 2/3 we obtain t2 − t1 > 1/6 and tl > 1/3.

Claim 3. I(e(1/3)) = 1 ; ind(c3) = 3 ; ind(cm) ≥ 5 for all m ≥ 4 .

Proof. Since ind(c3) = 1+2I(e(1/3)) ≥ 3 and tl > 1/3 by Claim 2 we obtain

I(e(1/3)) = 1, which implies ind(c3) = 3. Since ind(c2) = ind(c3) = 3 and

v3 = b3 = 2 we conclude ind(cm) ≥ 5 for all m ≥ 4.

Claim 4. I(e(1/4)) = 1 ; ind(c4) = 5 ; t2 < 1/4 ; l = 3 , t3 > 5/12 and

ind(cm) ≥ 5 for all m ≥ 4.

Proof. By Claim 3: ind(c4) = 3 + 2I(e(1/4)) ≥ 5 , i.e. I(e(1/4)) ≥ 1. On

the other hand tl > 1/3 by Claim 2 hence I(e(1/4)) = 1. Since t2− t1 > 1/6

and I(e(t)) = 0 for t ∈ (t1, t2) it follows from I(e(1/4)) = I(e(1/3)) =

1, I(e(1/2)) = 2 that t2 < 1/4 and hence l = 3. But then 2/3 = α >

1/2 + 2(1/2− tl) = 3/2− 2t3 which implies t3 > 5/12.

Claim 5. I(e(1/5)) = I(e(2/5)) = 1 ; ind(c5) = 5 ; t2 < 1/5 ; t1 < 1/30

Proof. ind(c5) = 1 + 2I(e(1/5)) + 2I(e(2/5)) ≥ 5 by Claim 4. Since t3 >

5/12 > 2/5 by Claim 4 we conclude I(e(2/5)) = 1 and hence I(e(1/5)) = 1.

Since t2 − t1 > 1/6 ; t2 < 1/4 we conclude t2 < 1/5. On the other hand

t2 < 1/5 and t2 − t1 > 1/6 implies t1 < 1/30.

Claim 6. I(e(1/6)) = 0 ; ind(c6) = 5 and ind(cm) ≥ 7 for all m ≥ 7

Proof. Since t2 − t1 > 1/6 and I(e(1/5)) = I(e(1/4)) = 1 it follows that

t2 > 1/6 i.e. I(e(1/6)) = 0. Then ind(c6) = 1 + 2I(e(1/6)) + 2I(e(1/3)) +

I(e(1/2)) = 5. Since ind(c4) = ind(c5) = ind(c6) = 5 and b5 = 3 it follows

that ind(cm) ≥ 7 for all m ≥ 7.

Claim 7. I(e(1/7)) = 0 ; I(e(2/7)) = 1 ; I(e(3/7)) = 2 resp. t3 < 3/7.
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Proof. Since t1 < 1/30 and t2 > 1/6 we obtain I(e(1/7)) = 0. Since

t2 < 2/7 < t3 by Claim 4 we conclude I(e(2/7)) = 1. Since ind(c7) =

1 + 2I(e(1/7)) + 2I(e(2/7)) + 2I(e(3/7)) = 3 + 2I(e(3/7)) ≥ 7 by Claim 6

we get I(e(3/7)) = 2 resp. t3 < 3/7.

Now we obtain the final contradiction:

Claim 8. α > 26/35

Proof. Since t2 < 1/5 (Claim 5) and t3 < 3/7 (Claim 7) we conclude α >

3/5 + 1/7 = 26/35 .

But by Claim 2: α = 2/3 . This contradiction finishes the proof of Theo-
rem 1.
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