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Abstract

We show the existence of at least two geometrically distinct closed
geodesics on a complex projective plane with a bumpy and non-reversible
Finsler metric
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1 Introduction

On a compact and simply-connected manifold M with a non-reversible
Finsler metric there always exists a closed geodesic. There are non-reversible
Finsler metrics on compact rank one symmetric spaces carrying only finitely
many (geometrically distinct) closed geodesics, the geometry of this so-called
Katok examples is explained in [Zi]. To prove the existence of several ge-
ometrically distinct closed geodesics one can consider bumpy metrics. For
a bumpy metric all closed geodesics are non-degenerate, i.e. there are no
non-trivial and periodic Jacobi fields along a closed geodesic. In this case
the energy functional on the free loop space is a Morse function with non-
degenerate critical S'-orbits. In [Ral, ch.4] the author has shown that on
the 2-sphere with a bumpy metric there are at least two closed geodesics.
Recently Bangert and Long proved in [BL] that for every non-reversible
Finsler metric on S? there are two geometrically distinct closed geodesics.
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Independently Duan and Long [DL] and the author [Ra3] showed that on
an n-dimensional sphere with a bumpy non-reversible Finsler metric there
are at least two geometrically distinct closed geodesic for all n > 2. A recent
survey on existence results for closed geodesics on Finsler manifolds is [Lo].
In this short note we show that one can obtain a similar result for manifolds
of the rational homotopy type of the complex projective plane CP2.

Theorem. Let M be a compact and simply-connected manifold of the ra-
tional homotopy type of the complex projective plane CP? carrying a bumpy
and non-reversible Finsler metric. Then there are at least two geometrically
distinct closed geodesics.

It is likely that two is not the optimal number, the Katok examples on CP?
carry six closed geodesics. Existence results for closed geodesics for metrics
with positive flag curvature are given in [Ra3].

2 The Proof

We assume that the manifold M satisfies the assumptions of the Theorem
and we assume that there is only a single closed geodesic c. Hence there is
a prime closed geodesic ¢ : S — M such that any other closed geodesic
is geometrically equivalent to c. In other words any closed geodesic ¢ is up
to the choice of a starting point of the form ¢ = ¢™ for some m > 1, here
c¢™(t) = c¢(mt) is the m-th iterate of the prime closed geodesic c. Let

v = #{m > 1;ind(c™) =i =ind(c) (mod 2)}. (1)

If v =7, € {£1/2,%1} is defined by v > 0 if and only if ind(c) is even and
7| = 1/2 if and only if ind(c?) — ind(c) is odd then we can also express the
number v; of homologically visible critical points of index ¢ as follows:

v; = #{m > 1;ind(c™) = i and m~y € Z}.
Then the Morse inequalities are
v; = b + ¢ + gi—1 (2)

for a sequence ¢; of non-negative integers, cf. [Ral, (2.3)]. Here b; =
b; (A(CP2 /Sl,AO(CPQ;Q) are the rational Betti numbers of the quotient
ACP?/S?! of the free loop space ACP? of the complex projective plane CP?
with respect to the canonical S' action. These Betti numbers are determined



in [Ral, (2.6)]:

1 ;i =1
2 ;4 = 3

bi = 3 ;4 = 2+5 ; k>0 (3)
0 ; ¢+ = 2k i k>0

Therefore the topological invariant B(CP?) = B(2,2) introduced in [Ral,
(2.1)] satisfies:
u 3
B(2,2) = li —1)fby, = <. 4
(2,2) kg&;;( )b =~ (4)

Equation 2 implies that v; > 0 only if ¢ is odd. Therefore the sequence ¢;
vanishes identically, i.e. for all ¢+ > 0 :

V; = bl . (5)
The average index
ind(c™)
a=a.= lim
m—00 m
satisfies
— e 2 (©)
“T3ME= 330

cf. [Ral, Thm. 31] and Equation 4. The sequence ind(c¢™) can be expressed
by Bott’s formula in terms of a function I = I.: S = {2 € C;|2| = 1} —
729 as follows:

ind(c™) = Y I(2). (7)

zm=1

with the following properties:

(a) I(z) = 1(z).

(b) The function I is locally constant with the possible exception at points
z belonging to the set Spec(P,) of eigenvalues of the linearized Poincaré
mapping.

(c) Let F' be a bumpy metric and let 0 =ty <t <to <...<t; <tj41 =
1/2 be the Poincaré exponents. Hence the set of eigenvalues z with

2| = 1,Im(2) > 0 is given by {exp (2rv/—=1¢1)...,exp (27v/—11)}
for some [ € {0,1,2,3} and the numbers ¢; are irrational.



(d) With the help of the function I. we get the following expression for
the average index. Let Iy = I.(0) = I.(exp(2wit));t € [0,¢1) and for
J € {1,2, eyl — 1} : Ij = 1. (exp (27Tit)) it € (tj_l,tj) and [jq =
I.(—1) = I. (exp (2mit)) ;t € (¢;,1/2]. Hence

{I.(exp(2)) |z € S* — Spec(P.)} = {1, I, ..., I41}.

Then Bott’s formula Equation 7 implies

1 -1
O = / I. (exp (2mit)) dt =211ty + 2 ij (tj — tj_l) + 1 (1 —2t)
0

j=1
(8)

(e) The total splitting number S = S. of a closed geodesic on an 4-
dimensional manifold satisfies

l
S=> | = Ijsi| <3. (9)

j=1

We define the function e : [0,1/2] — C,e(a) = exp (2mv/~1a). Now we
determine the values I(e(p/q)) for ¢ = 1,2, ... until we obtain with the help
of Bott’s formula 7 a contradiction to Equation 5 derived from the Morse
inequalities. We divide the proof into the following steps:

Claim 1. I(e(0)) = I(0) = ind(c) = 1; ind(c™) > 2 for all m > 2.

Proof. Since ind(c™) > ind(c) for all m > 1 we conclude from Equation 5
and Equation 3 that
I(1) =I(e(0)) =1, = 1. (10)

Since v1 = by = 1 we conclude that ind(¢™) > 2 for all m > 2. O

Claim 2. I(e(1/2)) =1(-1) =2;ind(c?) =3;y=—1;a=2/3;ta —t; >
1/6;t >1/3

Proof. Since by = v; = 1 it also follows that ind(¢™) > 1 for all m > 1. Since
a € (0,1) by Equation 6 we conclude from Equation 9 and Equation 8 that
I(e(1/2)) < 2 which implies: ind(c?) € {2,3}. If v = —1/2 then ind(c?) is
even, i.e. ind(c?) = 2 resp. I(e(1/2)) = 1. Since S < 3 it follows in this case
that max{Ily,...,;} =1, i.e.

ind(c®) =1+ 2I(e(1/3)) = 3. (11)



On the other hand Equation 6 implies o = 1/3, therefore [ = 2 and I; =
1,13 = 0,13 = 1. Equation 8 implies to — ¢; = 1/3 from which we conclude
that 1/3 € (t1,t2) i.e. I(e(1/3)) = 0 contradicting Equation 11. Therefore
v=-1,Ip=1,I =0, € {2,3} and

I(e(1/2)) =I; = 2; ind(c¢®) = 3. (12)
Since aw = 2/3 we obtain to — t; > 1/6 and ¢; > 1/3. O

Claim 3. I(e(1/3)) = 1; ind(¢®) = 3; ind(c™) > 5 for all m > 4.

Proof. Since ind(c?) = 14+21(e(1/3)) > 3 and t; > 1/3 by Claim 2 we obtain
I(e(1/3)) = 1, which implies ind(c?) = 3. Since ind(c?) = ind(c®) = 3 and
v3 = b3 = 2 we conclude ind(c™) > 5 for all m > 4. O

Claim 4. I(e(1/4)) = 1;ind(¢*) = 5;t2 < 1/4;1 = 3,t3 > 5/12 and
ind(c™) > 5 for all m > 4.

Proof. By Claim 3: ind(c*) = 3 + 2I(e(1/4)) > 5, i.e. I(e(1/4)) > 1. On
the other hand ¢; > 1/3 by Claim 2 hence I(e(1/4)) = 1. Since to —t; > 1/6
and I(e(t)) = 0 for t € (t1,t2) it follows from I(e(1/4)) = I(e(1/3)
1,1(e(1/2)) = 2 that to < 1/4 and hence | = 3. But then 2/3 = «
1/2+2(1/2 — ;) = 3/2 — 2t which implies t3 > 5/12.

O vl

Claim 5. I(e(1/5)) = I(e(2/5)) = 1; ind(c®) = 5; ta < 1/5; t; < 1/30

Proof. ind(c®) = 1+ 21(e(1/5)) + 2I(e(2/5)) > 5 by Claim 4. Since t3 >
5/12 > 2/5 by Claim 4 we conclude I(e(2/5)) = 1 and hence I(e(1/5)) = 1.
Since t9 —t1 > 1/6; t3 < 1/4 we conclude t2 < 1/5. On the other hand
tas < 1/5 and to — t; > 1/6 implies t; < 1/30. O

Claim 6. I(e(1/6)) = 0; ind(c®) = 5 and ind(c™) > 7 for allm > 7
Proof. Since ty —t; > 1/6 and I(e(1/5)) = I(e(1/4)) = 1 it follows that
ty > 1/6 i.e. I(e(1/6)) = 0. Then ind(c®) = 1 + 2I(e(1/6)) + 21(e(1/3)) +

I(e(1/2)) = 5. Since ind(c*) = ind(c®) = ind(c®) = 5 and b5 = 3 it follows
that ind(¢™) > 7 for all m > 7. ]

Claim 7. I(e(1/7)) =0; I(e(2/7)) = 1; I(e(3/7)) = 2 resp. t3 < 3/7.



Proof. Since t; < 1/30 and t > 1/6 we obtain I(e(1/7)) = 0. Since
ty < 2/7 < t3 by Claim 4 we conclude I(e(2/7)) = 1. Since ind(c") =
1+ 21(e(1/7)) + 21(e(2/7)) + 21(e(3/7)) = 3 + 2I(e(3/7)) > 7 by Claim 6
we get I(e(3/7)) = 2 resp. t3 < 3/7. O

Now we obtain the final contradiction:

Claim 8. « > 26/35

Proof. Since to < 1/5 (Claim 5) and t3 < 3/7 (Claim 7) we conclude a >
3/5+1/7 = 26/35. O

But by Claim 2: « = 2/3. This contradiction finishes the proof of Theo-
rem 1.
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