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1 Statement of results

We consider complete Riemannian spin manifolds (M, g) with complex spinor bundle
S. S carries a hermitian product 〈., .〉 which we assume to be complex conjugate linear
in the first argument and complex linear in the second argument. The Clifford bundle
Cl(M) of M acts on S by Clifford multiplication which we denote by X · ψ for a vector
field X and a spinor ψ . Clifford multiplication by a tangent vector X is skew symmetric
with respect to 〈., .〉 . The Levi–Civita connection ∇ on M induces the spinor connection
on S which we also denote by ∇, cf. [1]. A non–trivial spinor ψ is called generalized
Killing spinor with Killing function λ if

∇Xψ = λX · ψ (1)

for all vector fields X and for a complex–valued function λ on M . In particular ψ is a
twistor spinor , i.e. ∇Xψ + 1

nX ·Dψ = 0 for all X , where D is the Dirac operator. If λ
is constant then ψ is a Killing spinor with Killing number λ and (Mn, g) is an Einstein
manifold of scalar curvature r = 4n(n− 1)λ2 , see [8] or [5]. Hence three cases occur: If
λ = 0 then ψ is parallel and M is Ricci flat. If λ2 > 0 then λ is real, M is compact and
λ2n2 = rn/(4n− 4) is the smallest eigenvalue of the square D2 of the Dirac operator D
by results of T.Friedrich [9] and O.Hijazi [12]. If λ2 < 0 then λ is an imaginary number.
H.Baum classified in [2], [3] and [4] these manifolds, see Corollary 1. From results of
O.Hijazi [12, cor.3.6] and A.Lichnerowicz [16, thm.1] it follows that a generalized Killing
spinor is either a Killing spinor with real Killing number or λ is an imaginary function.

From now on we consider the second case, i.e. we assume λ = ib for a not everywhere
vanishing real function b.The function f := 〈ψ,ψ〉 is positive everywhere since equation
(1) is a first order linear ordinary differential equation along a geodesic, cf. [16, prop.1].
The vector field V on M defined by 〈V,X〉 = i〈ψ,X · ψ〉 for all X is a conformal non–
isometric closed Killing field, cf. §3 .

T.Friedrich introduced in [10] the function qψ := f2 − ‖V ‖2 which is a non–negative
constant. In [17, thm.] , [18, thm.4] A.Lichnerowicz proved that locally M is the warped
product of an open interval and a manifold carrying a parallel spinor if qψ = 0 and that
M is globally isometric to a warped product of the real line IR with a complete manifold
carrying a parallel spinor if qψ = 0 and b has no zero [17, prop.2] , [18, prop.2] .

We obtain the above quoted results of H.Baum and A.Lichnerowicz and the global
structure of the manifold M from the classification of complete Riemannian manifolds
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carrying a non–isometric conformal closed Killing field. This classification is given in the-
orem 2, related results are due to H.W.Brinkmann [7], Y.Tashiro [19], J.P. Bourguignon
[6], Y.Kerbrat [13] and W.Kühnel [14] [15]. In [15] W.Kühnel studies the complete
Riemannian manifolds of constant scalar curvature carrying a non–isometric conformal
closed Killing field. Corollary 2 b) contains an explicit example.

Our main result is

Theorem 1 Let M be a complete Riemannian spin manifold with a generalized Killing
spinor with an imaginary Killing function, i.e.

∇Xψ = ibX · ψ

with a not everywhere vanishing real function b .

a) If qψ = 0 , then there is a positive function h on IR and a complete (n− 1)–
dimensional Riemannian spin manifold (M∗, g∗) carrying a parallel spinor such that the
warped product IR ×hM∗ (with metric g = du2 + h2(u)g∗) is a Riemannian covering of
M . Here f = 〈ψ,ψ〉 and b are functions of u ∈ IR alone, f(u, x) = f(u) = h(u), (u, x) ∈
IR×M∗ and b = f ′/(2f).

If M is a proper quotient of IR×f M∗ then f is periodic with period ω > 0 and there
is an isometry γ of M∗ such that M is isometric to IR×f M∗/Γ where the group Γ ∼= ZZ
of isometries is generated by (u, x) 7→ (u+ ω, γ(x)).

b) If qψ > 0 , then M is isometric to the n–dimensional hyperbolic space Hn(−4b2)
of constant sectional curvature −4b2 .

Hence qψ = 0 iff the conformal closed vector field V has no zero, i.e. is inessential.
A conformal Killing field is inessential, if it becomes an isometric Killing field after a
conformal change of the metric.

H.Baum shows in [3, thm.1] that the n–dimensional hyperbolic space carries Killing
spinors with imaginary Killing number with qψ = 0 for all n and with qψ > 0 if n 6= 3, 5.
It follows from [3, lem.4] that the warped product IR ×f M∗ of a manifold M∗ carrying
a parallel spinor with an arbitrary positive function f on IR carries a generalized Killing
spinor ψ with imaginary Killing function ib with qψ = 0 , where b = f ′/(2f) .

A.Lichnerowicz describes in [17, §5] , [18, §10] the following example : Let M∗ be
a compact manifold carrying a parallel spinor (e.g. a K3–surface with the Calabi–Yau
metric or a flat torus with the canonical spin structure) and let f : S1 −→ IR+ be a
positive non–constant periodic function and b = f ′/(2f). Then M = S1 ×f M∗ is a
compact spin manifold with a generalized Killing spinor with Killing function ib. From
theorem 1 it follows that up to Riemannian quotients and twisting these are all such
compact manifolds.

In [11] K.Habermann gives another characterization of hyperbolic space, she shows
that a complete n–dimensional Einstein spin manifold with negative scalar curvature
r = kn(n − 1) and a non–parallel twistor spinor ψ whose length function f = 〈ψ,ψ〉
attains a minimum is the hyperbolic space Hn(k).

From theorem 1 we obtain

Corollary 1 (H.Baum [2], [3]) If (M, g) is a complete Riemannian manifold carrying a
Killing spinor ψ with imaginary Killing number ib, b ∈ IR− {0} then M is isometric to
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a) IR×exp(2bu)M∗ where M∗ is a complete (n−1)–dimensional Riemannian manifold
carrying a parallel spinor, if qψ = 0 .

b) Hyperbolic space Hn(−4b2) , if qψ > 0 .

From the formula for the scalar curvature of a warped product we obtain

Corollary 2 Let M be a complete Riemannian manifold which carries a generalized
Killing spinor with imaginary Killing function ib , b 6≡ 0 .

a) There is a point of negative scalar curvature.

b) If b is non–constant, if the scalar curvature r is constant and
a := 1/2(−rn/(n − 1))1/2 then M is isometric to IR ×f M∗ where M∗ carries a parallel

spinor and f(u) = (cosh(au))
2/n

, hence b(u) = a tanh(au)/n .

Acknowledgment: I am grateful to J.P.Bourguignon, O.Hijazi, W.Kühnel and
T.Friedrich for helpful comments on the first version of this paper.

2 Conformal Killing fields

We denote by LV g the Lie derivative of the metric g = 〈., .〉 in direction of the
vector field V , i.e. LV g(X,Y ) = 〈∇XV, Y 〉+ 〈X,∇Y V 〉. A vector field V is a conformal
Killing field if the local flow consists of conformal transformations. This is equivalent to
LV g = 2hg with a function h. By taking traces one obtains h = div V/n. V is homothetic
if h is a constant and it is isometric if LV g = 0 . V is closed if the corresponding 1–form
ω = 〈V, .〉 is closed . Hence if V is a conformal closed Killing field then for every point
p ∈M there is a neighborhood U and a function F on U such that V = ∇F on U . The
Hessian ∇2F (X,Y ) := 〈∇X∇F, Y 〉 = 1/2 L∇F g(X,Y ) then satisfies

∇2F =
∆F

n
g (2)

where ∆ is the Laplacian. H.W.Brinkmann showed in [7, §3] that nearby a regular point
of F the metric has a warped product structure. Y.Tashiro classifies in [19, lem.2.2]
the complete Riemannian manifolds with a non–constant function F on M satisfying
equation (2), i.e. ∇F is a conformal Killing field, cf. also W.Kühnel [14, thm.22] . Using
this result we show

Theorem 2 Let (Mn, g) be a complete Riemannian manifold with a non–isometric con-
formal closed Killing field V and let N be the number of zeros of V . Then N ≤ 2 and:

a) If N = 2, then M is conformally diffeomorphic to the standard sphere Sn.

b) If N = 1, then M is conformally diffeomorphic to euclidean space IRn.

c) If N = 0: Then there is a complete (n − 1)–dimensional Riemannian manifold
(M∗, g∗) and a function h : IR → IR+ such that the warped product IR ×h M∗ is a
Riemannian covering of M and the lift of V is h ∂

∂u .
If M is a proper quotient of IR×hM∗ then h is periodic with period ω > 0 and there is

an isometry γ of M∗ such that M = IR×hM∗/Γ , where the group Γ ∼= ZZ of isometries
is generated by (u, x) 7→ (u+ ω, γ(x)) .
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Proof . Let M̄ be the universal Riemannian covering of M with projection π : M̄ →
M , denote by V̄ the lift of V onto M̄ and by N̄ the number of zeros of V̄ . If G is the
group of deck transformations of M̄ such that M = M̄/G, then N̄ = ord(G)N . Since V̄
is closed there is a non–constant function F on M̄ with V̄ = ∇F and ∇2F = (∆F/n)g.
From Tashiro’s classification [19, lem.2.2] resp. [14, thm.21] it follows that N̄ ≤ 2 and
that the following cases occur:

a) N̄ = 2 , then M̄ is conformally diffeomorphic to Sn and since ∆F = div V̄ has
different signs in the critical points of F the vector field V̄ does not project onto a proper
quotient of Sn .

b) N̄ = 1 , then M̄ is conformally diffeomorphic to IRn and since N = 1 we have
M = M̄ .

c) N̄ = 0 , then M̄ is isometric to IR ×F ′ M̄∗ for a complete (n − 1)–dimensional
Riemannian manifold M̄∗ where F is a function of u alone, i.e. F (u, x) = F (u) and
V̄ = F ′ ∂∂u . Hence F ′ is also a function on M . M̄∗ is a connected component of the
submanifold F−1(F (p)) for a point p ∈ M̄ with F ′(p) 6= 0. Since V is not–isometric we
can assume in addition that F ′′(p) = div V̄ (p)/n 6= 0 . Then M∗ := π(M̄∗) is a connected
component of the submanifold F ′−1(F ′(π(p)) on M , IR×hM∗ is a Riemannian covering of
M and the projection π1 : IR×hM∗ →M can be identified with the normal exponential
map of the submanifold M∗ in M where h = F ′.

If M is a proper quotient then h is periodic since V̄ = h ∂
∂u is the lift of V . Let ω > 0

be the greatest number such that the restriction π1|(−ω/2, ω/2)×hM∗ is injective, then
γ : M∗ →M∗ is defined by γ(x) = π1(−ω, x).

Remark 1 a) The cases a) and b) of theorem 2 are proved by Y.Kerbrat [13].
J.P.Bourguignon proves these cases in [6] under the additional assumption that the vector
field is complete. Theorem 2 can also be found in W.Kühnel [15] .

b) If in case c) of theorem 2 M is a proper quotient then : Either the isometry γ is
of finite order, then S1 ×hM∗ is a Riemannian covering and all geodesics normal to M∗
are closed or otherwise no normal geodesic closes.
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3 Generalized Killing spinors with imaginary
Killing function

(3.1) We assume that ψ is a generalized Killing spinor with imaginary Killing function
ib. From the definitions f := 〈ψ,ψ〉 and 〈V,X〉 := i〈ψ,X ·ψ〉 it follows immediately that

∇f = 2bV , ∇XV = 2bfX . (3)

Hence V is closed and since LV g = 4bfg we have that V is a non–isometric conformal
Killing field. It follows from equation (3) that qψ := f2 − ‖V ‖2 is constant. Let

Q(X) := ‖X · ψ − iψ‖2 = ‖X‖2f + 2〈V,X〉+ f ,

then X is a minimum of Q if X = −V/f and qψ = fQ(−V/f) ≥ 0 . Hence qψ is a
non–negative constant and if qψ = 0 then (−V/f) · ψ = iψ , cf. [10].

(3.2) Let (e1, . . . , en) be a local orthonormal frame, then Dψ =
∑n
i=1 ei · ∇eiψ is the

Dirac operator, ∇∗∇ψ = −
∑n
i=1∇ei∇eiψ +∇∇ei

eiψ is the connection Laplacian . We
obtain

Dψ = −ibnψ , D2ψ = −b2n2ψ − in∇b · ψ

and
∇∗∇ψ = −b2nψ − i∇b · ψ .

Then one obtains from Lichnerowicz’s formula D2 = ∇∗∇ + 1
4r where r is the scalar

curvature that ∇b · ψ = i
(
b2n+ r/(4n− 4)

)
ψ. Hence

|〈∇b, V 〉| = |i〈∇b · ψ,ψ〉| = ‖∇b‖f ≤ ‖∇b‖‖V ‖.

If b is non–constant then it follows that qψ ≤ 0 i.e. qψ = 0 .

Now we prove theorem 1 stated in the first section

Proof of Theorem 1.
a) If qψ = 0 then ‖V ‖ = f has no zero. By theorem 2c) M has the warped product

IR ×f M∗ of IR with a complete (n − 1)–dimensional manifold M∗ as a Riemannian
covering. Here f(u, x) = f(u) is a function of u ∈ IR alone and V = f ∂

∂u is the lift of

V . Since ∇f = f ′ ∂∂u = 2bV = 2bf ∂
∂u by equation (3) also b is a function of u alone and

b = f ′/(2f).
Since

g = du2 + f2(u)g∗ = f2(u)(dv2 + g∗)

with dv
du = 1

f2(u) we compare the conformally equivalent metrics g and g = dv2 + g∗ , i.e.

g is the product metric on IR ×M∗ . Let f = exp(−h) . g induces on IR×M∗ a spinor
bundle S, such that S −→ S, φ 7→ φ = exp(h/2)φ is an isometry. Let ψ1 := exp(h/2)ψ ,
then it follows from the formula [1, 3.2.4] :

∇Xψ1 = ∇Xψ1 −
1

2
X · ∇h · ψ1 −

1

2
X(h)ψ1

that ψ1 is a parallel spinor of IR×M∗ , cf. [17, §4]. This implies that M∗ carries a parallel
spinor , cf. [3, lem.4] .
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b) If qψ > 0 then b is a non–zero constant by (3.2), i.e. ψ is a Killing spinor with
imaginary Killing number b and (M, g) is an Einstein manifold with negative scalar
curvature r = −4n(n − 1)b2 . From equation (3) it follows that ∇2f = 4b2fg , hence
∇f = 2bV is a non–homothetic conformal Killing field. If f has no critical point then by
theorem 2 resp. the classification by Y.Tashiro [19, lem.2.2] we have that M is isometric
to IR×f ′ M∗ where f is a function of u ∈ IR alone. f satisfies f ′′ = 4b2f and since f and
f ′ both have no zero f ′ = 2bf . Then qψ = 0 .

Hence f has a critical point, so by theorem 2 M is conformally diffeomorphic to
a simply–connected space of constant sectional curvature. Since M is Einstein with
r = −4n(n− 1)b2 it follows that M is isometric to Hn(−4b2) .

Remark 2 Since in theorem 2 M∗ is Ricci flat it follows from the formulae for the
curvature tensor of a warped product that the scalar curvature r of M is given by

r = −(n− 2)(n− 1)
f ′2

f2
− 2(n− 1)

f ′′

f
(4)

= −4n(n− 1)b2 − 4(n− 1)b′ (5)

Proof of Corollary 2 .
a) Let y := fn/2 then one obtains from equation (4) y′′ + rny/(4n− 4) = 0 . If r ≥ 0

then y has a zero since f is non–constant. This contradicts f > 0 .

b) For constant r it follows from a) that r < 0. Let a := 1/2(−rn/(n − 1))1/2, i.e.
y′′ − a2y = 0 . Since y′/y = nb is non–constant y′ has a zero . Let y′(0) = 0 then
y(u) = y(0) cosh(au) . By scaling g∗ we can assume y(0) = 1.
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