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1 Introduction

Conformal symmetries, conformal transformations and conformal vector fields are
of great importance in general relativity, as is well known since the early 1920’s,
see [PR], [Ha]. Brinkmann [Br] investigated in 1925 conformal transformations
from one Einstein space to another, Riemannian or pseudo–Riemannian. Later
conformal vector fields on Einstein spaces (arising from local 1–parameter groups
of conformal diffeomorphisms) were reduced to the case of gradient fields, leading
to a very fruitful theory of conformal gradient fields in general. Conformal vector
fields also occur as associated vector fields of twistor spinors, see [Ra] and [KR1].

A conformal vector field is essential if it is not an isometric field for any con-
formally equivalent metric. In particular conformal gradient fields with a zero are
essential. The existence of a conformal gradient field V = ∇ψ is equivalent to the
existence of a solution of the equation

∇2ψ = λ g (1)

for some function λ which does not vanish identically. Here ∇2ψ denotes the
hessian of the function ψ and g denotes the metric. There are three types of
complete Riemannian manifolds carrying a conformal gradient field according to
the number N ∈ {0, 1, 2} of zeros. If N = 2 then M is conformally equivalent to
the standard sphere, if N = 1 it is conformally equivalent to the Euclidean space or
to the hyperbolic space, if N = 0 it is conformally equivalent to a product of a real
interval with an (n−1)–dimensional manifold M∗. These results are essentially due
to Tashiro [Ta], Bourguignon [Bo], Kerbrat [Ke1], compare [Kue1], [Lf1] and [Ra].
If in addition the manifold is Einstein and N ≥ 1 then the metric has constant
sectional curvature, cf. [YN], [Ta], [Ka].

In the case of pseudo–Riemannian manifold with indefinite metric, the situation
turns out to be fairly different. Local results in the case of conformal gradient fields
are due to Brinkmann [Br] and Fialkow [Fi]. Corresponding global results are rare.
Kerbrat [Ke2] studies the equation ∇2ψ = ψ g on a complete manifold of signature
(k, n−k) and shows the following: If the conformal gradient field∇ψ has a zero then
M is isometric to the pseudo–hyperbolic space Snk (−1) := {x ∈ IRn+1

k | 〈x, x〉 = −1}
if k ≥ 2, and it is an isometric covering of Sn1 (−1) if k = 1.

In the present paper we study pseudo–Riemannian manifolds (M, g) with indef-
inite metric carrying a non–isometric conformal gradient field V = ∇ψ with a zero
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or, equivalently, a non–constant solution ψ with a critical point of Equation ( 1).
In a rough formulation our main results are the following existence and classifica-
tion results. We use the following completeness assumption: A pseudo–Riemannian
manifold with a gradient field V = ∇ψ is C–complete if every point on the manifold
can be joined with a critical point of ψ (i.e. a zero of V ) by a geodesic and if every
geodesic through a critical point of ψ is defined on IR.

Theorem A 1.) For any signature (k, n−k) with 1 ≤ k ≤ n− 1 there exists a
smooth pseudo–Riemannian manifold of dimension n carrying a complete conformal
gradient field V = ∇ψ with an arbitrary prescribed number N ≥ 1 of isolated zeros
(including the case of infinitely many zeros in two different ways corresponding to
IN or ZZ). These manifolds are C–complete.

2.) For N = ∞ there exist analytic examples.

3.) For any N there are analytic examples where the vector field is complete but
the metric is not C–complete.

4.) For any even number N there exists an analytic and C–complete example
carrying a complete conformal field which is closed, i.e. locally a gradient field.

For a precise formulation see Theorems 4.3 and 5.5. The examples in Part 2.)
can be described as the complete manifolds carrying a solution ψ of the pendulum
equation ∇2ψ + ω2 sinψ = 0 for some positive constant ω > 0 with at least one
critical point, cf. [KR2].

Part 3.) follows from Theorem 5.5 since one can cut out zeros of the complete
vector field. For N = 1, 2 the pseudo–Euclidean space resp. the pseudo–hyperbolic
space S(−1) provide analytic examples. On S(−1) the vector field is not complete.
Hence we obtain examples of manifolds carrying complete essential conformal fields
with arbitrary number N of zeros. On a Riemannian manifold a complete essential
conformal field has only 1 or 2 zeros and this occurs only on the sphere or Euclidean
space with the standard conformal structure. This was shown by Alekseevskii [Al1],
see also Ferrand [F1], [F2]. The compact case was proved by Obata [Ob] and
Lelong–Ferrand [LF], see also [Lf2]. In the indefinite case there are also homothetic
essential conformal fields on non–flat spaces, cf. [Al2].

Theorem B Assume that Mn
k is a C–complete pseudo–Riemannian manifold

of signature (k, n− k) with 1 ≤ k ≤ n− 1 carrying a nontrivial conformal gradient
field with at least one zero. Then Mn

k is (locally) conformally flat.

Theorem B is a consequence of Theorem 6.3.

Theorem C Let Mn
k be a geodesically complete pseudo–Riemannian manifold

of signature (k, n) with 2 ≤ k ≤ n − 2 carrying a non–trivial conformal gradient
field with at least one zero.

1. The diffeomorphism type of Mn
k is uniquely determined by the number N of

zeros. Here in the case of infinitely many zeros we have to distinguish between
IN and ZZ.
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2. Every manifold is conformally equivalent to a standard manifold M(J)(α, β)
defined at the end of section 4.

3. If in addition the vector field is complete then the conformal type is uniquely
determined by the number N of zeros.

Theorem C follows from Theorem 6.4 and Theorem 6.5. In the case k = 1
the disconnectedness of the geodesic distance spheres opens up more possibilities
for the global conformal types which can be described by the gluing graph, cf.
Remark 6.6. In the Riemannian case part 3.) of Theorem C is given in [Bo]. We
show in Corollary 6.9 that a complete manifold of constant scalar curvature with a
conformal gradient field with a zero has constant sectional curvature. For related
results in the Riemannian case see [Lf1].

The paper is organized in the following way: Section 2 presents basic results
about closed conformal vector fields in the general context of pseudo–Riemannian
geometry. Section 3 gives a discussion of the behaviour of the function resp. the
vector field near a critical point resp. near a zero. This relies on a thorough study of
geodesic polar coordinates in pseudo–Riemannian manifolds. The Taylor expansion
of the function ψ in spacelike and timelike directions leads to a pair ψ+, ψ− of real
functions satisfying certain compatibility conditions. In Section 4 examples are
constructed, based on building blocks. Each building block contains exactly one
zero of the vector field. Analytic examples with infinitely many critical points will
be constructed via elliptic functions in Section 5. In Section 6 the local and global
conformal types of pseudo–Riemannian manifolds with conformal gradient fields
are investigated, and the classification Theorem C is obtained.

Acknowledgment. We thank Jost Eschenburg for helpful discussions and the ref-
eree for his suggestions. This work was completed when the first author was a guest
of the Mathematics Department of the University of Augsburg. The second author
is supported by a Heisenberg fellowship of the Deutsche Forschungsgemeinschaft.

2 Closed conformal vector fields

We consider an n–dimensional connected pseudo–Riemannian manifold (M, g) car-
rying a closed conformal non–isometric vector field V (We also use the symbol
g = 〈., .〉). Hence there is a smooth (C∞–) function λ ∈ C∞(M) which does not
vanish identically, such that

∇XV = λX (2)

for all vector fields X. Here ∇ denotes the Levi–Civita connection on M . Then
one can find for every point p ∈M a neighborhood U and a function ψ ∈ C∞(M)
such that V = ∇ψ where ∇ψ denotes the gradient of ψ. It follows that the Hessian
∇2

X,Y ψ := 〈∇X∇ψ, Y 〉 satisfies:

∇2ψ = λg . (3)

If (e1, . . . , en) is an orthonormal basis of the tangential space TpM , i.e. 〈ei, ej〉 =
εiδij , εi ∈ {±1} then we obtain for the Laplacian ∆ψ respectively the divergence
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divV :

∆ψ = divV =
n∑
i=1

〈∇eiV, ei〉εi = λ · n . (4)

From Equation ( 2) we obtain immediately the following Ricci identity for the
Riemannian curvature tensor R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z:

R(X,Y )V = X(λ)Y − Y (λ)X . (5)

By contraction we obtain for the Ricci tensor:

Ric(X,V ) = (1− n)X(λ) . (6)

An easy but useful observation is the following

Proposition 2.1 (cf. [Ke2, Prop.1] ) Let V be a closed conformal vector field and
let γ : I = [0, a) −→ M be a geodesic on M with V (γ(0)) = k · γ′(0) for some
k ∈ IR. Denote by θγ(t) :=

∫ t
0 λ(γ(s))ds, then

V (γ(t)) = (k + θγ(t))γ′(t) . (7)

Proof. Let (e1(t), . . . , en(t)) be a parallel orthonormal basis field along γ. Then
γ′(t) =

∑n
i=1 aiei(t) , ai ∈ IR and V (γ(t)) =

∑n
i=1 φi(t)ei(t) , φi ∈ C∞(I) , φi(0) =

kai. Then
∇
dt
V (γ(t)) =

n∑
i=1

φ′i(t)ei(t) = λ(γ(t))γ′(t) ,

hence φ′i = aiλ respectively φi(t) = (k + θγ(t))ai 2

Remark 2.2 a) If V (γ(0)) = 0 then V (γ(t)) = θγ(t)γ′(t).

b) If V = ∇ψ, let ψ(t) := ψ(γ(t)) , λ(t) := λ(γ(t)), then it follows from ψ′′(t) =
∇2

γ′,γ′ψ that
ψ′′(t) = λ(t)〈γ′, γ′〉 . (8)

Hence if 〈γ′, γ′〉 6= 0, then

∇ψ(γ(t)) =
(
k +

ψ′(t)− ψ′(0)
〈γ′, γ′〉

)
γ′(t) . (9)

If in addition γ(0) is a critical point of ψ, i.e. k = 0,∇ψ(γ(0)) = 0:

∇ψ(γ(t)) = ψ′(t)
γ′(t)
〈γ′, γ′〉

. (10)

If γ is a null geodesic then ψ′(t) = 〈∇ψ, γ′〉(t) = (k + θγ(t))〈γ′, γ′〉 = 0, hence
ψ(t) = ψ(0) for all t.

c) The last statement is a particular case of the fact that for any conformal
vector field V (not necessarily closed) and every null geodesic γ the product 〈V, γ′〉
is constant along the geodesic γ. If V = ∇ψ then this shows, that

d2

dt2
ψ(γ(t)) =

d

dt
〈∇ψ, γ′〉 = 0

hence ψ(γ(t)) = 〈∇ψ, γ′〉(γ(0)) · t+ ψ(γ(0)).
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Proposition 2.3 [Ke2, Prop.2] Let V be a non–trivial closed conformal vector field
on the n–dimensional pseudo–Riemannian manifold (M, g).

1. If V (p) = 0, then divV (p) = n · λ(p) 6= 0, in particular all zeros of V are
isolated.

2. Denote by C = C(M, g) the vector space of closed conformal vector fields, then
dim C ≤ n+ 1.

Proof. 1.) Let γ : I −→ M be a geodesic with γ(0) = p and let θγ(t) be the
function from Proposition 2.1. It follows from Equation ( 6) and Proposition 2.1
that the function θγ satisfies the following differential equation:

θ′′γ(t) =
d

dt
λ(γ(t)) = γ′(λ)(t) =

1
1− n

Ric(γ′, V ) = (11)

=
θγ

1− n
Ric(γ′, γ′) . (12)

Since V (γ(0)) = 0 we have θγ(0) = 0. If θ′γ(0) = λ(p) = 0 then θγ vanishes identi-
cally for all geodesics γ starting form p. Hence V vanishes in an open neigborhood
of p where then also λ vanishes. Therefore the set

A := {q ∈M |V (q) = 0} ∩ {q ∈M |λ(q) = 0}

is an open and closed subset of M . Hence A = ∅ since we assume V to be non–
trivial.

It follows that λ(p) = θ′γ(0) 6= 0 for all geodesics starting from the zero p of V .
Since V (γ(t)) = θγ(t)γ′(t) by Proposition 2.1 it follows that p is an isolated zero of
V .

2.) For every p ∈M the linear mapping

V ∈ C(M, g) 7→ (V (p),divV (p)) ∈ TpM ⊕ IR

is injective, since by 1.) it follows from V (p) = 0 and divV (p) = 0 that V vanishes
identically 2

In the sequel we will show that the metric in a neighborhood of a point where
V is not null has the form of a warped product I ×f M∗, i.e. the metric g on the
product I ×M∗ has the form

g = ηdt2 + f2(t)g∗ , η = ±1 .

Here (M∗, g∗) is a pseudo–Riemannian manifold and f is a nowhere vanishing C∞–
function on the interval I.

Remark 2.4 a) A consequence is this: For no conformally equivalent metric the
vector field V becomes an isometric (Killing) field, i.e. V is an essential conformal
field. This follows since the value divV (p) of a conformal vector field at a zero p is
a conformal invariant.

b) If the dimension of the space of closed conformal fields is maximal, i.e.
dimC(M, g) = n + 1, then the manifold has constant sectional curvature. This
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can be shown as follows: At first it follows from dimC(M, g) ≥ 2 that there is a
k ∈ IR such that for all V ∈ C(M, g) the function ψ = divV satisfies ∇2ψ = kψ · g,
cf. [Ke2, Prop.4]. Then one can use arguments as in the proof of [Ke2, Thm.6]
resp. of Corollary 6.7 to show that the sectional curvature is constant.

Lemma 2.5 Let ∂t be the unit tangent vector in direction of the first factor of the
product I ×M∗ and let X,Y, Z be lifts of vector fields on M∗. Here I denotes an
open interval in IR. Denote by ∇∗,R∗,Ric∗, ρ∗ the Levi–Civita covariant derivative,
the Riemannian curvature tensor and the normalized scalar curvature of (M∗, g∗).
(The normalized scalar curvature of the standard sphere with sectional curvature 1
is also 1). Then we have the following formulae for the corresponding geometric
quantities ∇,R,Ric, ρ of the warped product metric

(I, ηdt2)×f (M∗, g∗) =
(
(I ×M∗) ,

(
g = ηdt2 + f2(t)g∗

))
:

1.

∇∂t∂t = 0 (13)

∇∂tX = ∇X∂t =
f ′

f
X (14)

∇XY = −g(X,Y )
f

ηf ′∂t +∇∗
XY (15)

2.

R(X,Y )Z = R∗(X,Y )Z − f ′2

f2
η{g(Y, Z)X − g(X,Z)Y } (16)

R(X,Y )∂t = 0 (17)

R(X, ∂t)∂t = −f
′′

f
X (18)

3.

Ric(Y, Z) = Ric∗(Y, Z)− η

f2
{(n− 2)f ′2 + f ′′f}g(Y, Z) (19)

Ric(Y, ∂t) = 0 (20)

Ric(∂t, ∂t) = −(n− 1)
f ′′

f
(21)

4.

f2ρ =
n− 2
n

ρ∗ −
n− 2
n

f ′2η − 2
n
ηf ′′f (22)

This follows from the formulae for warped products, cf. [ON, ch. 7](observe
that the Riemannian curvature tensor in [ON] has the opposite sign) since

∇f = f ′η∂t , ∇2
∂t,∂tf = g(∇∂t∇f, ∂t) = f ′′ .

The formulae in the Riemannian case and the pseudo–Riemannian case coincide if
we consider in the case η = −1 the warped product g̃ = dt2 + f2(t)g̃∗ , g̃∗ = −g∗
which is anti–isometric to g (then ρ̃ = −ρ, ρ̃∗ = −ρ∗, . . .). In particular we obtain
as in the Riemannian case the
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Corollary 2.6 The warped product (I, ηdt2) ×f (M∗, g∗) is an Einstein metric (a
metric of constant sectional curvature) if and only if g∗ is an Einstein metric ( a
metric of constant sectional curvature) and f ′2 + ρηf2 = ηρ∗.

Lemma 2.7 [Fi] [Kue1, Lemma 12] Let (M, g) be a pseudo–Riemannian manifold.
Then the following conditions are equivalent:

1. There is a non–constant solution ψ of ∇2ψ = ∆ψ
n g in a neighborhood of a

point p ∈M with 〈∇ψ(p),∇ψ(p)〉 6= 0.

2. There is a neighborhood U of p , a C∞–function ψ : (−ε, ε) → IR with ψ′(t) 6=
0 for all t ∈ (−ε, ε) and a pseudo–Riemannian manifold (M∗, g∗) such that
(U, g) is isometric to the warped product(

(−ε, ε) , ηdt2
)
×ψ′ (M∗, g∗)) =

(
(−ε, ε)×M∗ , ηdt2 + ψ′(t)2g∗

)
(23)

where η := sign〈∇ψ(p),∇ψ(p)〉 ∈ {±1}.

Proof. 2.) ⇒ 1.): Define the function ψ : (−ε, ε) ×M∗ → IR , ψ(t, x) = ψ(t).
Then ∇ψ(t, x) = ψ′(t) · η · ∂t and ∇∂t∇ψ = ψ′′(t) · η · ∂t by Equation ( 13). Let X
be a lift of a vector field on M∗, then by Equation ( 14):

∇X∇ψ = ψ′′ · η ·X.

1.) ⇒ 2.) Let U be a neigborhood of p ∈ M with compact closure and with
〈∇ψ(q),∇ψ(q)〉 6= 0 for all q ∈ U . Hence c = ψ(p) is a regular value, let M∗ be the
connected component of ψ−1(c) containing p. Then there is an ε > 0 such that the
normal exponential map

exp⊥ : (−ε, ε)×M∗ →M, (t, x) 7→ exp(t∇ψ(x))

defines a diffeomorphism onto the image. Let q ∈ U , g(X,∇ψ(q)) = 0, then it
follows immediately that

Xg(∇ψ,∇ψ) = 2
∆ψ
n
g(∇ψ,X) = 0 . (24)

Hence 〈∇ψ,∇ψ〉 is constant along the level hypersurfaces ψ−1(c′) and the level
hypersurfaces ψ−1(ψ(exp(t, x0))) , t ∈ (−ε, ε) are parallel. Therefore they coincide
with the t–levels and ψ can be regarded as a function of t alone: ψ(t, x) = ψ(t) and
∇ψ(t, x) = ψ′(t) · η∂t as well as

∇2ψ = 2ψ′′ηg =
∆ψ
n

g .

g(∂t, ∂t) = η = sign〈∇ψ(p),∇ψ(p)〉 follows since t 7→ exp(t∇ψ(x)) is a geodesic.
Let X be a lift of a vector field on M∗, then g(∂t, X) = 0 by the Gauß–Lemma. If
X1, X2 are vectors tangential to M∗ at x0 and
Xi(t) = d exp(t, x0)(Xi), i = 1, 2 then

d

dt
|t=sg(X1, X2)(t) = L∂tg(X1, X2)(s) =

η

ψ′(s)
L∇ψg(X1, X2)(s) =

2η
ψ′(s)

∇2
X1(s),X2(s)ψ = 2

ψ′′(s)
ψ′(s)

g(X1, X2)(s) .
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Here LZg(X,Y ) = g(∇XZ, Y )+g(X,∇Y Z) is the Lie derivative of the metric in di-
rection of the vector field Z. Hence t 7→ (ψ′(t))−2g(X1, X2)(t) satisfies the differen-
tial equation ((ψ′)−2g(X1, X2))′(t) = 0. Hence if g∗(X1, X2) = (ψ′)−2(0)g(X1, X2)
the claim follows. The metric g∗ is non–degenerate: If g∗(X,Y ) = 0 for some X
and all Y tangent to M∗ then also g(X, ∂t) = 0. Since g is non–degenerate it follows
that X = 0 2

Remark 2.8 If ∇ψ is a null vector on an open set of points in M and if ∇2ψ is
a multiple of the metric then it easily follows that ∇2ψ = 0, i.e. ∇ψ is parallel.
Therefore this case does not have to be discussed if we assume that ∇ψ has at least
one zero. In general relativity these metrics are called plane gravitational waves,
see [Half] and [HE].

3 Geodesic polar coordinates on pseudo–Riemannian
manifolds

We denote by IRn
k = (IRn, 〈., .〉) the pseudo–Euclidean space of signature (k, n− k),

i.e. 〈x, x〉 = −(x2
1 + · · · + x2

k) + x2
k+1 + · · · + x2

n. For n ≥ 2, η ∈ {±1} let S(η) :=
{x ∈ IRn

k | 〈x, x〉 = η} and we denote by |x| :=
√
|〈x, x〉| ≥ 0 the pseudo–norm.

Then S(1) is the pseudo–sphere which is with the induced metric a pseudo–
Riemannian manifold of signature (k, n−1−k) and of constant sectional curvature
K ≡ 1. S(1) is diffeomorphic to IRk × Sn−1−k, we denote by S0(1) the connected
component of S(1) containing the point (0, 0, . . . , 0, 1). The pseudo–sphere S(1) is
connected for 1 ≤ k < n− 1, otherwise it consists of two components.

S(−1) is the pseudo–hyperbolic space which is with the induced metric a pseudo–
Riemannian manifold of signature (k−1, n−k) and of constant sectional curvature
K ≡ −1. It is diffeomorphic to Sk−1 × IRn−k, cf. [ON, p.110]. We denote by
S0(−1) the connected component of S(−1) containing the point (1, 0, . . . , 0). S(−1)
is connected if k ≥ 2, for k = 1 it consists of two components. In the Lorentzian
case k = 1, n = 4 the pseudo–sphere is also called de Sitter space–time, the pseudo–
hyperbolic space is called anti–de Sitter space–time. A region of de Sitter space
served in general relativity as a model in the steady state theory, which was proposed
in 1948 by Bondi–Gold and by Pirani, cf. [HE, ch. 5.2].

Let Σ := S0(1) ∪ S0(−1) and let C := {x ∈ IRn
k | 〈x, x〉 = 0} be the light

cone. Then we to introduce polar coordinates on IRn
k − C. We construct as in the

Riemannian case a map

y ∈ IRn
k − C 7→ Φ(y) = (r(y), φ(y)) ∈ IR× Σ

where r(y) is the radial part, i.e. the absolute value of r(y) equals the pseudo–norm
|y|. Here the image G := Φ(IRn

k − C) ⊂ IR × Σ of the polar coordinates depends
on the signature k and the dimension n, resp. it depends on the number q of
components of S(1) ∪ S(−1).

If 2 ≤ k ≤ n − 2 then q = 2 and Φ(y) = (sgn(〈y, y〉)|y|, |y|−1y), i.e. G =
(IR+ × S(1)) ∪ (IR− × S(−1)). If k = 1, n ≥ 3 then q = 3 and we set for 〈y, y〉 <
0 :Φ(y) = (η|y|, η|y|−1y) ∈ IR× S0(−1) where η ∈ {±1} and for 〈y, y〉 > 0 :Φ(y) =
(|y|, |y|−1y), i.e. G = IR × S0(−1) ∪ IR+ × S(1). If k = n − 1, n ≥ 3 then q = 3
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and we set for 〈y, y〉 > 0 :Φ(y) = (η|y|, η|y|−1y) ∈ IR × S0(1) where η ∈ {±1} and
for 〈y, y〉 < 0 :Φ(y) = (|y|, |y|−1y), i.e. G = IR × S0(1) ∪ IR+ × S(−1). Finally let
k = 1, n = 2. Then q = 4 and Φ(y) = (η|y|, η|y|−1y) ∈ IR× Σ, i.e. G = IR× Σ.

Then it is clear how to define geodesic polar coordinates around any point p ∈M
of an arbitrary pseudo–Riemannian manifold via the exponential map. Let Cp :=
{X ∈ TpM | 〈X,X〉 = 0} be the light cone at p. There is an open neigborhood Ũ
of the zero vector in TpM ∼= IRn

k such that

φ : Φ(Ũ − Cp) ⊂ G −→ U ⊂M

φ(r, x) = expp(Φ−1(r, x)) defines geodesic polar coordinates.
In these coordinates we consider warped product metrics of the form ηdr2 +

fη(r)2 · g1(x) , η ∈ {±1}, (r, x) ∈ G ⊂ IR × Σ, where g1 is the standard metric on
Σ. This implies that these metrics have around 0 an IO(k, n − k)–symmetry, here
IO(k, n−k) := {A ∈ End(IRn

k) | 〈A(y), A(y)〉 = 〈y, y〉} is the orthogonal group of IRn
k .

First we study which pairs of functions f± define a smooth metric in a neighborhood
of the origin, i.e. we give sufficient and necessary conditions for the functions ψ±,
such that the metric also extends onto the light cone on which r = 0:

Definition 3.1 1.) We define the following set F of two C∞–functions f =
(f+, f−) : IR → IR satisfying the following conditions: f (2m+1)

± (0) = 0 , f (2m)
+ (0) =

(−1)mf (2m)
− (0) for all m ≥ 0 and f ′′+(0) = −f ′′−(0) 6= 0.

2.) We define the set Af ⊂ IRn
k − C in geodesic polar coordinates (r, x) ∈ G ⊂

IR×Σ as follows: (r, x) ∈ Af if and only if f ′η , η = 〈x, x〉 does not vanish between
0 and r.

Remark 3.2 Let f± : IR → IR be two smooth (i.e. C∞–) resp. analytic functions.
Then the following conditions are equivalent:

1. f (2m+1)
± (0) = 0 , f (2m)

+ (0) = (−1)mf (2m)
− (0) for all m ≥ 0.

2. The function

F (t) :=

{
f+(

√
t) ; t ≥ 0

f−(
√
−t) ; t ≤ 0

is smooth resp. analytic in a neighborhood of 0.

Remark 3.3 Let f± be two real analytic functions defined on the real line whose
Taylor expansions around 0 are given by

f±(x) =
∞∑
j=0

(±1)j
a2j

(2j)!
x2j

with a2 6= 0, a2j ∈ IR for all j ≥ 2. Hence f± ∈ F . Then one can form a holomorphic
function F : U → IC whose expansion around 0 is given by

F (z) =
∞∑
j=0

a2j

(2j)!
z2j .
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F is defined on an open neigborhood U of the union IR ∪ i IR of the real and the
imaginary axis. Given such holomorphic function we can recover f± by f+(x) =
F (x) and f−(x) = F (ix) for all x ∈ IR, i =

√
−1. On the other hand given a

holomorphic function F : U → IC which satisfies F (z) = F (−z) and F ′′(0) 6= 0 we
can form f+(x) = ReF (x) , f−(x) = ReF (ix) for all x ∈ IR and obtain f± ∈ F .

Lemma 3.4 Let a smooth pseudo–Riemannian metric g be given in geodesic polar
coordinates (r, x) ∈ G ⊂ IR× Σ by

g(r, x) = ηdr2 +
f ′η(r)

2

f ′′η (0)2
g∗

with a C∞–metric g∗ on Σ. Then g∗ coincides with the standard metric g1 on Σ of
constant sectional curvature η.

Proof. Let σ be a plane spanned by the orthonormal vectors X,Y with ε =
〈X,X〉〈Y, Y 〉 = ±1 which are both orthogonal at r = r0 to the radial geodesic
r 7→ (r, x0) for a fixed x0 ∈ Σ. Let K(σ) resp. K∗(σ) be the sectional curvature
of σ in (M, g) resp. in (Σ, g∗). Then it follows from the formulae ( 16) for the
curvature of a warped product (see Lemma 2.5):

K(σ) = ε g(R(X,Y )Y,X) = ε g(R∗(X,Y )Y,X)− η

(
f ′′η (r0)
f ′η(r0)

)2

(25)

=
ε

f ′η(r0)2
(
K∗(σ)f ′′η (0)2 − η f ′′η (r0)2

)
. (26)

Since K∗(σ) is independent of r we obtain for r0 → 0 that K∗(σ) = η. Hence (Σ, g∗)
has constant sectional curvature η, i.e. g∗ is isometric to g1 2

Proposition 3.5 Let ψ± be two smooth real functions with ψ′′+(0) = −ψ′′−(0) 6= 0.
Then we define the functions ψ(r, x) = ψη(r) , λ(r, x) = λη(r) , λη = ηψ′′η on the
complement IRn

k − C of the light cone C in the pseudo–Euclidean space. Here
(r, x) ∈ G ∈ IR × Σ are geodesic polar coordinates of the pseudo–Euclidean space.
We also define the metric

g(r, x) := gψ(r, x) = ηdr2 +
ψ′η(r)

2

ψ′′η(0)2
g1 (27)

where η = 〈x, x〉 ∈ {±1} on the subset Aψ, on which ψ′η does not vanish, see
Definition 3.1 2.). Then the following holds:

1. The functions ψ, λ extend smoothly onto Bψ := Aψ ∪ C ⊂ IRn
k , i.e. onto the

light cone, if and only if ψ± ∈ F , i.e.

ψ
(2m+1)
± (0) = 0 , ψ(2m)

+ (0) = (−1)mψ(2m)
− (0) (28)

for all m ≥ 0.

2. The metric gψ extends smoothly onto the light cone if and only if ψ± ∈ F and
gψ is conformally flat.
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3. If ψ± ∈ F then the function ψ : Bψ → IR has a critical point in 0 and satisfies

∇2ψ = λ g

for some function λ.

Proof. 1.) Let x ∈ IRn
k be the standard coordinates of IRn

k . Then let γ(t) :=
x0+y0t with null vectors x0, y0 6= 0 satisfying 〈x0, y0〉 = 1/2, i.e. γ is a null geodesic
intersecting the light cone at time t = 0 in x0 and 〈γ(t), γ(t)〉 = t. Hence

ψ(γ(t)) =


ψ+(

√
t) ; t > 0

ψ−(
√
−t) ; t < 0

ψ+(0) = ψ−(0) ; t = 0
.

By Remark 3.2 ψ◦γ is smooth if and only if Equations ( 28) hold. If γ(t) = x0+y0t
for a null vector x0 and 〈x0, y0〉 = 1/2 is an arbitrary geodesic intersecting the light
cone at time t = 0 then 〈γ(t), γ(t)〉 = t+ 〈y0, y0〉t2. Then it follows that

ψ(γ(t)) =


ψ+(

√
t+ 〈y0, y0〉t2) ; t > 0

ψ−(
√
−t− 〈y0, y0〉t2) ; t < 0

ψ+(0) = ψ−(0) ; t = 0

is smooth since ψ± satisfy equations ( 28).

2.) For the following computation we assume for simplicity that 2 ≤ k ≤ n− 2.
In case of signature k = 1 resp. k = n− 1 similar arguments work. Then we have
(r, x) ∈ (IR+ × S(1)) ∪ (IR− × S(−1)) as range of the geodesic polar coordinates.
Instead of the functions ψ± we form a single function ψ∗ : IR → IR with ψ∗(t) :=
ψ+(t), t > 0 and ψ∗(t) := ψ−(−t), t < 0.

The function ψ′∗ has an expansion around 0 of the form

ψ′∗(r) = (sgnr)ψ′′∗(0+) r +O(r2) ,

therefore the function h : (r−, r+) → IR,

h(r) := (sgnr)
ψ′′∗(0+)
ψ′∗(r)

− 1
r

(29)

is continuous in 0. Then one verifies that

ρ = ρ(r) =
ρ0

r0
r exp

{∫ r

r0
h(ξ)dξ

}
(30)

satisfies

gψ(r, x) = ηdr2 +
ψ′∗(r)

2

ψ′′∗(0)2
g1(x) = F 2(r)

{
(sgnρ)dρ2 + ρ2 g1(x)

}
. (31)

Here the conformal factor is given by

F = F (r) =
r0
ρ0

ψ′∗(r)
ψ′′∗(0)

1
r

exp
{
−
∫ r

r0
h(ξ)dξ

}
. (32)

11



Hence the transformation (ρ, x) = (ρ(r), x), sgn〈x, x〉 = sgnr is a conformal trans-
formation. Let F±(r) := F (±r) , r ≥ 0, then one verifies that F± ∈ F if ψ± ∈ F .
Hence gψ extends onto the light cone since g0 does and since F (0) > 0.

3.) It follows from Lemma 2.7 that outside the light cone ∇2ψ = λg with
λ(r, x) = ψ′′〈x,x〉(r)〈x, x〉. Since ψ± ∈ F the function λ is smooth on Aψ ∪ C. 2

Proposition 3.6 Let (k, n) be the signature with 2 ≤ k ≤ n − 2. On the building
block B(a, b) = {y ∈ IRn

k | −a2 < 〈y, y〉 < b2} where a, b ∈ IR∪{∞} we consider the
metric gψ as defined in Proposition 3.5. for a continuous function ψ∗ on IR which is
smooth outside 0 and the pseudo–Euclidean metric g0 and we let ψ±(t) = ψ∗(±t).
We denote by r+, r− the first positive, resp. negative zero of ψ′∗, and we allow
r+,−r− = ∞. The functions ρ = ρ(r) , F = F (r) for an arbitrary r0 ∈ (0, r+) and
ρ0 > 0 are defined as in Equations ( 30) and ( 32). We set ρ± := ρ(r±), hence
±ρ± ∈ IR+ ∪ {∞}.

If r+ <∞ resp. r− > −∞ then ρ+ = ∞ resp. ρ− = −∞. Then (B(r−, r+), gψ)
and (B(ρ−, ρ+), g0) are conformally equivalent with conformal factor F , i.e.

gψ(r, x) = ηdr2 +
ψ′∗(r)

2

ψ′′∗(0)2
g1(x) = F 2(r)

{
(sgnρ)dρ2 + ρ2 g1(x)

}
(33)

with (ρ, x) = (ρ(r), x), sgn〈x, x〉 = sgnr.

Proof. It follows from Part 2.) of the proof of Proposition 3.5 that (B(r−, r+), gψ)
and (B(ρ−, ρ+), g0) are conformally equivalent with conformal factor F . It remains
to prove that ρ+ resp. ρ− is infinite if r+ resp. r− is finite. Now we assume that
r+ <∞. We use around the critical point q (which corresponds to r = r+) geodesic
polar coordinates (r̃, x̃) ∈ G̃. Then it follows that r̃ = r − r+ for r ∈ (0, r+) and
x̃ = x. The metric gψ around p̃ for r̃ < 0 is of the form

dr̃2 +
ψ′∗(r̃ + r+)2

ψ′′∗(r+)2
g1(x) .

It follows from Lemma 3.4 that

ψ′′∗(r+) = −ψ′′∗(0) .

Hence the function l : (0, r+) → IR

l(r) =
ψ′′∗(0)
ψ′∗(r)

+
1

r − r+
= h(r) +

1
r − r+

+
1
r

is continuous in r+ and we obtain from Equation ( 30):

ρ(r) = ρ0
r0 − r+
r − r+

exp
{∫ r

r0
l(ξ)dξ

}
.

Hence
lim

r → r+
r < r+

ρ(r) = ∞ .

The same argument shows that ρ− = −∞ provided r− > −∞. 2
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Remark 3.7 Since the conformal field ∇ψ under the conformal transformation of
Proposition 3.5 resp. Proposition 3.6 is mapped onto the radial field on B(ρ−, ρ+)
for every signature 1 ≤ k ≤ n− 1 we obtain that ∇ψ is complete if ρ− and ρ+ are
infinite.

Remark 3.8 In the case 2 ≤ k ≤ n− 2 we can also write the metric gψ as follows:
Instead of the coordinate r we choose s = 〈y, y〉 , y ∈ IRn

k , i.e. s = ηr2 resp.
ds/dr = 2ηr = 2η

√
ηs. The functions ψ± satisfy Equation ( 28) if and only if

φ(s) := ηψ′′η(0)−1ψη(
√
ηs) is smooth, cf. Lemma 3.2. Then we can write

gψ(s, x) =
ds2

4s
+ 4|s|φ′(s)2g1 . (34)

The pseudo–Euclidean metric in this coordinates is given by

ds2

4s
+ |s|g1 . (35)

We also have φ′(0) = 1/2. Then Proposition 3.5 shows that Equation ( 34) defines a
metric which extends onto the light cone if and only if φ is smooth and φ′(0) = 1/2.

Example 3.9 1.) We consider the pseudo–Euclidean space IRn
k . Its metric in

geodesic polar coordinates (r, x) around 0 is of the form:

−dr2 + r2 g1(x) , 〈x, x〉 < 0
dr2 + r2 g1(x) , 〈x, x〉 > 0 .

Then the function

ψ(r, x) = r2 , 〈x, x〉 < 0

ψ(r, x) = −r2 , 〈x, x〉 > 0

satisfies the equation ∇2ψ = 2 g.

2.) We consider the pseudo–hyperbolic space S(−1) = {x ∈ IRn+1
k+1 | 〈x, x〉 = −1}

of signature (k, n− k) with its canonical embedding in the pseudo–Euclidean space
IRn+1
k+1 . We can describe the conformal gradient fields as follows. Fix a vector

T ∈ IRn+1
k+1 , then ψT : S(−1) → IR , ψT (p) = 〈T, p〉 is the height function in direction

T . Then one can easily show that

∇XψT = ψTX (36)

for every vector field X on S(−1). Hence ∇ψT is a conformal vector field, resp. ψT
satisfies

∇2ψT = ψT g , (37)

cf. [Ker2, §2] or [Ke2, §3]. Proposition 2.3 b) shows that every closed conformal
vector field can be written this way. Now assume that n > 2. Then S(−1) is
connected. The critical points of ψT are the intersection points of S(−1) as subset
of IRn+1

k+1 with the line through 0 whose direction is T . Hence if T is timelike there
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are two critical points p,−p. It follows that in geodesic polar coordinates (r, x) ∈ G
we have around p resp. −p the following expression for the metric:

−dr2 + sin2 r g1(x) , 〈x, x〉 < 0
dr2 + sinh2 r g1(x) , 〈x, x〉 > 0 .

The function ψT has the form

ψT (r, x) = cos r , 〈x, x〉 < 0
ψT (r, x) = cosh r , 〈x, x〉 > 0

in geodesic polar coordinates around p and around −p:

ψT (r, x) = − cos r , 〈x, x〉 < 0
ψT (r, x) = − cosh r , 〈x, x〉 > 0.

The geodesics on S(−1) are the intersections of planes in IRn+1
k+1 through 0 with

S(−1). Hence all timelike geodesics emanating from p meet after time r = π in
the point −p and close after time r = 2π. The spacelike and null geodesics from p
resp. −p go to infinity, more precisely the height ψT along these geodesics goes to
±∞. It also follows that the points on the null resp. spacelike geodesics starting
from p do not have a geodesic connection to the point −p. This is an example
of a pseudo–Riemannian manifold where all geodesics are defined on IR i.e. the
manifold is geodesically complete but the exponential map expp : TpM →M of the
point p is not surjective. On the other hand every point on S(−1) has a geodesic
connection either to p or to −p , i.e. one says that S(−1) is {p,−p}–complete, see
Definition 4.2.

4 Existence results

We construct pseudo–Riemannian manifolds M(J) with J = {1, . . . ,m} for any
m ∈ IN or J = IN or J = ZZ carrying two non–constant functions ψ, λ satisfying
∇2ψ = λg with the following property:

Cr(ψ) = {pj ∈ M(J)|j ∈ J} is the set of critical points of ψ with ψ(pj) <
ψ(pj+1) for all j, j + 1 ∈ J . We use the following building blocks. For a, b > 0
let B+(a) := {x ∈ IRn

k |〈x, x〉 ≤ a2} , B−(b) := {x ∈ IRn
k | − b2 ≤ 〈x, x〉} and

B(a, b) := B+(a) ∩B−(b) = {x ∈ IRn
k | − b2 ≤ 〈x, x〉 ≤ a2}.

Lemma 4.1 There is a smooth pseudo–Riemannian metric g of signature (k, n−k)
on every building block B(a, b), B+(a), B−(b) with two non–constant functions ψ, λ
satisfying ∇2ψ = λg such that 0 is the only critical point of ψ and λ(0) = 1.
The metric g in a collar neighborhood of the boundary is the product metric on
[0, ε]×∂B(a, b). resp. on [0, ε]×∂B+(a) or on [0, ε]×∂B−(b). In case B+(a) resp.
B−(b) the metric is a product metric outside 〈x, x〉 > −1 resp. 〈x, x〉 < 1.

Proof. We give the proof for the building block B(a, b), the constructions for B±

are analogous. On B(a, b) we have polar coordinates (r, x) ∈ G∩ ((−b, a)×Σ) since
B(a, b) is a subset of IRn

k . G is the range of polar coordinates which depends on the
signature, cf. Section 3. Let f± : IR → IR be smooth even functions with f− = −f+

satisfying the following assumptions, where ε > 0 satisfies 10ε < min{a, b}.
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1. f+(t) = 1
2 t

2 for |x| < ε

2. 0 is the only critical value of f+|[−b, a]

3. f ′+(t) = 1 for t ∈ [a− ε, a] ∪ [−b,−b+ ε].

(In the case a = ∞ resp. b = ∞ condition 3.) should be replaced by f ′+(t) = t
for t ≥ 1). Then f± ∈ F . We choose the metric 〈x, x〉dr2 + f ′〈x,x〉(r)

2 g1(x) =
〈x, x〉dr2 + f ′+(r)2 g1(x) on B(a, b), where η = 〈x, x〉 ∈ {±1}. It follows from
Proposition 3.5 that the functions ψ, λ on B(a, b) with ψ(r, x) = 〈x, x〉f+(r) and
λ(r, x) = f ′′+(r) satisfy ∇2ψ = λ g. By Property 2.) 0 is the only critical point of
ψ and λ(0) = 1 by Property 1.). Property 3.) implies that the metric is a product
metric in a collar neighborhood of the boundary. 2

Definition 4.2 Let A be a subset of a pseudo–Riemannian manifold M . Then M
is said to be A–complete if the following two conditions hold:

1. Every geodesic through A is defined on IR.

2. One can join every point on M with A by a geodesic.

In the Riemannian case it follows from the theorem of Hopf and Rinow that a
metrically complete manifold M is geodesically complete, then in particular M is
{p}–complete for every point p ∈M . In the pseudo–Riemannian case this does not
hold, as explained in Example 3.9 the pseudo–hyperbolic space S(−1) is geodesically
complete, but there are points p such that S(−1) is not {p}–complete. On IRn

k one
defines the separation d(p, q) = |p − q| ≥ 0 as the pseudo–norm of the difference
p − q, cf. [ON, ch.6]. Then we set for two points p, q on a pseudo–Riemannian
manifold the separation d(p, q) as the infimum of the absolute values of lengths of
curves joining them.

Theorem 4.3 Let J = {1, . . . ,m} or J = IN or J = ZZ. Fix a set D :=
{dj | j, j + 1 ∈ J} ⊂ IR+. Then there exists a smooth pseudo–Riemannian man-
ifold (M(J), gD) of signature (k, n − k) carrying smooth non–constant functions
ψ, λ satisfying ∇2ψ = λ g and such that 2dj = d(pj , pj+1) for all j, j + 1 ∈ J . Here
d denotes the separation induced by gD. The set Cr(ψ) = {pj | j ∈ J} of critical
points of ψ is in natural bijection with J meaning that ψ(pj) < ψ(pj+1) for all
j, j + 1 ∈ J and the manifold is Cr(ψ)–complete (or C–complete for short) and the
vector field V = ∇ψ is complete.

Remark 4.4 In some sense the critical points together with their labeling form a
linear graph.

J = {1, . . . ,m} corresponds to •——–•——– · · · ——– • .
J = IN corresponds to •——–•——– · · · .
and J = ZZ corresponds to · · · ——–•——– •——– · · · .

Proof. First we construct the underlying manifolds M(J). If J = {1} we take
M(J) = IRn

k . If J = {1, . . . ,m} , m = 2l , l ≥ 1 we take

M(J) = B+
1 (d1) ∪B2(d1, d2) ∪ . . . ∪Bm−1(dm−2, dm−1) ∪B+

m(dm−1)
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Each B+
j (a) resp. Bj(a, b) is a copy of B+(a) resp. B(a, b) and here the gluing

is as follows: The boundary ∂B+
1 = {x ∈ IRn

k | 〈x, x〉 = d1} is identified with the
component {x ∈ IRn

k | 〈x, x〉 = d1} ⊂ ∂B2(d1, d2). Then the components {x ∈
IRn
k | 〈x, x〉 = −d2} ∩ ∂B2(d1, d2) and {x ∈ IRn

k | 〈x, x〉 = −d2} ∩ ∂B3(d2, d3) as well
as {x ∈ IRn

k | 〈x, x〉 = d3} ∩ ∂B3(d2, d3) and {x ∈ IRn
k | 〈x, x〉 = d3} ∩ ∂B4(d3, d4) are

identified. Proceeding this way we obtain M(J).
If J = {1, . . . ,m} , m = 2l − 1 , l ≥ 2 then

M(J) = B+(d1) ∪B1(d1, d2) ∪ . . . ∪Bm−2(dm−2, dm−1) ∪B−(dm−1) .

with the analogous gluing. If J = IN we let

M(J) = B+(d1) ∪B1(d1, d2) ∪B2(d2, d3) ∪ . . .

and if J = ZZ we let

M(J) = . . . ∪B−1(d−1, d0) ∪B0(d0, d1) ∪B1(d1, d2) ∪ . . .

with the analogous gluing. On every building block we have by Lemma 4.1 a metric
which is the product metric near the boundary. Therefore this defines a smooth
metric gD on the manifold M(J) which is a product metric near the boundary
of the building blocks. By construction gD has the form 〈x, x〉dr2 + f ′+(r)2 g1(x)
with an even function f+ satisfying the properties 1.),2.),3.) listed in the Proof
of Lemma 4.1. Then for every c ∈ IR , ε ∈ {±1} the function ψc,ε defined on the
building block with

ψc,ε = ε〈x, x〉f+(r) + c

satisfies∇2ψc,ε = λε g where λε(r, x) = 〈x, x〉·f ′′+(r)·ε. By choosing the constants c, ε
appropriately on every building block we obtain globally defined smooth functions
ψ, λ satisfying ∇2ψ = λ g with precisely one critical point on every building block.
Here the value of ε has different signs on neighboring building blocks. V is complete,
cf. Remark 3.7. 2

Remark 4.5 The function ψ and hence λ as well as the metric can be described
also by the following piecewise smooth function ψ∗ : IR → IR of one variable. Let
t1 = 0 and tj+1 = tj+dj for all j, j+1 ∈ J . Choose a broken geodesic γ : IR →M(J)
with break points pj = γ(tj) , j ∈ J at the critical points pj of ψ. Hence γ | [tj , tj+1]
is a geodesic joining pj and pj+1 whenever j and j+1 belong to J . The causal type
of γ changes at every tj , j ∈ J between timelike and spacelike. If ψ : M(J) → IR
is given we set ψ∗(t) := ψ(γ(t)). It follows that the smooth resp. analytic function
ψ : M(J) → IR is completely determined by a piecewise smooth resp. analytic
function ψ∗ : IR → IR with the following properties: ψ∗ is smooth resp. analytic
outside the set T := {tj |j ∈ J} ⊂ IR,

ψ
(2m+1)
∗ (tj+) = ψ

(2m+1)
∗ (tj−) = 0 , ψ(2m)

∗ (tj+) = (−1)mψ(2m)
∗ (tj−) (38)

and
ψ′′∗(tj+) ∈ {±1} (39)

for all j ∈ J and all m ≥ 0. Then the function ψ on M(J) constructed in the
preceding proof is defined by a function ψ∗ of the following type:
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1. ψ∗(tj + h)− ψ∗(tj) = (−1)j(sgnh)h2 for sufficiently small h.

2. Outside T ⊂ IR ψ∗ has no critical value

3. ψ′∗(t) = (−1)j for t nearby dj if j, j + 1 ∈ J .

On the other hand the proof of Theorem 4.3 shows also the following result:

Proposition 4.6 Given a set D = {dj | j, j + 1 ∈ J} ⊂ IR+ together with the set
T := {tj |j, j+1 ∈ J} where t1 = 0 and tj+1 = tj+dj for all j, j+1 ∈ J and given a
continuous function ψ∗ : IR → IR which is smooth outside T and satisfies Equations
( 38) and ( 39). Then there are smooth functions ψ, λ and a smooth metric gψ on
M(J) such that the following holds: The function ψ satisfies ∇2 = λgψ, the critical
points of ψ are the points pj , j ∈ J and 2dj = d(pj , pj+1).

We define on a manifold of the diffeomorphism type M(J) a conformally flat
structure M(J)(α, β) as follows:

Fix numbers α, β ∈ IR+ ∪ {∞} as follows: In case J = ZZ we set α = β = ∞,
if J = IN then α ∈ {1,∞}, β = ∞. If J = {1, . . . ,m} let either α = 1 and
β ∈ IR+ ∪ {∞} or α = β = ∞.

If J = {1, . . . ,m} let

M(J)(α, β) := B1(α,∞) ∪B2(∞,∞) ∪ . . . Bm−1(∞,∞) ∪Bm(∞, β) .

Here each Bj(a, b) is a copy of B(a, b) := {y ∈ IRn
k | − a2 ≤ 〈y, y〉 ≤ b2}.

If J = IN we let

M(J)(α,∞) := B1(α,∞) ∪B2(∞,∞) ∪B3(∞,∞) ∪ . . .

and if J = ZZ we let

M(J)(∞,∞) := . . . ∪B−1(∞,∞) ∪B0(∞,∞) ∪B1(∞,∞) ∪ . . .

In all cases we use the following gluing (identification). We describe how to glue
Bj = Bj(aj , bj) with Bj+1 = Bj+1(aj+1, bj+1), resp. Bj−1. Let Uj be the interior of
Bj , then we have on Uj the pseudo–Euclidean metric gj which in polar coordinates
(ρj , xj) has the form

sgn〈xj , xj〉dρ2
j + ρ2

j g1(xj) .

We identify the point (ρj , xj) on Uj with (ρj+1, xj+1) = (1/ρj , xj) on Uj+1 whenever
(−1)jρj > 0 resp. with (ρj−1, xj−1) = (1/ρj , xj) on Uj−1 if (−1)jρj < 0. On the
overlaps Uj ∩ Uj+1 we have

sgn〈xj , xj〉dρ2
j + ρ2

j g1(xj) =
1
ρ4
j

{
sgn〈xj+1, xj+1〉dρ2

j+1 + ρ2
j+1 g1(xj+1)

}
hence the metrics {(Uj , gj)j∈J} define a conformally flat structure.

The conformal factor is the same as the conformal factor of the inversion: I(y) =
y/〈y, y〉 for 〈y, y〉 6= 0. In geodesic polar coordinates the inversion has the form
I(r, x) = (1/r, x) and satisfies I∗g0 = r−4g0.

In general relativity conformally flat manifolds occur in the Nordström theory,
cf. [HE, ch.3.4].
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5 Analytic Examples

Now we are going to construct explicit analytic examples of metrics on M(J)
which satisfy the hypotheses of Theorem A in the Introduction, in particular these
examples are Cr(ψ)–complete. For the sake of simplicity we assume here, that
d(pj , pj+1) = 1 for all j, j + 1 ∈ J .

Remark 5.1 One can use the stereographic projection IRn
k → Q,( cf. [Kui] and

[CK]) into the standard quadric Q in the (n+ 1)–dimensional real projective space
Pn+1IR to construct a locally symmetric metric in the conformal class ofM(J)(α, β).
The standard quadricQ can be defined as follows: Let Cn+1 := {x ∈ IRn+2

k+1 | 〈x, x〉 =
0} be the light cone in the (n + 2)–dimensional pseudo–Euclidean space IRn+2

k+1 of
signature (k+ 1, n− k+ 1) and π : IRn+2 −{0} → Pn+1IR be the canonical projec-
tion. Then Q = π(Cn+1). On Sk × Sn−k we have the product metric (−gk)⊕ gn−k
of signature (k, n− k), where gl is the standard Riemannian metric on Sl, this in-
duces the symmetric metric gQ on Q. For the topology of Q see also [Kue2]. Then
one can check that the pull–back metrics σ∗gQ on the building blocks Bi ∼= IRn

k

define an analytic metric on M(J)(α, β), which then is locally symmetric, since it
is induced by a symmetric metric. Hence the scalar curvature is constant but the
sectional curvature is not. The proof of Corollary 6.9 implies that for this metric
there is no solution ψ of ψ of ∇2ψ = λ g with critical points.

Remark 5.2 Let Mm := M({1, . . . ,m}), we use the description of ψ and the
metric gψ by the function ψ∗ : IR → IR as described in the above Remark 4.5.

m=1: We can choose the pseudo–Euclidean space IRn
k as M1, cf. Example 3.9

1.). In the description of Remark 4.5 the function ψ resp. the metric gψ is given
by the function ψ∗(t) = t2 for t > 0 and ψ∗(t) = −t2 for t < 0.

m=2: We can choose the pseudo–hyperbolic space S(−1) as M2, see Exam-
ple 3.9 2.). The function ψ on M2 as well as the metric gψ can be described by the
function ψ :

ψ∗(t) =



2
π2 coshπ(t− 1) ; t ≤ 1

2
π2 cosπ(t− 1) ; t ∈ [1, 2]

− 2
π2 coshπ(t− 2) ; t ≥ 2

(40)

Then one computes from Lemma 2.5 that the sectional curvature is constant −1.

m=∞ The rest of the section is devoted to the construction of an analytic
solution ψ on M(ZZ) of the equation ∇2ψ = λg and with critical points {pi|i ∈
ZZ}. Then the functions ψ± on a building block B have to satisfy the following
hypotheses:

Choose γ± : IR → M(ZZ) a geodesic with γ±(0) = pj , γ±(1) = pj+1, 〈γ′±, γ′±〉 =
±1 then γ± is a closed geodesic with γ±(t + 2) = γ±(t) for all t ∈ IR. Hence
ψj,±(t) := ψ(γ±(t)) are analytic periodic functions satisfying ψj,± ∈ F .

Therefore we use for the construction of an analytic metric on M(ZZ) with an
analytic solution ψ of ∇2ψ = λg elliptic functions, cf. Remark 3.3:
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Lemma 5.3 There is a real analytic function f : IR → IR which is periodic and
even satisfying the following properties:

1. f(t+ 2) = f(t) for all t ∈ IR.

2. f (4m)(0) = 0 for all m ≥ 1 and f ′′(0) = 1.

3. f ′(t+ 1) = −f ′(t) for all t ∈ IR.

4. If t is a critical point of f then t ∈ ZZ.

Proof. We use Jacobi’s elliptic functions u ∈ IC 7→ sn(u) = sn(u, k), resp.
cn(u) = cn(u, k) for the modulus k =

√
2/2 and the complementary modulus k′ =

k =
√

2/2. A reference is [La, ch.2]. Then there is positive real number K =
K(
√

2/2) = 1.85407... such that the elliptic function

F (z) = − 1√
2K

cn(2Kz +K) (41)

has periods 2 and 2i, where i =
√
−1. Let f ′(t) = F (t) for t ∈ IR.From the identity

cn(iu+K) = i cn(u+K) for k = k′ =
√

2/2 it follows that f is even and satisfies
f (4m)(0) = 0 for all m ≥ 1. One also computes that F ′(0) = 1. F can also
be described as the unique elliptic function with periods 2 and 2i and F ′(0) = 1
whose poles and zeros are simple and are given as follows: The zeros occur at
z = m+ in ; m,n ∈ ZZ and the poles at z = m+1/2+ i(n+1/2) ; m,n ∈ ZZ. Hence
property 1. and 4. follow. Property 3.) follows since cn(u) = −cn(u+ 2K). 2

Remark 5.4 Hence we can choose

f(t) = 2 arcsin

(√
2

2
sn(2Kt+K)

)
(42)

for k =
√

2/2. If we set f+(t) = f(t) , f−(t) = π − f(t), then the pair f± satisfies
the hypotheses of Proposition 3.5 1.) i.e. f± ∈ F . f± are the solutions of the
pendulum equation f ′′± ± sin(4K2f±) = 0 with f±(0) = π/2 , f ′±(0) = 0. Hence
the function ψ : B(2, 2) → IR defined by ψ(r, x) := fη(r) , η = 〈x, x〉 satisfies the
pendulum equation

∇2 ψ = − sin(4K2ψ) g . (43)

Theorem 5.5 There exists a complete analytic pseudo–Riemannian manifold M(ZZ)
of signature (k, n − k) carrying an analytic function ψ : M(ZZ) → IR satisfying
∇2ψ = − sin(Cψ) g for some positive constant C with the following property: The
critical set Cr(ψ) of ψ is in natural bijection with ZZ in the sense of Theorem 4.3
and the manifold is Cr(ψ)–complete. Furthermore the vector field ∇ψ is complete.

Proof. Let f be the real analytic function given by equation ( 42) which is
periodic and even and satisfies the hypotheses of the preceding Lemma 5.3. As
explained in Remark 4.5 we can define the function ψ on M(ZZ) as well as the
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corresponding metric gψ by the following continuous and piecewise analytic function
ψ∗ : IR → IR:

ψ′∗(t) =


(−1)jf ′(t) ; t ∈ [2j, 2j + 1]

;
(−1)j+1f ′(t) ; t ∈ [2j − 1, 2j]

. (44)

Hence up to a sign and an additive constant on an interval [j, j + 1], j ∈ J ψ∗ is
given by f resp. −f . It follows from Lemma 5.3 2.),3.) that Equation ( 38) of
Remark 4.5 holds. Since f solves the pendulum equation we obtain for the function
ψ : M(ZZ) → IR the equation∇2ψ+sin(4K2ψ) g = 0. The metric in a neighborhood
of pj is given by g(r, x) = ηdr2 + f ′(r)2g1(x). The metric is Cr(ψ)–complete since
by construction every non–null geodesic through a critical point is closed. For the
completeness of ∇ψ compare Remark 3.7. One can use the pendulum equation
( 43) resp. ( 42) and the differential equations for geodesics in warped products (cf.
[ON, p. 208]) to show that the metric is geodesically complete. 2

Corollary 5.6 For any even number 2m there is an analytic pseudo–Riemannian
manifold M(ZZ) of signature (k, n − k) carrying a closed and complete conformal
vector field with exactly 2m zeros.

Proof. It follows from Theorem 5.5 that we we can find neighborhoods Uj of
pj and an isometry Φ : M(ZZ) → M(ZZ) with ΦUj = Uj+2, i.e. there is an infinite
cyclic subgroup in the isometry group of M(ZZ) acting freely. It follows that on the
quotient M(ZZ)/mZZ there is a closed conformal vector field with exactly 2m zeros.
2

We will see in the following section that in case of signature (k, n − k), 2 ≤
k ≤ n− 2 under a suitable completeness assumption all manifolds carrying a non–
constant solution ψ of∇2ψ = λg with a critical point are diffeomorphic to M(J). In
the case of signature (1, n−1), n ≥ 3 resp. (1, 1) there are a lot of further examples
due to the fact that the manifold Σ := {x ∈ IRn

k |〈x, x〉 = ±1} = S(1) ∪ S(−1)
then has three resp. four components. Hence the gluing process can be more
complicated.

6 Conformal classification

Near a regular point of a function ψ satisfying ∇2ψ = λg the metric has the
structure of a warped product, cf. Lemma 2.7. In this section we study the case
that ψ has critical points, which are isolated by Proposition 2.3. We show that in
geodesic polar coordinates with origin at a critical point the level sets of ψ with
the induced metric have constant sectional curvature. In particular the metric is
conformally flat.

Proposition 6.1 Let (M, g) be a pseudo–Riemannian manifold with a non–constant
solution ψ of the equation ∇2ψ = λg for a function λ and with a critical point
p ∈M .
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1. (cf. [Ta], [Kue1, lemma 18] in the Riemannian case) Then there are functions
ψ± ∈ F such that the metric in geodesic polar coordinates (r, x) ∈ Aψ ⊂ IR×Σ
in a neighborhood U of p has the form

g(r, x) = gψ(r, x) = ηdr2 +
ψ′η(r)

2

ψ′′η(0)2
g1(x) ; η = 〈x, x〉 (45)

and ψ(r, x) = ψη(r), λ(r, x) = λη(r) with λη(r) = ηψ′′(r).

2. If all geodesics through p are defined on the whole real line IR. Then the
metric g is of the form ( 45) for all (r, x) ∈ Aψ , i.e. as long as ψ′η(r) does
not vanish.

Proof. 1) Let γ : [0, r0) → M be a geodesic with γ(0) = p, 〈γ′, γ′〉 = η ∈ {±1}.
Then it follows from Proposition 2.1 that

∇ψ(γ(r)) =
{∫ r

0
λ(γ(s))ds

}
γ′(s) (46)

and from Proposition 2.3 we know that there is an open neighborhood U of p
where p is the only critical point of ψ. It follows from Equation ( 46) that the
normal vectors of the level hypersurfaces ψ−1(ψ(r0)) and of the distance spheres
(the sets {r = r0}) are proportional. Hence the connected components of {r =
r0} ∩ U and of ψ−1(ψ(γ(r0))) containing γ(r0) coincide. Therefore there are two
smooth real functions ψ± with ψ(r, x) = ψ〈x,x〉(r). From Remark 3.3 it follows

that ψ(2m+1)
η (0) = 0 and ψ

(2m)
+ (0) = (−1)mψ(2m)

− (0) for all m ≥ 0, cf. the proof of
Proposition 3.5.

In geodesic polar coordinates (r, x) around p it follows from ∇2ψ = λ g that

∇∂r∇ψ(r, x) = λ(r, x) ∂r

and that for X tangential to {r = r0}:

X(〈∇ψ,∇ψ〉) = ∇2
X,∇ψψ = 0 .

Hence 〈∇ψ,∇ψ〉 is constant along the levels {r = r0}. It follows that there are two
smooth real functions λ± with λ(r, x) = λ〈x,x〉(r) and ψ′′η = ∇2

γ′,γ′ψ = λη · η. By
Proposition 2.3 λ(0) 6= 0 hence ψ′′+(0) = ψ′′−(0) = λ+(0) = −λ−(0) 6= 0. Therefore
0 is an isolated critical point of ψ±. It follows from Lemma 2.7 that in geodesic
polar coordinates (r, x) the metric in U is of the form

g(r, x) = ηdr2 +
ψ′η(r)

2

ψ′′η(0)2
g∗(x)

for a C∞–metric g∗ on Σ = S0(1) ∪ S0(−1). We obtain from Lemma 3.4 that
g∗ coincides with the standard metric g1 of constant sectional curvature ±1 on Σ,
hence we obtain Equation ( 45). Since the metric g extends to a neighborhood U
of p Proposition 3.5 implies that ψ± ∈ F . It follows also that λ± ∈ F .

2) Assume (r0, x0) ∈ Aψ, i.e. ψ′η(r) 6= 0 for all r ∈ (0, r0]. Then there is r1 ∈
(0, r0] such that (r1, x0) ∈ U . Let r∗ be the supremum of the numbers r > 0 such
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that for a neighborhood of the radial geodesic segment t ∈ [0, r) 7→ φ(t, x0) ∈ M
the metric has the form (45). It follows that ψ′η(r

∗) = 0 by Lemma 2.7. Now we
show that φ : Aψ → M is injective, assume φ(r1, x1) = φ(r2, x2) , (rj , xj) ∈ Aψ. If
x1, x2 lie in the same component of Σ it follows that r1 = r2 since ψ(r1) = ψ(r2)
and since ψ is strictly monoton. If x1, x2 lie in different components, let γ1(r) =
φ(r, x1) , γ2(r) = φ(r, x2) be the two geodesics emanating from p with γ1(r1) =
γ2(r2) = φ(r1, x1) = φ(r2, x2) = q , r1 < 0 < r2. Since ∇ψ(q) = −ψ′η1(r1)γ

′(r1) =
ψ′η2(r2)γ

′
r2 (where ηj = 〈γ′j , γ′j〉) it follows that γ′(r1) = −γ′(r2) (since γ′(r1) 6=

γ′(r2)) and ψ′η1(r1) = ψ′η2(r2) (η1 = η2). But ψ′η changes sign at 0 since ψ′′η(0) = 1
2

We give a sufficient condition for a pseudo–Riemannian manifold with a con-
formal gradient field ∇ψ to be Cr(ψ)–complete. Here Cr(ψ) is the set of critical
points of ψ.

Lemma 6.2 Let (M, g) be a null complete pseudo–Riemannian manifold with a
non–constant solution ψ of the equation ∇2ψ = λ g for some function λ and with a
critical point. Let all geodesics through critical points be defined on IR. Then every
point on M can be joined with a critical point by a geodesic, i.e. the manifold is
Cr(ψ)–complete.

Proof. For a critical point p of ψ we denote by Ap the set of all points on M
for which there is a geodesic joining them with p. Now suppose that the union A
of all sets Ap for a critical point p is not the whole of M . Then there is a point
y ∈ ∂Ap − Ap for some critical point p. Hence there are points yj ∈ Ap with
y = limj→∞ yj and geodesics γj : IR → M , γj(0) = p , γj(tj) = yj , 〈γ′j , γ′j〉 = η ∈
{±}. In the component of Ap containing yj we have the warped product structure
ηdt2 + ψ′η(t)

2 g1 of the metric. Here we can assume without loss of generality that
ψ′′+(0) = 1. By continuity ψ(γj(tj)) = ψ(tj) → ψ(y). Since y 6∈ Ap it follows that
〈∇ψ(y),∇ψ(y)〉 = 0 and we can assume ∇ψ(y) 6= 0. Since ∇ψ(yj) = ψ′η(tj)η∂tj
and 〈∂tj , ∂tj 〉 = η it follows that limj→∞ ψη(tj) = 0. Now choose a sequence σj of
non–degenerate planes in TyjM = Tφ(tj ,xj)M orthogonal to γ′(tj) and converging
to a non–degenerate plane σ in TyM . Then we use the formula for warped products
for the sectional curvature K(σj) of σj and obtain (cf. Lemma 2.5)

K(σj) =
1

ψ′η(tj)2
(
ε− ψ′′η(tj)η

)
where ε ∈ {±1} equals 〈xj , xj〉. Since ψ′η(tj) → 0 for j →∞ we obtain ψ′′(tj) → ε.
Then it follows that λ(yj) = λη(tj) = η ψ′′η(tj) → ηε. Now denote by τ the null
geodesic with τ ′(0) = ∇ψ(y), then ψ(τ(t)) = ψ(y) for all t, cf. Remark 2.2. Since
ψ−1(ψ(y)) is pointwise the limit of the sublevel sets ψ−1(ψ(yj)) ∩ Ap and since
ψ−1(ψ(yj)) coincides with λ−1(λ(yj)) (more precisely: the corresponding connected
components) it follows that λ is constant along ψ−1(ψ(y)) . Hence ∇ψ(τ(t)) =
(ηεt+ 1)τ ′(0) therefore τ connects y and the critical point τ(−ηε) of ψ 2

Theorem 6.3 Let (M, g) be a pseudo–Riemannian manifold carrying a non–constant
solution ψ of the equation ∇2ψ = λ g having critical points. We assume either that
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all geodesics through critical points are defined on IR and that (M, g) is null complete
or that (M, g) is Cr(ψ)–complete.

Then the manifold (M, g) is conformally flat. One can define neighborhoods Ãj
for every critical point pj on which the metric has the warped product structure

ηdr2 +
ψ′j,η(r)

2

ψ′′η(0)2
g1 (47)

in geodesic polar coordinates (r, x) ∈ G ⊂ IR× Σ around the critical point pj. The
function ψ on Ãj has the form ψ(r, x) = ψj,〈x,x〉(r). These neighborhoods cover M .

Proof. For every critical point pj we define in terms of geodesic polar coordinates
(r, x) around pj the functions ψj,η(t) := ψ(t, x) , η = 〈x, x〉. Then let Ãj := Aψ∪Cj ,
where Cj is the light cone at pj . I.e. (r0, x) ∈ Ãj if and only if ψ′j,η(r) does not
vanish between 0 and r0 (cf. Definition 3.1). The form of the metric in Ãj is given
by Equation ( 47), cf. Proposition 6.1. If r0 > 0 is the first positive zero of ψ′j,η
then all radial geodesics γ : t 7→ (t, x) , 〈x, x〉 = η = 〈γ′, γ′〉 intersect at time r0 in
a critical point. Together with Lemma 6.2 it follows that the sets Ãj cover M 2

Hence it remains to study the global conformal type of M . Here the results
depend on the signature (k, n− k). Let (M, g) be a pseudo–Riemannian manifold
satisfying the assumptions of the preceding theorem with critical points Cr(ψ) =
{pj | j ∈ J} and with signature 2 ≤ k ≤ n − 2. The set Cr(ψ) is non–empty and
discrete and we can assume that either J = {1, 2, . . . , j} for some j ∈ IN or J = IN
or J = ZZ and that ψ(pj) < ψ(pj+1) for all j ∈ J . We will show in the following
theorem that under suitable completness assumptions M is diffeomorphic to M(J).
Hence for signature (k, n−k), 2 ≤ k ≤ n−2 the diffeomorphism type is determined
by the index set J .

Theorem 6.4 Let (M, g) be a pseudo–Riemannian manifold with signature (k, n−
k) , 2 ≤ k ≤ n − 2 carrying a non–constant solution ψ of ∇2ψ = λ g with critical
points for some function λ. Assume either that all geodesics through critical points
are defined on IR and that (M, g) is null complete or that (M, g) is Cr(ψ)–complete.
If the set of critical points is J where J has to be interpreted as a linear graph (see
Theorem 4.3 resp. Remark 4.4) and if D := {dj = d(pj , pj+1) | j, j + 1 ∈ J} then
M is diffeomorphic to the manifold M(J) and there is a function ψ∗ : IR → IR as
in Proposition 4.6 which completely determines the metric g = gD.

Proof. Let Ãj be the neighborhoods of pj constructed in the proof of Theo-
rem 6.3, i.e. there are two positive numbers rj,η ∈ IR ∪ {∞} such that Ãj is of the
form

Ãj = {y ∈ IRn
k | − r2j,− < 〈y, y〉 < r2j,+} ,

i.e in polar coordinates

Ãj = {(r, x) ∈ G ⊂ IR× Σ | r2 < r2j,η if 〈x, x〉 = η} .

The metric in Ãj is the warped product metric

ηdr2 +
ψ′j,η(r)

2

ψ′′η(0)2
g1 .
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Since ∇ψ(r, x) = ηψ′j,η(r)∂r it follows that all geodesics r 7→ γ(r) = (r, x) , 〈x, x〉 =
η starting from the critical point pj = γ(0) meet at the critical point γ(rj,η) = pj+η.
Then d(pj , pj+1) = rj,η. If rj,η = ∞ then γ(r) is a regular point of ψ for all r > 0.
We define Aj ⊂ Ãj in geodesic polar coordinates by (r, x) ∈ Aj if and only if
2|r| ≤ rj,η , 〈x, x〉 = η.

The building blocks Aj are of the form B+(rj,+), B−(rj,−) or B(rj,+, rj,−) as
defined in the beginning of Section 4. Since the sets ∂Aj ∩ {x ∈M |ψ(x) < ψ(pj)}
resp. ∂Aj ∩ {x ∈ M |ψ(x) > ψ(pj)} have only one component the manifold M is
of the diffeomorphism type M(J). Here Aj is of the type B if j is not an extremal
value of J . If j is an extremum of J then Aj is either of the form B+ or B−. Then
Aj = B+ if and only if there is a geodesic γ joining pj with pj+1 resp. pj−1 and
〈γ′, γ′〉 = 1. Hence it follows that M is diffeomorphic to M(J). It follows from
Proposition 4.6 that the metric is determined by the function ψ∗. 2

It follows from the cohomology rings of M(J) that M(J) is diffeomorphic to
M(J ′) only if J = J ′. In the case of signature 2 ≤ k ≤ n − 2 we can classify
the global conformal types of manifolds with solutions of ∇2ψ = λ g. It follows
from Theorem 6.4 that there is a set T = {tj | j ∈ J} with t1 = 0 and tj+1 =
tj + dj for all j, j + 1 ∈ J such that the following holds: The functions ψ∗,j =
ψ∗(r − tj) satisfy ψ∗,j ∈ F for all j ∈ J and such that there are neighborhoods
Ãj = InteriorB(dj−1, dj) (here dj = ∞ if j 6∈ J) and where the metric is of the
form

sgn〈x, x〉dr2j +
ψ′∗(rj − dj)2

ψ′′∗(dj+)2
g1(rj , xj) (48)

Now we define the numbers α, β ∈ IR+ ∪ {∞}: If J = ZZ then α = β = ∞. For
j ∈ J let ψ∗,j(r) = ψ∗(r − dj) and

hj(r) = (sgnr)
ψ′′j (0+)
ψ′j(r)

− 1
r
.

If J = {1, . . . ,m} resp. J = IN let

a1 := − lim
r→−∞

(
r exp

∫ r

0
h1(ξ)dξ

)
and if J = {1, . . . ,m} let

am := (−1)m+1 lim
r→(−1)m+1∞

(
r exp

∫ r

0
hm(ξ)dξ

)
.

If J = IN then let α = 1 if a1 < ∞ and α = ∞ if a1 = ∞. If J = {1, . . . ,m} we
assume without loss of generality that a1 ≤ am. If a1 < ∞ then let α = 1, β =
am/a1. If a1 = ∞ then α = β = ∞.

Theorem 6.5 Let (M, g) be a pseudo–Riemannian manifold with signature (k, n−
k), where 2 ≤ k ≤ n− 2 carrying a non–constant solution ψ of ∇2ψ = λ g with at
least one critical point. Assume that (M, g) is Cr(ψ)–complete. If J is in natural
bijection with the critical set Cr(ψ) and if α, β are defined as above then (M, g) is
conformally equivalent to the conformally flat manifold M(J)(α, β) constructed in
the end of section 4. V = ∇ψ is a complete vector field if and only if α = β = ∞.
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Proof. For every neighborhood Ãj as defined in Theorem 6.3 we have that the
metric is in polar coordinates (rj , xj) around the critical point pj of the form

gj(rj , xj) = ηdr2 + ψ′2j (rj) g1 .

Here by a linear change we assume that λ(pj) ∈ {±1} for all j ∈ J . Hence with the
notation of Proposition 3.6 we have

(Ãj , g) = (B(dj−1, dj), gj)

where dj−1 = ∞ if j − 1 6∈ J . Then we define a map

φ : M −→M(J)(α, β)

as follows. Here we use that M(J)(α, β) is covered by open sets Uj , j ∈ J which
are of the type Uj = IntBj(aj , bj) together with the pseudo–Euclidean metric

sgnρjdρ2
j + ρ2

j g1(xj) .

Now we use Proposition 3.6. First we fix r0 ∈ (0, d1) and choose ρ0 > 0 arbitrary.
Then we define Ã1 −→ U1 by φ((r1, x1)) = (ρ1(r), x1) with ρ = ρ(r) given by
Equation (30) in the Proof of Proposition 3.5. If J = IN or J = {1, . . . ,m} and
α = 1 then we have to choose ρ0 such that ρ(−∞) = −1.

Hence φ is fixed on Ã1 ∩ Ã2 = {(r1, x1)|r1 > 0} = {(r2, x2)|r2 > 0} since r1 =
1/r2 for r1, r2 > 0. Hence φ is uniquely determined by φ : Aj → Uj , φ((rj , xj)) =
(ρj(r), xj) with ρj(r) given again by Equation (30). It follows from Proposition 3.6
that φ is a conformal transformation. Under the map φ : Ãj → Uj the gradient
field ∇ψ is mapped onto the radial vector field ρj

∂
∂ρj

in Uj . This is complete only
if α = β = ∞. 2

Remark 6.6 If k = 1 or k = n − 1 then the diffeomorphism type of M can be
classified by the gluing graph whose vertices are the critical points and where two
vertices are joined by an edge if and only if there is a direct geodesic connection
between them in M . By the ψ–levels of the critical points this graph is a directed
graph in a canonical way.

We sketch the proof in the case k = 1 or k = n− 1. From the above definition
of the gluing graph it follows that if (M, g) and (M∗, g∗) are globally conformally
equivalent then the two gluing graphs are isomorphic.

A more detailed definition of the gluing graph involving spacelike or timelike
edges and a more careful labeling implies that the assignement of this graph is
injective on conformal classes, i.e. two graphs are non–isomorphic if the two mani-
folds are conformally inequivalent. So in this case the gluing graph really classifies
the global conformal types. For n = 2 at any vertex at most four edges meet, for
n > 2 at most three edges meet at any vertex because of the number of components
of S(±1). In the case 2 ≤ k ≤ n − 2 the gluing graph is just a linear graph, see
Remark 4.4. In the cases k = 1, n− 1 the gluing graph can have cycles.

As an application of Theorem 6.3 we describe manifolds with solutions of∇2ψ =
λ · g for λ being a constant or λ = ψ and manifolds of constant scalar curvature
with a closed conformal gradient field with a zero.
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Corollary 6.7 (Kerbrat, [Ke2, Thm.3 and Thm.6]) Let (M, g) be a pseudo–Riemannian
manifold of signature (k, n− k).

1. If M admits a solution ψ of ∇2ψ = c · g for a constant c 6= 0 and if (M, g) is
Cr(ψ)–complete then (M, g) is isometric with the pseudo–Euclidean space.

2. If M admits a non–constant solution ψ of ∇2ψ = ψ g with at least one critical
point, if (M, g) is Cr(ψ)–complete and if the signature satisfies k ≥ 2 then
(M, g) is isometric to the pseudo–hyperbolic space S(−1) of constant sectional
curvature −1. If k = 1 then (M, g) is a pseudo–hyperbolic space up to a
covering map.

Proof. 1.) Along the trajectories of ∇ψ ψ is a quadratic polynomial. Therefore
ψ has exactly one critical point on M . Theorem 6.3 implies that the metric has
the form g(r, x) = ηdr2 + r2g1(x) for all (r, x) ∈ G. This is the pseudo–Euclidean
metric in polar coordinates.

2.) By Theorem 6.3 the metric in a neighborhood Ãj of the critical point pj
has the form

g(r, x) = ηdr2 + ψ′η(r)
2g1(x) (49)

where
ψ′′+ = ψ+ , ψ

′′
− = −ψ− , ψ+(0) = ψ−(0) = 0 ,

i.e.
ψ+(r) = cosh r , ψ−(r) = cos r

and these neighborhoods cover M . This implies that ψ has exactly two critical
points.

But this is the metric of the pseudo–hyperbolic space S(−1) in geodesic polar
coordinates, see Example 3.9 2.) 2

Remark 6.8 In Kerbrat’s notation the quadratic form

Φ(ψ) := 〈∇ψ,∇ψ〉 − ψ2

on the space of all solutions of ∇2ψ = ψ g is assumed to be negative for some ψ:
Φ(ψ) < 0. Then it follows that ψ has a critical point on M and that the condition
2.) above holds [Ke2, Thm.6]. Moreover, if Φ(ψ) = 0 for some nontrivial solution ψ
then ∇ψ is not a null vector everywhere (otherwise ∇2ψ = 0), hence ψ′ = ±ψ along
a trajectory of ∇ψ. Then Lemma 2.7 implies that locally the metric is a warped
product g = dt2 + exp(±2t) g∗ where g∗ is not positive definite. (M, g) contains
this warped product defined for t ∈ IR. However, by the argument given in [ON,
p.209] certain null geodesics in this warped product IR×exp±tM∗ are not complete
for t → ∞ or t → −∞. If g is complete then M must contain a limit point for
t→ ±∞. At such a point ψ would have a zero and moreover a critical point. But
this contradicts Proposition 2.3. This argument shows that Kerbrat’s Theorem 6
in [Ke2] remains valid under the weaker assumption that Φ(ψ) ≤ 0 for at least one
nontrivial solution ψ of ∇2ψ = ψ g. It is certainly not true if Φ is positive definite.
The warped product IR ×cosh M∗ provides a counterexample because M∗ may be
chosen arbitrarily.
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Corollary 6.9 Let (M, g) be a pseudo–Riemannian manifold of constant scalar
curvature. If M admits a non–constant solution ψ of ∇2ψ = λ g for some function
λ, if ψ has at least one critical point and if (M, g) is Cr(ψ)–complete then (M, g)
is a space of constant sectional curvature.

Proof. By Proposition 6.1 we have in a neighborhood of the critical point
g(r, x) = ηdr2 + ψ′

η(r)2

ψ′′
η (0)2

g1(x). By Equation ( 22) of Lemma 2.5 the functions ψη
satisfy the following differential equations for constants ρ, ρ∗:

ψ′2η ρ =
n− 2
n

ρ∗ −
n− 2
n

ψ′′2η η −
2
n
ηψ′′′η ψ

′
η

and
ψ′η(0) = 0 .

We regard this as a differential equation for

yη := ψ′η

and obtain
ηyηy

′′
η +

n− 2
2

ηy′2η +
n

2
ρy2
η −

n− 2
2

ρ∗ = 0

or, equivalently,
yn−2
η

(
ηy′2η + ρy2

η − ρ∗
)

= constant = 0 .

The latter holds by the initial condition yη(0) = 0. Then Corollary 2.6 implies that
the sectional curvature is constant. By Theorem 6.3 the neighborhoods Ãj cover
M , hence the sectional curvature is constant everywhere. 2
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