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Abstract. We consider a compact manifold M with a bumpy Finsler metric.

The free loop space Λ of M carries a canonical action of the group S1. Using
Morse theory for the energy functional E : Λ → R we construct with the
help of a space of geodesic polygons an equivariant CW complex which is
S1-homotopy equivalent to the free loop space.

1. Statement of the Result

For a compact differentiable manifold M with Finsler metric F we denote by
Λ = ΛM the free loop space of absolutely continuous closed curves γ : S1 → M

with finite energy E(γ) = 1
2

∫ 1

0
F 2 (γ′(t)) dt < ∞, here S1 = [0, 1]/{0, 1} denotes

the 1-dimensional sphere. The free loop space Λ carries a canonical S1-action
leaving the energy functional E : Λ → R invariant. For a ∈ R we use the following
notation for the sublevel set: Λa := {γ ∈ Λ |E(γ) ≤ a}.

Morse introduced for the investigation of geodesics a finite-dimensional approx-
imation by a space of geodesic polygons, cf. [7, ch.16]. Assume that η > 0 is
the injectivity radius of (M,F ), i.e. η is the maximal positive number such that
any geodesic c : [0, 1] → M of length L(c) ≤ η is minimal. We call the geo-
desic c minimal if the distance d(c(0), c(1)) between its end points equals its length

L(c) =
∫ 1

0
F (c′(t)) dt. For a positive number a one can choose a positive integer

k > 2a/η2 and one defines the space

Λ(k, a) := {c ∈ Λa ; c |[i/k, (i+ 1)/k] is a geodesic ; i = 0, 1, 2, . . . , k − 1}

consisting of geodesic polygons with k vertices c(0), c (1/k),c (2/k) , . . . , c ((k − 1)/k)
(i.e. geodesic k-gons) of energy ≤ a. Since d (c (i/k) , c ((i+ 1) /k)) < η the geodesic
k-gon c can be identified with the set c(0), c(1/k), c(2/k), . . . , c((k − 1)/k) of ver-
tices. On the other hand the space Λ(k, a) has the structure of a submanifold
with boundary of the free loop space of dimension dimΛ(k, a) = k · dimM. The
space Λ(k, a) can be viewed as a finite-dimensional approximation of the space Λa

in the following sense: The critical points of the restriction of the energy func-
tional E′ : Λ(k, a) → R coincide with the critical points of the energy functional
E : Λa → R, in particular they are the closed geodesics of energy ≤ a. In ad-
dition it is well known that the indices and nullities of the hessian d2E′(c) and
d2E(c) coincide, cf. [10, p.55]. Therefore for existence results for closed geodesics
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one can study the critical point theory (resp. Morse theory) of the energy func-
tional on the finite-dimensional and compact subspace Λ(k, a). But there is one
disadvantage of this finite-dimensional approximation. The space Λ(k, a) is not
closed under the canonical S1-action, but it carries a canonical Zk-action induced
from the S1-action. Here for c ∈ Λ(k, a), u ∈ [0, 1]/{0, 1} = S1 let u.c ∈ S1.Λ(k, a)
be defined by u.c(t) = c(t + u); i.e. u.c is a geodesic polygon with k vertices
c(u), c(u+1/k), c(u+2/k), . . . , c (u+ (k − 1)/k) . Following the concepts developped
by the author in [10, sec.6] and [9, §4] and by Bangert & Long in [2, Sec.3] one
can find a candidate for a finite-dimensional approximation of the free loop space
which is closed under the canonical S1-action:

Theorem 1.1. Let F be a bumpy Finsler metric on a compact differentiable man-
ifold M and let (aj)j≥0 be a strictly increasing sequence of regular values of the
energy functional E : Λ → R on the free loop space Λ.
Then there is a S1-CW complex X which is S1-homotopy equivalent to Λ induced
from the Morse theory of the energy functional. In addition there is a filtration
(Xj)j≥1 by finite S1-CW subcomplexes of X which are S1-homotopy equivalent to
Λaj .

For a bumpy Riemannian metric this result is contained in [9, Thm.4.2]. The
proof does not directly extend to the Finsler case due to a lack of regularity of the
energy functional on the free loop space. In several papers it is claimed that the
energy functional on the free loop space of a compact Finsler manifold is twice dif-
ferentiable at critical points. But Abbondandolo & Schwarz show that the energy
functional on the free loop space of a compact Finsler manifold is twice differen-
tiable at a critical point only if the metric is Riemannian along this closed geodesic,
cf. [1, Remark 2.4]. But for the use of the Morse Lemma this differentiability is
needed. The finite-dimensional and equivariant approximation by spaces of geo-
desic polygons offers one way out of the problem with the low regularity of the
energy functional in the Finsler case. For certain applications as in the work of
Bangert & Long [2] and the author’s work [8] and [11] an equivariant version of the
Morse Lemma has to be used.
The definition of an equivariant CW -complex resp. G-CW complex can be found
in [12, II.1]. For the group G = S1 an r-dimensional equivariant cell er :=
Φ
(
S1/Zm ×Dr

)
of an S1-CW complex X with r-skeleton Xr and with isotropy

subgroup I(x) ∼= Zm for x ∈ Φ
(
Dr − Sr−1

)
is described by an S1-equivariant

characteristic map

(Φ, φ) : S1/Zm ×
(
Dr, Sr−1

)
→

(
Xr, Xr−1

)
.

Let ėr := φ
(
S1/Zm × Sr−1

)
, then the restriction Φ : S1/Zm×

(
Dr − Sr−1

)
→ er−

ėr is a homeomorphism. The restriction φ = Φ
∣∣S1/Zm × Sr−1 : S1/Zm × Sr−1 →

ėr ⊂ Xr−1 is also called attaching map of the r-cell er. The complex is finite if it
consists of finitely many equivariant cells. It also follows that the quotient space
Λ/S1 has the homotopy type of an ordinary CW complex. The subcomplexes
Xj also carry the finer structure of a (Zmj , S

1)-CW complex introduced by the
author [9, §2] where mj is a multiple of all multiplicities of closed geodesics of
energy ≤ aj . For any orbit S1.c of a closed geodesic c of multiplicity m there is a
subcomplex which is of the form S1 ×Zm D−(c), here D−(c) is a negative disc of
the closed geodesic c, cf. Proposition 2.4 and Remark 2.1.
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2. Proofs:

Let F be a bumpy Finsler metric on a compact differentiable manifold with
injectivity radius η. The metric is bumpy if all closed geodesics are non-degenerate.
Then the S1-orbit S1.c of closed geodesic is an isolated critical orbit. Let i = ind(c)
resp. m = mul(c) be its index resp. multiplicity. Here the index of a closed
geodesic is the maximal dimension of a subspace of the tangent space TcΛ on which
the index form d2E(c) is negative definite. A closed geodesic c has multiplicity
m if c(t) = c0(mt) for all t ∈ S1 for a closed curve c0 which is injective up to
possibly finitely many selfintersection points. The closed geodesic c0 is also called
prime. The crucial observation by Morse is that the critical points of the restriction
E′ : Λ(k, a) → R coincide with the critical points of E : Λa → R and there indices
and nullities coincide, too. The space Λ(k, a) carries as a subspace of Λ a canonical
Zk-action induced by the S1-action. The strong deformation retraction of Λa onto
Λ(k, a) given in [7, 16.2] can be modified in the category of Zk-equivariant maps:

Proposition 2.1. [10, sec.6.2] There is a strong Zk-deformation retraction ru :
Λa → Λa, u ∈ [0, 1] onto the subspace Λ(k, a).

Proof. For u ∈ [0, 1]; i = 0, 1, . . . , k − 1 one defines:

ru(c) |[i/k, (i+ u)/k] = minimal geodesic

joining c(i/k) and c((i+ u)/k)

ru(c) |[(i+ u)/k, (i+ 1)/k] = c |[(i+ u)/k, (i+ 1)/k]

Then ru(c) = c for all c ∈ Λ(k, a) and u ∈ [0, 1], and r1(c) ∈ Λ(k, a) for all
c ∈ Λa. �

The energy functional E : Λ → R satisfies the Palais-Smale condition, cf. [1,
Proposition 2.5] resp. [3, Thm.3.1]. Therefore we conclude:

Proposition 2.2. (a) If for two numbers a < b the closed interval [a, b] does not
contain a critical value of the energy functional E : Λ → R then the sublevel set Λa

is an strong S1-deformation retract of the sublevel set Λb.

(b) Let c be a closed geodesic of energy a = E(c) and multiplicity m such that
the S1-orbit S1.c is the set of all closed geodesics with energy in [a− ε1, a+ ε1] for
some ε1 > 0. Then there is a Zm-invariant hypersurface Σc ⊂ Λ with c ∈ Σc which
is transversal to the orbit S1.c at c such that for sufficiently small ε ∈ (0, ε1) the
subset Λa−ε ∪ S1.Σc is a strong S1-deformation retract of the sublevel set Λa+ε.

The hypersurface Σc is also called a slice, cf. [6, Lem. 2.2.8]. The tubular neigh-
borhood S1.Σc ⊂ Λ is S1-homeomorphic to S1 ×Zm Σc. Here we use the following
notation: For a Zm-space Y we denote by S1×ZmY the quotient

(
S1 × Y

)
/Zm (also

called twist product) with respect to the Zm-action (u, (v, y)) ∈ Zm ×
(
S1 × Y

)
7→

(vu−1, u.y) ∈ S1 × Y where we consider Zm as subgroup of S1.
An S1-subspace A ⊂ X of the S1-spaceX is called strong S1-deformation retract,

if there is an S1-map H : [0, 1]×X → X (called a strong S1-deformation retraction
from X onto A) which satisfies the following conditions: H (0, x) = x for all x ∈ X
; H (1, x) ∈ A for all x ∈ X and H (t, a) = a for all t ∈ [0, 1], a ∈ A. In particular
the inclusion A→ X is a S1-homotopy equivalence.

Proposition 2.3. Let c be a closed geodesic of multiplicity m ≥ 1, energy a = E(c)
and Λ(k, b) ⊂ Λ a finite-dimensional approximation with a < b such that m divides
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k. Choose a Zm-invariant hypersurface Σc ⊂ Λ as above and choose a Zm-invariant
hypersurface Vc ⊂ Λ(k, a) transversal to the orbit S1.c at c ∈ Vc with Vc ⊂ Σc.
If the orbit S1.c consists of all closed geodesics with energy in [a− ε1, a+ ε1] for
some ε1 > 0 then for sufficiently small ε ∈ (0, ε1) the set Λa−ε ∪ S1.Vc is a strong
S1-deformation retract of Λa+ε.

Proof. Following the Proof of [2, Lem.3.3] we consider the map G : S1 × Λ(k, a +
ε1) → Λ(k, a + ε1) with G(γ, s) = r1(u.γ) which does not increase the energy
and satisfies G(0, γ) = γ for all γ ∈ Λ(k, a + ε1). The map r1 is defined in the
proof of Proposition 2.1. For a sufficiently small neighborhood U ⊂ Λ(k, a + ε1)
of c there is an δ > 0 and a smooth function σ : U → (−δ, δ) uniquely defined
by G (σ(γ), γ) ∈ Vc. Then we define h : [0, 1] × U → Λ(k, a + ε1) by: h(t, γ) =
G(tσ(γ), γ) = r1 ((tσ(γ)) .γ) . Let ht(γ) = h(t, γ) then h0(γ) = γ, h1(γ) ∈ Vc for
all γ ∈ Vc; ht(γ) = γ for all γ ∈ Vc ∩ U and E(ht(γ)) ≤ E(γ) for all t ∈ [0, 1]
and γ ∈ U. Therefore one can define for sufficiently small ε ∈ (0, ε1) an S1-map
Ht : Λ

a−ε∪S1.Σc → Λa−ε∪S1.Σc withH1(γ) ∈ Λa−ε∪S1.Vc for all γ ∈ Λa−ε∪S1.Σc

and Ht(γ) = γ whenever E(γ) ≤ a − ε or γ ∈ U − {c}. Hence this map defines
a strong deformation retraction of Λa−ε ∪ S1.Σc onto Λa−ε ∪ S1.Vc which is not
energy increasing. From Proposition 2.2 (b) the conclusion follows. �

Here the set S1.Vc is S1-equivariantly hoemeomorphic to S1 ×Zm Vc and Λa+ε is
S1-homotopy equivalent to the space obtained by adjoining S1.Vc to Λa−ε.

Proposition 2.4. Let c be a non-degenerate closed geodesic of multiplicity m, en-
ergy a = E(c), index i = ind(c) and Λ(k, b) ⊂ Λ a finite-dimensional approximation
with a < b such that m divides k and such that the critical orbit S1.c consists of all
closed geodesics of energy in the interval [a−ε, a+ε]. Then there is an orthogonal rep-
resentation of the group Zm on an i-dimensional vector subspace Ri ⊂ TcΛ(k, a+ ε)
of the tangent space with corresponding disc Di = {x ∈ Ri; ‖x‖ ≤ δ} for some
δ > 0 and a diffeomorphism φ : Di → D−(c) ⊂ Λ(k, a + ε) such that the fol-
lowing holds: E (D−(c)− {c}) ⊂ (0, a) and for sufficiently small ε > 0 the set
Λa−ε ∪ S1D−(c) = Λa−ε ∪φ

(
S1 ×Zm Di

)
is a strong S1-deformation retract of the

sublevel set Λa+ε.

Remark 2.1. The disc Di with its orthogonal Zm-action resp. its image φ
(
Di

)
under the diffeomorphism is also called a negative disc D−(c) of the closed geo-
desic c. It carries the structure of a finite Zm-CW complex with subcomplex Si−1,
cf. [9, Prop.1.10]. This cell decomposition allows the computation of the homol-
ogy H∗ (Di/Zm, S

i−1/Zm;R
)
of the quotient space

(
Di/Zm, S

i−1/Zm

)
for rings

R = Q,Zp,Z, cf. [9, Prop.1.13]. In particular there is at least one cell in Di/Si−1

in any dimension k ∈ {ind(c0), . . . , ind(c)} where c = cm0 with a prime closed ge-
odesic c0. This Zm-CW decomposition on Di with subcomplex Si−1 induces in a
canonical way a S1-CW -structure on the twist product S1 ×Zm Di with subcomplex
S1 ×Zm

Si−1 .

Proof. (of Proposition 2.4) This is a standard argument using the equivariant Morse
Lemma applied to the Zm-invariant and smooth restriction E : Vc → R. One can
choose an arbitrary Riemannian metric g on the manifold M which induces a Zm-
invariant metric on Vc ⊂ Λ(k, a) where Λ(k, a) is identified with a subspace of
M × . . .×M︸ ︷︷ ︸

k times

endowed with the product metric h = g ⊕ · · · ⊕ g. Since the closed
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geodesic is non-degenerate there is an orthogonal decomposition TcVc = V+ ⊕ V−
of the tangent space at c into the sum V+ resp. V− of eigenspaces of positive resp.
negative eigenvalues of the endomorphism associated to the hessian d2E(c) via the
inner product hc. By ‖.‖ we denote the associated norm of hc. Since i = indc
the space V− has dimension i. There is a disc D = {x ∈ TcVc ; hc(x, x) ≤ δ} ⊂
TcVc for some δ > 0 and a Zm-equivariant diffeomorphism ψ : D → ψ(D) ⊂ Vc
such that ψ(0, 0, 0) = c and E (ψ(x+, x−)) = ‖x+‖2 − ‖x−‖2. Then let Di :=
V− ∩ D. We call the Zm-invariant subset D−(c) = ψ(Di) a negative disc, it is a
local i-dimensional submanifold of the slice Σc with E (D−(c)− {c}) ⊂ (0, a) and
c ∈ D−(c). By standard arguments in (equivariant) Morse theory it follows that
(Vc ∩ Λa−ε)∪D−(c) is a strong Zm-deformation retract of Vc∩Λa+ε for sufficiently
small ε, cf. for example [13, §4]. By equivariant extension one obtains that the
set

(
S1.Vc ∩ Λa−ε

)
∪ S1.D−(c) is a strong S1-deformation retract of S1.Vc ∩ Λa+ε.

Then the conclusion follows from Proposition 2.3 �

This Proposition is the essential step in the proof of Theorem 1.1 which we now
present and which is analogous to the proof of [9, Thm.4.2]:

Proof. (of Theorem 1.1). We show with induction by j that there is a relative
S1-CW complex (X,A) with a filtration by subcomplexes (Xj , A)j≥0 with a S1-

homotopy equivalence Fj : Λaj → Xj . Let bj be the strictly monotone increasing
sequence of critical values of E with aj < bj < aj+1 and c0 = 0. Let A = Λ0 which
one can identify with the manifold M. We assume that the claim is proved for
j − 1. Since the metric is bumpy there are for any a > 0 only finitely many critical
S1-orbits of closed geodesics with energy ≤ a. Let S1.cj,l ; l = 1, 2, . . . , Nj be the S

1-
orbits of closed geodesics cj,l with energy aj . Let ij,l = ind (cj,l) ,mj,l = mul (cj,l) .
We choose mj as a multiple of mj−1 and mj,1, . . . ,mj,Nj such that mj > 2aj/η

2,
here η is the injectivity radius. Hence we conclude from Proposition 2.4: Λaj is
S1-homotopy equivalent to

Λaj−1 ∪
∪

gj,l,l=1,2,...,Nj

S1 ×Zmj,l
Dij,l

where gj,l : S
ij,l−1 → Λaj−1 are Zmj,l

-equivariant attaching maps. It follows from

Remark 2.1 that S1 ×Zmj,l
Dij,l carries the structure of a finite S1-CW complex

with subcomplex S1 ×Zmj,l
Sij,l−1. Then the equivariant cellular approximation

theorem [12, II.2.1] implies that for every map Fj−1 ◦gj,l : S1×Zmj,l
Sij,l−1 → Xj−1

there is a S1-homotopic map gj,l : S1 ×Zmj,l
Sij,l−1 → Xj−1 which is cellular,

i.e. for any r ≥ 0 the image of the r-skeleton of S1 ×Zmj,l
Sij,l−1 under gj,l lies

in the r-skeleton of the subcomplex (Xi−1, A) . Then we obtain the finite S1-CW
complex (Xj , A) by attaching cells to the complex (Xj−1, A) via the attaching maps
gj,l, l = 1, 2, . . . , Nj :

Xj = Xj−1 ∪
∪

gj,l,l=1,2,...,Nj

S1 ×Zmj,l
Dij,l

By standard arguments for equivariant CW -complexes (cf. [12, Section II.1]) we
conclude that there is a S1-equivariant homotopy Fj : Λaj → Xj extending Fj−1.

�
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Remark 2.2. (a) Caponio et al. introduce in [4, Section 2] a localization procedure
for the energy functional on the infinite-dimensional Hilbert space based on ideas of
K.-C. Chang.

(b) The statement of Theorem 1.1 can be extended to manifolds with a Morse
metric. For these metrics the critical set of the energy functional is the disjoint
union of non-degenerate critical submanifolds, i.e. the energy functional is a Morse-
Bott function.

(c) One can use the Morse chain complex of the S1-CW complex resp. of the(
Zmi , S

1
)
-CW complexes as in the author’s work [9]. Applications of equivariant

Morse chain complexes can be found for example in Hingston’s paper [5].
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