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1 Statement of results

We consider complete Riemannian spin manifolds (M, g) with complex spinor bundle
S. S carries a hermitian product (.,.) which we assume to be complex conjugate linear
in the first argument and complex linear in the second argument. The Clifford bundle
CIl(M) of M acts on S by Clifford multiplication which we denote by X - ¢ for a vector
field X and a spinor v . Clifford multiplication by a tangent vector X is skew symmetric
with respect to (.,.) . The Levi-Civita connection V on M induces the spinor connection
on S which we also denote by V, cf. [1]. A non-trivial spinor ¢ is called generalized
Killing spinor with Killing function X if

Vxt=AX -9 (1)

for all vector fields X and for a complex—valued function A on M . In particular v is a
twistor spinor , i.e. Vxi + %X - D =0 for all X , where D is the Dirac operator. If A
is constant then v is a Killing spinor with Killing number A and (M™,g) is an Einstein
manifold of scalar curvature r = 4n(n — 1)A? | see [8] or [5]. Hence three cases occur: If
A = 0 then 1 is parallel and M is Ricci flat. If A> > 0 then \ is real, M is compact and
A2n? = rn/(4n — 4) is the smallest eigenvalue of the square D? of the Dirac operator D
by results of T.Friedrich [9] and O.Hijazi [12]. If A?> < 0 then X is an imaginary number.
H.Baum classified in [2], [3] and [4] these manifolds, see Corollary 1. From results of
O.Hijazi [12, cor.3.6] and A.Lichnerowicz [16, thm.1] it follows that a generalized Killing
spinor is either a Killing spinor with real Killing number or A is an imaginary function.

From now on we consider the second case, i.e. we assume \ = ib for a not everywhere
vanishing real function b.The function f := (¢,1)) is positive everywhere since equation
(1) is a first order linear ordinary differential equation along a geodesic, cf. [16, prop.1].
The vector field V on M defined by (V, X) = (), X - ¢) for all X is a conformal non—
isometric closed Killing field, cf. §3 .

T.Friedrich introduced in [10] the function g, := f? — ||V/||? which is a non-negative
constant. In [17, thm.] , [18, thm.4] A.Lichnerowicz proved that locally M is the warped
product of an open interval and a manifold carrying a parallel spinor if g, = 0 and that
M is globally isometric to a warped product of the real line R with a complete manifold
carrying a parallel spinor if ¢, = 0 and b has no zero [17, prop.2] , [18, prop.2] .

We obtain the above quoted results of H.Baum and A.Lichnerowicz and the global
structure of the manifold M from the classification of complete Riemannian manifolds
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carrying a non—isometric conformal closed Killing field. This classification is given in the-
orem 2, related results are due to H-W.Brinkmann [7], Y.Tashiro [19], J.P. Bourguignon
[6], Y.Kerbrat [13] and W.Kiihnel [14] [15]. In [15] W.Kiihnel studies the complete
Riemannian manifolds of constant scalar curvature carrying a non—isometric conformal
closed Killing field. Corollary 2 b) contains an explicit example.

Our main result is

Theorem 1 Let M be a complete Riemannian spin manifold with a generalized Killing
spinor with an imaginary Killing function, i.e.

Vxyp=ibX -9

with a not everywhere vanishing real function b .

a) If gy = 0, then there is a positive function h on R and a complete (n —1)-
dimensional Riemannian spin manifold (M., g.) carrying a parallel spinor such that the
warped product R xj, M, (with metric g = du® + h*(u)g.) is a Riemannian covering of
M . Here f = (1,%) and b are functions of w € R alone, f(u,z) = f(u) = h(u), (u,z) €
R x M, and b= f'/(2f).

If M is a proper quotient of R x ¢ M, then f is periodic with period w > 0 and there
is an isometry v of M, such that M is isometric to R Xy M, /T where the group T = 7Z
of isometries is generated by (u,z) — (u + w,y(x)).

b) If gy > 0, then M is isometric to the n—dimensional hyperbolic space H"(—4b%)
of constant sectional curvature —4b? .

Hence gy = 0 iff the conformal closed vector field V' has no zero, i.e. is inessential.
A conformal Killing field is inessential, if it becomes an isometric Killing field after a
conformal change of the metric.

H.Baum shows in [3, thm.1] that the n—dimensional hyperbolic space carries Killing
spinors with imaginary Killing number with g, = 0 for all n and with g, > 0 if n # 3,5.
It follows from [3, lem.4] that the warped product R x; M, of a manifold M, carrying
a parallel spinor with an arbitrary positive function f on IR carries a generalized Killing
spinor ¢ with imaginary Killing function ib with ¢, =0 , where b = f'/(2f) .

A.Lichnerowicz describes in [17, §5] , [18, §10] the following example : Let M, be
a compact manifold carrying a parallel spinor (e.g. a Ks-surface with the Calabi—Yau
metric or a flat torus with the canonical spin structure) and let f : S' — R be a
positive non-constant periodic function and b = f’/(2f). Then M = S x; M, is a
compact spin manifold with a generalized Killing spinor with Killing function ¢b. From
theorem 1 it follows that up to Riemannian quotients and twisting these are all such
compact manifolds.

In [11] K.Habermann gives another characterization of hyperbolic space, she shows
that a complete n—dimensional Einstein spin manifold with negative scalar curvature
r = kn(n — 1) and a non—parallel twistor spinor ¥ whose length function f = (¥, v)
attains a minimum is the hyperbolic space H™ (k).

From theorem 1 we obtain

Corollary 1 (H.Baum [2], [3]) If (M, g) is a complete Riemannian manifold carrying a
Killing spinor i with imaginary Killing number ib,b € R — {0} then M is isometric to



a) R X exp2bu) M« where M, is a complete (n — 1)-dimensional Riemannian manifold
carrying a parallel spinor, if g, =0 .

b) Hyperbolic space H™"(—4b?) , if ¢ >0 .
From the formula for the scalar curvature of a warped product we obtain

Corollary 2 Let M be a complete Riemannian manifold which carries a generalized
Killing spinor with imaginary Killing function ib , b0 .

a) There is a point of negative scalar curvature.

b) If b is non—constant, if the scalar curvature r is constant and
a:=1/2(-rn/(n —1))}/? then M is isometric to R x ; M, where M, carries a parallel

spinor and f(u) = (cosh(au))z/”, hence b(u) = atanh(au)/n .

Acknowledgment: 1 am grateful to J.P.Bourguignon, O.Hijazi, W.Kiihnel and
T.Friedrich for helpful comments on the first version of this paper.

2  Conformal Killing fields

We denote by Lyg the Lie derivative of the metric ¢ = (.,.) in direction of the
vector field V', i.e. Lyg(X,Y) = (VxV,Y) 4+ (X, Vy V). A vector field V is a conformal
Killing field if the local flow consists of conformal transformations. This is equivalent to
Ly g = 2hg with a function h. By taking traces one obtains h = div V/n. V is homothetic
if h is a constant and it is isometric if Lyyg =0 . V' is closed if the corresponding 1-form
w = (V,.) is closed . Hence if V is a conformal closed Killing field then for every point
p € M there is a neighborhood U and a function F on U such that V = VF on U . The
Hessian V2F(X,Y) := (VxVF,Y) =1/2 Lyrg(X,Y) then satisfies

2 —_
VF—ng (2)

where A is the Laplacian. H.-W.Brinkmann showed in [7, §3] that nearby a regular point
of F the metric has a warped product structure. Y.Tashiro classifies in [19, lem.2.2]
the complete Riemannian manifolds with a non—constant function F' on M satisfying
equation (2), i.e. VF is a conformal Killing field, cf. also W.Kiihnel [14, thm.22] . Using
this result we show

Theorem 2 Let (M™,g) be a complete Riemannian manifold with a non—isometric con-
formal closed Killing field V' and let N be the number of zeros of V.. Then N <2 and:

a) If N =2, then M is conformally diffeomorphic to the standard sphere S™.
b) If N =1, then M is conformally diffeomorphic to euclidean space R™.

¢) If N = 0: Then there is a complete (n — 1)-dimensional Riemannian manifold
(M., g.) and a function h : R — RY such that the warped product R x;, M, is a
Riemannian covering of M and the lift of V is ha% .

If M is a proper quotient of R xp, M, then h is periodic with period w > 0 and there is
an isometry v of M, such that M = R xp, M, /T | where the group T' = 7Z of isometries
is generated by (u,x) — (u+ w,vy(x)) .



Proof . Let M be the universal Riemannian covering of M with projection m : M —
M, denote by V the lift of V onto M and by N the number of zeros of V . If G is the
group of deck transformations of M such that M = M /G, then N = ord(G)N . Since V
is closed there is a non-constant function F' on M with V = VF and V2F = (AF/n)g.
From Tashiro’s classification [19, lem.2.2] resp. [14, thm.21] it follows that N < 2 and
that the following cases occur:

a) N =2, then M is conformally diffeomorphic to S™ and since AF = div V has
different signs in the critical points of F' the vector field V' does not project onto a proper
quotient of S™ .

b) N = 1, then M is conformally diffeomorphic to IR" and since N = 1 we have

M=M.

¢) N = 0, then M is isometric to R x M, for a complete (n — 1)-dimensional
Riemannian manifold M, where F is a function of u alone, i.e. F(u,z) = F(u) and
V= F’% . Hence F’ is also a function on M. M, is a connected component of the
submanifold F~1(F(p)) for a point p € M with F’(p) # 0. Since V is not-isometric we
can assume in addition that F'(p) = div V(p)/n # 0. Then M, := 7(M,) is a connected
component of the submanifold F'~!(F’(7(p)) on M, R x}, M, is a Riemannian covering of
M and the projection m : R xp, M, — M can be identified with the normal exponential
map of the submanifold M, in M where h = F’.

If M is a proper quotient then h is periodic since V = h% is the lift of V. Let w > 0
be the greatest number such that the restriction m |(—w/2,w/2) X}, M, is injective, then
v : M, = M, is defined by y(z) = m(—w, x).

Remark 1 a) The cases a) and b) of theorem 2 are proved by Y.Kerbrat [13].
J.P.Bourguignon proves these cases in [6] under the additional assumption that the vector
field is complete. Theorem 2 can also be found in W.Kiihnel [15] .

b) If in case ¢) of theorem 2 M is a proper quotient then : Either the isometry ~ is
of finite order, then S x;, M, is a Riemannian covering and all geodesics normal to M,
are closed or otherwise no normal geodesic closes.



3 Generalized Killing spinors with imaginary
Killing function

(3.1) We assume that 9 is a generalized Killing spinor with imaginary Killing function
ib. From the definitions f := (¢, v) and (V, X) := i(¢), X - ¢) it follows immediately that

Vi=20V , VxV=2bfX . (3)

Hence V is closed and since Ly g = 4bfg we have that V is a non—isometric conformal
Killing field. It follows from equation (3) that g, := f? — ||V||* is constant. Let

QX) =X ¢ —w|? = |XIPf+2V.X) + f ,

then X is a minimum of @ if X = —V/f and ¢y = fQ(—V/f) > 0. Hence ¢y is a
non-negative constant and if ¢, = 0 then (=V/f) -y =14y , cf. [10].

(3.2) Let (e1,...,en) be alocal orthonormal frame, then Dy =Y | e; - V., 4 is the
Dirac operator, V*Vip = = 3" | V., Ve, + Vv, e, 1s the connection Laplacian . We
obtain

Dt = —ibnap , D*h = —b*n*h —inVb- ¢

and

V*Vy = —b?np —iVb -1 .

Then one obtains from Lichnerowicz’s formula D? = V*V + %7“ where r is the scalar
curvature that Vb -1 =i (b*n +r/(4n — 4)) 1. Hence

[(Vo, V)| = [i{Vb - ¢, )| = VOl f < [[VBI[[[V].

If b is non—constant then it follows that ¢, < 01ie. g, =0 .
Now we prove theorem 1 stated in the first section

Proof of Theorem 1.

a) If g, = 0 then ||V|| = f has no zero. By theorem 2c¢) M has the warped product
R x5 M, of R with a complete (n — 1)-dimensional manifold M, as a Riemannian
covering. Here f(u,z) = f(u) is a function of v € R alone and V = fa% is the lift of
V. Since Vf = f’% =2bV = 2bfa% by equation (3) also b is a function of u alone and
b= f/2f).

Since

g =du® + f*(u)g. = f*(u)(dv® + g.)

with g—z = f%(u) we compare the conformally equivalent metrics g and § = dv® + g. , i.e.
g is the product metric on R x M, . Let f = exp(—h) . g induces on R x M, a spinor
bundle S, such that S — S, ¢ + ¢ = exp(h/2)¢ is an isometry. Let ¥ := exp(h/2)v ,
then it follows from the formula [1, 3.2.4] :

Vi = Vxhi — 5 X Vi — L X ()i

that 1), is a parallel spinor of R x M, , cf. [17, §4]. This implies that M, carries a parallel
spinor , cf. [3, lem.4] .



b) If g, > 0 then b is a non-—zero constant by (3.2), i.e. ¢ is a Killing spinor with
imaginary Killing number b and (M,g) is an Einstein manifold with negative scalar
curvature 7 = —4n(n — 1)b? . From equation (3) it follows that V2f = 4b%fg , hence
V f = 20V is a non-homothetic conformal Killing field. If f has no critical point then by
theorem 2 resp. the classification by Y.Tashiro [19, lem.2.2] we have that M is isometric
to R x g+ M, where f is a function of u € R alone. f satisfies f” = 4b? f and since f and
/" both have no zero f" = 2bf . Then ¢, =0 .

Hence f has a critical point, so by theorem 2 M is conformally diffeomorphic to
a simply—connected space of constant sectional curvature. Since M is Einstein with
r = —4n(n — 1)b? it follows that M is isometric to H™(—4b?) .

Remark 2 Since in theorem 2 M, is Ricci flat it follows from the formulae for the
curvature tensor of a warped product that the scalar curvature r of M is given by

= —(n—2)(n— I~ n— 7
ro= —(n=2)(n-1) 72 2(n—1) 7 (4)
= —4n(n— 1)b2 —4(n -1V (5)

Proof of Corollary 2 .
a) Let y := f™/2 then one obtains from equation (4) y" +rny/(4n—4) =0 . If r > 0
then y has a zero since f is non—constant. This contradicts f > 0 .

b) For constant r it follows from a) that » < 0. Let a := 1/2(—rn/(n — 1))'/2, i.e.
y" —a?y = 0 . Since y'/y = nb is non—constant 3’ has a zero . Let y'(0) = 0 then
y(u) = y(0) cosh(au) . By scaling g, we can assume y(0) = 1.
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