Generalized Killing spinors with imaginary Killing function and conformal Killing fields^{*}

Hans-Bert Rademacher

1 Statement of results

We consider complete Riemannian spin manifolds (M, g) with complex spinor bundle S. S carries a hermitian product $\langle ., . \rangle$ which we assume to be complex conjugate linear in the first argument and complex linear in the second argument. The Clifford bundle Cl(M) of M acts on S by Clifford multiplication which we denote by $X \cdot \psi$ for a vector field X and a spinor ψ . Clifford multiplication by a tangent vector X is skew symmetric with respect to $\langle ., . \rangle$. The Levi–Civita connection ∇ on M induces the spinor connection on S which we also denote by ∇ , cf. [1]. A non–trivial spinor ψ is called *generalized Killing spinor* with *Killing function* λ if

$$\nabla_X \psi = \lambda \, X \cdot \psi \tag{1}$$

for all vector fields X and for a complex–valued function λ on M. In particular ψ is a *twistor spinor*, i.e. $\nabla_X \psi + \frac{1}{n} X \cdot D \psi = 0$ for all X, where D is the Dirac operator. If λ is constant then ψ is a *Killing spinor* with *Killing number* λ and (M^n, g) is an Einstein manifold of scalar curvature $r = 4n(n-1)\lambda^2$, see [8] or [5]. Hence three cases occur: If $\lambda = 0$ then ψ is parallel and M is Ricci flat. If $\lambda^2 > 0$ then λ is real, M is compact and $\lambda^2 n^2 = rn/(4n-4)$ is the smallest eigenvalue of the square D^2 of the Dirac operator D by results of T.Friedrich [9] and O.Hijazi [12]. If $\lambda^2 < 0$ then λ is an imaginary number. H.Baum classified in [2], [3] and [4] these manifolds, see Corollary 1. From results of O.Hijazi [12, cor.3.6] and A.Lichnerowicz [16, thm.1] it follows that a generalized Killing spinor is either a Killing spinor with real Killing number or λ is an imaginary function.

From now on we consider the second case, i.e. we assume $\lambda = ib$ for a not everywhere vanishing real function b. The function $f := \langle \psi, \psi \rangle$ is positive everywhere since equation (1) is a first order linear ordinary differential equation along a geodesic, cf. [16, prop.1]. The vector field V on M defined by $\langle V, X \rangle = i \langle \psi, X \cdot \psi \rangle$ for all X is a conformal non–isometric closed Killing field, cf. §3.

T.Friedrich introduced in [10] the function $q_{\psi} := f^2 - \|V\|^2$ which is a non-negative constant. In [17, thm.], [18, thm.4] A.Lichnerowicz proved that locally M is the warped product of an open interval and a manifold carrying a parallel spinor if $q_{\psi} = 0$ and that M is globally isometric to a warped product of the real line \mathbb{R} with a complete manifold carrying a parallel spinor if $q_{\psi} = 0$ and b has no zero [17, prop.2], [18, prop.2].

We obtain the above quoted results of H.Baum and A.Lichnerowicz and the global structure of the manifold M from the classification of complete Riemannian manifolds

^{*}In Global Differential Geometry and Global Analysis, Proceedings Berlin 1990, Springer Lecture Notes in Mathematics 1481 (1991) 192–198

carrying a non-isometric conformal closed Killing field. This classification is given in theorem 2, related results are due to H.W.Brinkmann [7], Y.Tashiro [19], J.P. Bourguignon [6], Y.Kerbrat [13] and W.Kühnel [14] [15]. In [15] W.Kühnel studies the complete Riemannian manifolds of constant scalar curvature carrying a non-isometric conformal closed Killing field. Corollary 2 b) contains an explicit example.

Our main result is

Theorem 1 Let M be a complete Riemannian spin manifold with a generalized Killing spinor with an imaginary Killing function, *i.e.*

$$\nabla_X \psi = ib \, X \cdot \psi$$

with a not everywhere vanishing real function b.

a) If $q_{\psi} = 0$, then there is a positive function h on \mathbb{R} and a complete (n-1)dimensional Riemannian spin manifold (M_*, g_*) carrying a parallel spinor such that the warped product $\mathbb{R} \times_h M_*$ (with metric $g = du^2 + h^2(u)g_*$) is a Riemannian covering of M. Here $f = \langle \psi, \psi \rangle$ and b are functions of $u \in \mathbb{R}$ alone, $f(u, x) = f(u) = h(u), (u, x) \in$ $\mathbb{R} \times M_*$ and b = f'/(2f).

If M is a proper quotient of $\mathbb{R} \times_f M_*$ then f is periodic with period $\omega > 0$ and there is an isometry γ of M_* such that M is isometric to $\mathbb{R} \times_f M_* / \Gamma$ where the group $\Gamma \cong \mathbb{Z}$ of isometries is generated by $(u, x) \mapsto (u + \omega, \gamma(x))$.

b) If $q_{\psi} > 0$, then M is isometric to the n-dimensional hyperbolic space $\mathrm{H}^{n}(-4b^{2})$ of constant sectional curvature $-4b^{2}$.

Hence $q_{\psi} = 0$ iff the conformal closed vector field V has no zero, i.e. is inessential. A conformal Killing field is inessential, if it becomes an isometric Killing field after a conformal change of the metric.

H.Baum shows in [3, thm.1] that the *n*-dimensional hyperbolic space carries Killing spinors with imaginary Killing number with $q_{\psi} = 0$ for all *n* and with $q_{\psi} > 0$ if $n \neq 3, 5$. It follows from [3, lem.4] that the warped product $\mathbb{R} \times_f M_*$ of a manifold M_* carrying a parallel spinor with an arbitrary positive function *f* on \mathbb{R} carries a generalized Killing spinor ψ with imaginary Killing function *ib* with $q_{\psi} = 0$, where b = f'/(2f).

A.Lichnerowicz describes in [17, §5], [18, §10] the following example : Let M_* be a compact manifold carrying a parallel spinor (e.g. a K_3 -surface with the Calabi–Yau metric or a flat torus with the canonical spin structure) and let $f : S^1 \longrightarrow \mathbb{R}^+$ be a positive non-constant periodic function and b = f'/(2f). Then $M = S^1 \times_f M_*$ is a compact spin manifold with a generalized Killing spinor with Killing function *ib*. From theorem 1 it follows that up to Riemannian quotients and twisting these are all such compact manifolds.

In [11] K.Habermann gives another characterization of hyperbolic space, she shows that a complete *n*-dimensional Einstein spin manifold with negative scalar curvature r = kn(n-1) and a non-parallel twistor spinor ψ whose length function $f = \langle \psi, \psi \rangle$ attains a minimum is the hyperbolic space $H^n(k)$.

From theorem 1 we obtain

Corollary 1 (H.Baum [2], [3]) If (M, g) is a complete Riemannian manifold carrying a Killing spinor ψ with imaginary Killing number $ib, b \in \mathbb{R} - \{0\}$ then M is isometric to

a) $\mathbb{R} \times_{\exp(2bu)} M_*$ where M_* is a complete (n-1)-dimensional Riemannian manifold carrying a parallel spinor, if $q_{\psi} = 0$.

b) Hyperbolic space $\mathrm{H}^n(-4b^2)$, if $q_{\psi} > 0$.

From the formula for the scalar curvature of a warped product we obtain

Corollary 2 Let M be a complete Riemannian manifold which carries a generalized Killing spinor with imaginary Killing function ib, $b \neq 0$.

a) There is a point of negative scalar curvature.

b) If b is non-constant, if the scalar curvature r is constant and $a := 1/2(-rn/(n-1))^{1/2}$ then M is isometric to $\mathbb{R} \times_f M_*$ where M_* carries a parallel spinor and $f(u) = (\cosh(au))^{2/n}$, hence $b(u) = a \tanh(au)/n$.

Acknowledgment: I am grateful to J.P.Bourguignon, O.Hijazi, W.Kühnel and T.Friedrich for helpful comments on the first version of this paper.

2 Conformal Killing fields

We denote by $L_V g$ the Lie derivative of the metric $g = \langle ., . \rangle$ in direction of the vector field V, i.e. $L_V g(X,Y) = \langle \nabla_X V, Y \rangle + \langle X, \nabla_Y V \rangle$. A vector field V is a *conformal Killing field* if the local flow consists of conformal transformations. This is equivalent to $L_V g = 2hg$ with a function h. By taking traces one obtains $h = \operatorname{div} V/n$. V is *homothetic* if h is a constant and it is *isometric* if $L_V g = 0$. V is *closed* if the corresponding 1–form $\omega = \langle V, . \rangle$ is closed. Hence if V is a conformal closed Killing field then for every point $p \in M$ there is a neighborhood U and a function F on U such that $V = \nabla F$ on U. The Hessian $\nabla^2 F(X, Y) := \langle \nabla_X \nabla F, Y \rangle = 1/2 \ L_{\nabla F} g(X, Y)$ then satisfies

$$\nabla^2 F = \frac{\Delta F}{n}g\tag{2}$$

where Δ is the Laplacian. H.W.Brinkmann showed in [7, §3] that nearby a regular point of F the metric has a warped product structure. Y.Tashiro classifies in [19, lem.2.2] the complete Riemannian manifolds with a non–constant function F on M satisfying equation (2), i.e. ∇F is a conformal Killing field, cf. also W.Kühnel [14, thm.22]. Using this result we show

Theorem 2 Let (M^n, g) be a complete Riemannian manifold with a non-isometric conformal closed Killing field V and let N be the number of zeros of V. Then $N \leq 2$ and:

- a) If N = 2, then M is conformally diffeomorphic to the standard sphere S^n .
- b) If N = 1, then M is conformally diffeomorphic to euclidean space \mathbb{R}^n .

c) If N = 0: Then there is a complete (n - 1)-dimensional Riemannian manifold (M_*, g_*) and a function $h : \mathbb{R} \to \mathbb{R}^+$ such that the warped product $\mathbb{R} \times_h M_*$ is a Riemannian covering of M and the lift of V is $h\frac{\partial}{\partial u}$.

If M is a proper quotient of $\mathbb{R} \times_h M_*$ then h is periodic with period $\omega > 0$ and there is an isometry γ of M_* such that $M = \mathbb{R} \times_h M_*/\Gamma$, where the group $\Gamma \cong \mathbb{Z}$ of isometries is generated by $(u, x) \mapsto (u + \omega, \gamma(x))$. *Proof*. Let \overline{M} be the universal Riemannian covering of M with projection $\pi: \overline{M} \to M$, denote by \overline{V} the lift of V onto \overline{M} and by \overline{N} the number of zeros of \overline{V} . If G is the group of deck transformations of \overline{M} such that $M = \overline{M}/G$, then $\overline{N} = \operatorname{ord}(G)N$. Since \overline{V} is closed there is a non-constant function F on \overline{M} with $\overline{V} = \nabla F$ and $\nabla^2 F = (\Delta F/n)g$. From Tashiro's classification [19, lem.2.2] resp. [14, thm.21] it follows that $\overline{N} \leq 2$ and that the following cases occur:

a) $\bar{N} = 2$, then \bar{M} is conformally diffeomorphic to S^n and since $\Delta F = \text{div } \bar{V}$ has different signs in the critical points of F the vector field \bar{V} does not project onto a proper quotient of S^n .

b) $\bar{N}=1$, then \bar{M} is conformally diffeomorphic to ${\rm I\!R}^n$ and since N=1 we have $M=\bar{M}$.

c) $\bar{N} = 0$, then \bar{M} is isometric to $\mathbb{R} \times_{F'} \bar{M}_*$ for a complete (n-1)-dimensional Riemannian manifold \bar{M}_* where F is a function of u alone, i.e. F(u, x) = F(u) and $\bar{V} = F' \frac{\partial}{\partial u}$. Hence F' is also a function on M. \bar{M}_* is a connected component of the submanifold $F^{-1}(F(p))$ for a point $p \in \bar{M}$ with $F'(p) \neq 0$. Since V is not-isometric we can assume in addition that $F''(p) = \operatorname{div} \bar{V}(p)/n \neq 0$. Then $M_* := \pi(\bar{M}_*)$ is a connected component of the submanifold $F'^{-1}(F'(\pi(p))$ on M, $\mathbb{R} \times_h M_*$ is a Riemannian covering of M and the projection $\pi_1 : \mathbb{R} \times_h M_* \to M$ can be identified with the normal exponential map of the submanifold M_* in M where h = F'.

If M is a proper quotient then h is periodic since $\overline{V} = h \frac{\partial}{\partial u}$ is the lift of V. Let $\omega > 0$ be the greatest number such that the restriction $\pi_1 | (-\omega/2, \omega/2) \times_h M_*$ is injective, then $\gamma : M_* \to M_*$ is defined by $\gamma(x) = \pi_1(-\omega, x)$.

Remark 1 a) The cases a) and b) of theorem 2 are proved by Y.Kerbrat [13]. J.P.Bourguignon proves these cases in [6] under the additional assumption that the vector field is complete. Theorem 2 can also be found in W.Kühnel [15].

b) If in case c) of theorem 2 M is a proper quotient then : Either the isometry γ is of finite order, then $S^1 \times_h M_*$ is a Riemannian covering and all geodesics normal to M_* are closed or otherwise no normal geodesic closes.

3 Generalized Killing spinors with imaginary Killing function

(3.1) We assume that ψ is a generalized Killing spinor with imaginary Killing function *ib*. From the definitions $f := \langle \psi, \psi \rangle$ and $\langle V, X \rangle := i \langle \psi, X \cdot \psi \rangle$ it follows immediately that

$$\nabla f = 2bV$$
 , $\nabla_X V = 2bfX$. (3)

Hence V is closed and since $L_V g = 4bfg$ we have that V is a non-isometric conformal Killing field. It follows from equation (3) that $q_{\psi} := f^2 - ||V||^2$ is constant. Let

$$Q(X) := \|X \cdot \psi - i\psi\|^2 = \|X\|^2 f + 2\langle V, X \rangle + f ,$$

then X is a minimum of Q if X = -V/f and $q_{\psi} = fQ(-V/f) \ge 0$. Hence q_{ψ} is a non-negative constant and if $q_{\psi} = 0$ then $(-V/f) \cdot \psi = i\psi$, cf. [10].

(3.2) Let (e_1, \ldots, e_n) be a local orthonormal frame, then $D\psi = \sum_{i=1}^n e_i \cdot \nabla_{e_i} \psi$ is the *Dirac operator*, $\nabla^* \nabla \psi = -\sum_{i=1}^n \nabla_{e_i} \nabla_{e_i} \psi + \nabla_{\nabla_{e_i} e_i} \psi$ is the *connection Laplacian*. We obtain

$$D\psi = -ibn\psi$$
, $D^2\psi = -b^2n^2\psi - in\nabla b\cdot\psi$

and

$$\nabla^* \nabla \psi = -b^2 n \psi - i \nabla b \cdot \psi$$

Then one obtains from Lichnerowicz's formula $D^2 = \nabla^* \nabla + \frac{1}{4}r$ where r is the scalar curvature that $\nabla b \cdot \psi = i \left(b^2 n + r/(4n-4) \right) \psi$. Hence

$$|\langle \nabla b, V \rangle| = |i \langle \nabla b \cdot \psi, \psi \rangle| = \|\nabla b\| f \le \|\nabla b\| \|V\|.$$

If b is non–constant then it follows that $q_{\psi} \leq 0$ i.e. $q_{\psi} = 0$.

7

Now we prove theorem 1 stated in the first section

Proof of Theorem 1.

a) If $q_{\psi} = 0$ then $\|V\| = f$ has no zero. By theorem 2c) M has the warped product $\mathbb{R} \times_f M_*$ of \mathbb{R} with a complete (n-1)-dimensional manifold M_* as a Riemannian covering. Here f(u, x) = f(u) is a function of $u \in \mathbb{R}$ alone and $V = f \frac{\partial}{\partial u}$ is the lift of V. Since $\nabla f = f' \frac{\partial}{\partial u} = 2bV = 2bf \frac{\partial}{\partial u}$ by equation (3) also b is a function of u alone and b = f'/(2f). Since

$$g = du^{2} + f^{2}(u)g_{*} = f^{2}(u)(dv^{2} + g_{*})$$

with $\frac{dv}{du} = \frac{1}{f^2(u)}$ we compare the conformally equivalent metrics g and $\overline{g} = dv^2 + g_*$, i.e. \overline{g} is the product metric on $\mathbb{R} \times M_*$. Let $f = \exp(-h)$. \overline{g} induces on $\mathbb{R} \times M_*$ a spinor bundle \overline{S} , such that $S \longrightarrow \overline{S}, \phi \mapsto \overline{\phi} = \exp(h/2)\phi$ is an isometry. Let $\psi_1 := \exp(h/2)\psi$, then it follows from the formula [1, 3.2.4]:

$$\overline{\nabla}_X \overline{\psi_1} = \overline{\nabla_X \psi_1} - \frac{1}{2} \overline{X \cdot \nabla h \cdot \psi_1} - \frac{1}{2} X(h) \overline{\psi_1}$$

that $\overline{\psi_1}$ is a parallel spinor of $\mathbb{R} \times M_*$, cf. [17, §4]. This implies that M_* carries a parallel spinor, cf. [3, lem.4].

b) If $q_{\psi} > 0$ then b is a non-zero constant by (3.2), i.e. ψ is a Killing spinor with imaginary Killing number b and (M,g) is an Einstein manifold with negative scalar curvature $r = -4n(n-1)b^2$. From equation (3) it follows that $\nabla^2 f = 4b^2 fg$, hence $\nabla f = 2bV$ is a non-homothetic conformal Killing field. If f has no critical point then by theorem 2 resp. the classification by Y.Tashiro [19, lem.2.2] we have that M is isometric to $\mathbb{R} \times_{f'} M_*$ where f is a function of $u \in \mathbb{R}$ alone. f satisfies $f'' = 4b^2 f$ and since f and f' both have no zero f' = 2bf. Then $q_{\psi} = 0$.

Hence f has a critical point, so by theorem 2 M is conformally diffeomorphic to a simply–connected space of constant sectional curvature. Since M is Einstein with $r = -4n(n-1)b^2$ it follows that M is isometric to $H^n(-4b^2)$.

Remark 2 Since in theorem 2 M_* is Ricci flat it follows from the formulae for the curvature tensor of a warped product that the scalar curvature r of M is given by

$$r = -(n-2)(n-1)\frac{f'^2}{f^2} - 2(n-1)\frac{f''}{f}$$
(4)

$$= -4n(n-1)b^2 - 4(n-1)b'$$
(5)

Proof of Corollary 2.

a) Let $y := f^{n/2}$ then one obtains from equation (4) y'' + rny/(4n-4) = 0. If $r \ge 0$ then y has a zero since f is non-constant. This contradicts f > 0.

b) For constant r it follows from a) that r < 0. Let $a := 1/2(-rn/(n-1))^{1/2}$, i.e. $y'' - a^2y = 0$. Since y'/y = nb is non-constant y' has a zero. Let y'(0) = 0 then $y(u) = y(0) \cosh(au)$. By scaling g_* we can assume y(0) = 1.

References

- H.Baum: Spin strukturen und Dirac-Operatoren über pseudo-riemannschen Mannigfaltigkeiten. Teubner Verlag Leipzig 1981
- H.Baum: Odd-dimensional Riemannian manifolds with imaginary Killing spinors. Ann. Global Analysis Geom. 7 (1989) 141–154
- [3] H.Baum: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Analysis Geom. 7 (1989) 205–226
- [4] H.Baum: Variétés riemanniennes admettant des spineurs de Killing imaginaires.
 C.R.Acad.Sci. Paris 309 (1989) 47–49
- [5] H.Baum, T.Friedrich, R.Grunewald & I.Kath: Twistor and Killing spinors on Riemannian manifolds. Seminarbericht Nr. 108 Sektion Math. Humboldt–Universität Berlin 1990
- [6] J.P.Bourguignon: Transformations infinitésimales conformes fermées des variétés riemanniennes connexes complètes. C.R.Acad.Sci. Paris 270 (1970) 1593–1596
- [7] H.W.Brinkmann: Einstein spaces which are mapped conformally on each other. Math.Ann. 94 (1925) 119–145

- [8] M.Cahen, S.Gutt, L.Lemaire & P.Spindel: Killing spinors. Bull. Soc. Math. Belgique 38A (1986) 75–102
- [9] T.Friedrich: Der erste Eigenwert des Dirac Operators einer kompakten Riemannschen Mannigfaltigkeit nicht negativer Skalarkrümmung. Math. Nachr. 97 (1980) 117–146
- [10] T.Friedrich: On the conformal relation between twistor and Killing spinors. Suppl.Rend.Circ.Mat.Palermo (1989) 59–75
- K.Habermann: The twistor equation on Riemannian manifolds. Preprint 239 Humboldt–Universität Berlin 1989
- [12] O.Hijazi: A conformal lower bound for the smallest eigenvalues of the Dirac operator and Killing spinors. Comm. in Math. Physics 104 (1986) 151–162
- [13] Y.Kerbrat: Existence de certains champs de vecteurs sur le variétés riemanniennes complètes. C.R.Acad.Sci. Paris 270 (1970) 1430–1433
- [14] W.Kühnel: Conformal transformations between Einstein spaces. In Conformal geometry ed. by R.S.Kulkarni and U.Pinkall. aspects of math. E 12, Vieweg, Braunschweig 1988, 105–146
- [15] W.Kühnel: Remarks on conformal vector fields Preprint Universität Duisburg
- [16] A.Lichnerowicz: Spin manifolds, Killing spinors and Universality of the Hijazi inequality. Lett. in Math.Physics 13 (1987) 331–344
- [17] A.Lichnerowicz: Sur les résultats des H.Baum et Th.Friedrich concernant les spineurs de Killing à valeur propre imaginaire. C.R.Acad.Sci.Paris 309 (1989) 41– 45
- [18] A.Lichnerowicz: On the twistor spinors. Lett. in Math.Physics 18 (1989) 333-345
- [19] Y.Tashiro: Complete Riemannian manifolds and some vector fields. Trans. Am.Math.Soc. 117 (1965) 251–275

Mathematisches Institut der Universität Bonn Wegelerstr.10, D–W–5300 Bonn 1, Federal Republic of Germany