CONFORMAL GRADIENT FIEILDS

Where the question comes from:
A well-known theorem of
Lichnerowicz states that a ($n>1$)dimensional Riemannian manifold of constant scalar curvature is isometric to a sphere, if it admits a conformal gradient field.
If a Riemannian manifold obtains a concircular vector field, then gradient of the conformal characteristic function ρ is a conformal vector field. Therefore, ρ satisfies the following second order differential equation:

$$
\nabla_{k} \rho_{l}=\phi(x) g_{k l}
$$

This equation helps to define a special coordinate system around every ordinary point of ρ, in which the metric has a warped product structure.

Why this method doesn't

 work in Finsler case:$F(u, v):=\sqrt{\sqrt{u^{4}+v^{4}}+\lambda\left(u^{2}+v^{2}\right)}$
$\left(g_{i j}\right)=\left(\begin{array}{cc}\lambda+\frac{u^{2}\left(u^{4}+3 v^{4}\right)}{\left(u^{4}+v^{4}\right)^{\frac{3}{2}}} & \frac{-2 u^{3} v^{3}}{\left(u^{4}+v^{4}\right)^{\frac{3}{2}}} \\ \frac{-2 u^{3} v^{3}}{\left(u^{4}+v^{4}\right)^{\frac{3}{2}}} & \lambda+\frac{v^{2}\left(v^{4}+3 u^{4}\right)}{\left(u^{4}+v^{4}\right)^{\frac{3}{2}}}\end{array}\right)$

$$
\rho(x, y):=a x+b
$$

$$
\Rightarrow \operatorname{grad}(\rho)(x, y)=\left(\frac{a}{\lambda+1}, 0\right)
$$

Adopted coordinates coincide with the initial one.

Propositions:

\# If (M, g) be a Finsler manifold and V a C-concircular vector field, then

$$
\mathcal{L}_{\hat{V}}(R i c)_{i j}=-2(n-1) \phi(x) g_{i j}
$$

* If grad ρ be a conformal vector field, then
The integral curves of grad ρ are geodesics of Finsler structure

Main results:

Theorem 1:

Let (M, g) be a compact EinsteinFinsler manifold of non-positive constant Ricci curvature. If M admits a C-concircular vector field V , then V is homothetic.
Proof:
By computing the Lie derivative of Ricci tensor, with the help of Ricci constant assumption,
$\nabla_{i} \rho_{j}=-k \rho(x) g_{i j}$

ON EINSTEIN-RANDERS SPACES

This equation changes to the following ODE along integral curves of liouville vector field:

$$
\begin{gathered}
\frac{d^{2} \rho}{d t^{2}}+k \rho=0 \\
k=0 \Rightarrow \rho(t)=C_{1} t+C_{2} . \\
k<0 \Rightarrow \rho(t)=C_{1} e^{-\sqrt{-k} t}+C_{2} e^{\sqrt{-k} t}
\end{gathered}
$$

Theorem 2:

If M is connected compact of positive constant Ricci curvature and admits a C-concircular vector field, then

M is homeomorphic to sphere

Proof:

Suppose $\gamma(s)$ be a geodesic starting from p_{0} with initial velocity X_{0}, $\frac{d^{2} \rho}{d s^{2}}+\boldsymbol{k}^{2} \boldsymbol{\rho}=\mathbf{0}$.

- $\rho(s)=A \cos (k s)+B \sin (k s)$,
where $A=\rho\left(p_{0}\right)$ and $B=\frac{1}{k} X_{0}(\rho)$.
Now suppose that γ is the integral curve of grad ρ at $\mathbf{p}_{\mathbf{0}}$ and \mathbf{p}_{+}and \mathbf{p}_{-} maximum and minimum points of ρ on γ. W.l.o.g $\rho\left(p_{+}\right)=1$. Take p_{+}as initial point.
\Rightarrow all geodesics issuing from \mathbf{p}_{+}meet again at:
$\checkmark \boldsymbol{Q}$ is a minimum point of ρ.
$\checkmark \boldsymbol{Q}=\exp _{p_{+}}\left(S^{n}\left(\frac{\pi}{k}\right)\right)$.
$\checkmark \boldsymbol{Q}$ is conjugate to \mathbf{p}_{+}.
for unit vector X, γ_{X} the geodesic with initial velocity X and $C(X)$ the moment γ_{X} reaches the first conjugate point to \mathbf{p}_{+}
\checkmark By Bonnet-Myres theorem :

$$
t(X) \leq C(X) \leq \frac{\pi}{k}
$$

\checkmark By Hopf-Rinow theorem: Q is reachable from p_{+}by a minimal geodesic with unit velocity.
\checkmark On the other hand every such a geodesic reaches Q at $s=\frac{\pi}{k}$. $\Rightarrow t(X) \geq \frac{\pi}{k}$.
$\Rightarrow t(X)=C(X)=\frac{\pi}{k} \Rightarrow C u t\left(p_{+}\right)=\{Q\}$
\checkmark again by Bonnet-Myres theorem :
$\operatorname{diam}(M) \leq \frac{\pi}{k}$,
\Rightarrow There is no point more distant from \mathbf{p}_{+}than \mathbf{Q} and so it is the only minimum point of ρ.

By theorem of Reeb, M is homeomorphic to sphere.

