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EINSTEIN SPACES WITH A CONFORMAL GROUP

WOLFGANG KÜHNEL & HANS-BERT RADEMACHER

Abstract. The pseudo-Riemannian Einstein spaces with a conformal group
of strictly positive dimension can be classified. In this article we give a
straightforward and systematic proof. As a common generalization, this
includes the global theorem by Yano and Nagano in the Riemannian case
(1959 published in the Annals of Mathematics) and a pseudo-Riemannian
analogue by Kerckhove in his 1988 thesis under Professor K.Nomizu. We
extend and unify the previous results in the case of an indefinite metric by
analogy with the case of a positive definite metric.

1. Introduction and notations

An interesting question in global Riemannian geometry is the following: Which
spaces admit a global 1-parameter group of conformal transformations? One
of the highlights in the theory is the theorem of Alekseevski and others on the
classification of Riemannian manifolds admitting a complete and essential con-
formal vector field. It is still an open problem to find an appropriate analogue
in the case of an indefinite metric. Under additional curvature conditions on
the manifold like the Einstein condition or the constancy of the scalar curva-
ture this is different. Here the theorem by Yano and Nagano [43] states that the
standard sphere is the only complete Einstein space admitting a complete con-
formal vector field which is non-homothetic. The proof was based on a result
by S.Kobayashi on Killing vector fields. It was the idea of K.Nomizu to carry
that over to the pseudo-Riemannian case, mainly by considering the Lie alge-
bra of conformal vector fields. In his thesis at Brown University M.Kerckhove
worked on this problem and obtained an analogue for pseudo-Riemannian Ein-
stein spaces of non-vanishing scalar curvature [23, Thm.3.1]. This was based
on the study of closed conformal vector fields because the gradient of the di-
vergence of any conformal vector field on an Einstein space is again conformal
with the same conformal factor, up to a constant. The differential equation
characterizing closed conformal gradient fields was essentially solved already
already by Brinkmann in the 1920’s and by Fialkow in the 1930’s.
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In the sequel we give a unified and essentially self-contained approach to both
results, also including the Ricci flat case. This is based on a local analysis
of the differential equation leading to a normal form of the metric on the one
hand and the discussion of singularities of the vector field or critical points of
its divergence on the other hand. Lie-theoretic arguments are not used. The
main theorem on complete conformal vector fields is Theorem 2.1. However,
we also state the results for conformal vector fields which are not necessarily
complete but which live on a complete space. This includes previous results
by Kanai [21] and corrects a statement by Kerckhove [23, Thm.3.2].

We consider a pseudo-Riemannian manifold (M, g), which is defined as a smooth
manifold M (here smooth means of class C∞, at least C3) together with
a pseudo-Riemannian metric of arbitrary signature (k, n − k), 0 ≤ k ≤ n.
All manifolds are asssumed to be connected. A conformal mapping between
two pseudo-Riemannian manifolds (M, g), (N, h) is a smooth mapping F :
(M, g) → (N, h) with the property F ∗h = α2 g for a smooth positive function
α : M → R

+. In more detail this means that the equation

hF (x) (dFx(X), dFx(Y )) = α2(x)gx (X, Y )

holds for all tangent vectors X, Y ∈ TxM. Particular cases are homotheties
resp. dilatations, for which α is constant and isometries, for which α = 1.

A (local) one-parameter group Φt of conformal mappings of a manifold into
itself generates a conformal (Killing) vector field V , sometimes also called an
infinitesimal conformal transformation, by V = ∂

∂t
Φt. We need that V itself is

of class at least C3. Vice versa, any conformal vector field generates a local
one-parameter group of conformal mappings. It is well known since [42] that
a vector field V is conformal if and only if the Lie derivative LV g of the metric
g in direction of the vector field V satisfies the equation

(1) LV g = 2σg

for a certain smooth function σ : M → R. Necessarily this conformal factor
σ coincides with the divergence of V , up to a constant σ = divV/n . Particu-
lar cases of conformal vector fields are homothetic vector fields for which σ is
constant, and isometric vector fields, also called Killing vector fields, for which
σ = 0. On the (pseudo-)Euclidean space the divergence of a conformal vector
field is always a linear function. This follow from Corollary 3.3 below.

Furthermore it is well known that the image of a lightlike geodesic under
any conformal mapping is again a lightlike geodesic and that for any lightlike
geodesic γ and any conformal vector field V the quantity g(γ′, V ) is constant
along γ. Conformal vector fields V with non-vanishing g(V, V ) can be made
into Killing fields within the same conformal class of metrics, namely, for the
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metric. g = |g(V, V )|−1 g . This is a special case of a so-called inessential
conformal vector field.

A vector field V on a pseudo-Riemannian manifold is called closed if it is locally
a gradient field, i.e., if locally there exists a function f such that V = gradf .
Consequently, from Equation 1 and LV g = 2∇2f we see that a closed vector
field V is conformal if and only

(2) ∇XV = σX

for all X or, equivalently ∇2f = σg. Here ∇2f(X, Y ) = g (∇Xgradf, Y )
denotes the Hessian (0, 2)-tensor and nσ = ∆f = div (grad f) is the Laplacian
of f . If the symbol ( )◦ denotes the traceless part of a (0, 2)-tensor, then
grad f is conformal if and only if (∇2f)◦ ≡ 0 . This equation

(3) (∇2f)◦ = 0

allows explicit solutions in many cases, for Riemannian as well as for pseudo-
Riemannian manifolds, see the discussion in Section 3 below.

A vector field is called complete if the flow is globally defined as a 1-parameter
group (Φt)t∈R of diffeomorphisms, i.e. a global smooth mapping Φ: R ×M →
M , (t, x) 7→ Φt(x) satisfying Φt+s = Φt ◦ Φs. As usual,

(4) R(X, Y )Z = ∇X∇Y Z −∇Y ∇XY −∇[X,Y ]Z

denotes the (Riemann) curvature (1, 3)-tensor. Then the Ricci tensor as a sym-
metric (0, 2)-tensor is defined by the equation

Ric(X, Y ) = trace
(

V 7→ R(V, X)Y
)

.

The associated (1, 1) tensor is denoted by ric where Ric(X, Y ) = g (ric(X), Y ) .
Its trace S = trace

(

V 7→ ric(V )
)

is called the scalar curvature. A manifold
is conformally flat, if every point has a neighborhood which is conformally
equivalent to an open subset of pseudo-Euclidean space.

A pseudo-Riemannian manifold of dimension n ≥ 3 is called an Einstein space
if the equation

(5) Ric = λg

holds with a factor λ = S/n which is necessarily constant and which is called
the Einstein constant. For convenience the normalized Einstein constant will be
denoted by k = λ/(n − 1) so that we have k = 1 on the unit sphere of any
dimension. For a survey on Einstein spaces in general we refer to [3], [10].
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2. Conformal vector fields on Einstein spaces: Results

Since the early 1920’s conformal changes of Ricci flat and Einstein metrics
were studied. One of the questions was: When is an Einstein metric still
Einstein after a conformal change, locally or globally ? The local problem was
essentially solved by Brinkmann [5], [6] but global results were investigated
much later. The following statement is the main theorem of the present paper.

Theorem 2.1. (common extension of [43] and [23], initiated by Nomizu)
Assume that a geodesically complete pseudo-Riemannian Einstein space admits
a complete and non-homothetic conformal vector field. Then it is isometric
(or anti-isometric) with the standard sphere. In particular the metric must be
definite.

Kerckhove [23, Thm.3.1] stated that in the case of a non-vanishing Einstein
constant the metric has to be definite. He used the completeness of the gradient
of the divergence of any given complete conformal vector field (which seems
to be true but which was not verified). We do not use the completeness of
the gradient. The classification of complete Einstein spaces carrying a not
necessarily complete conformal vector field is given below in Theorem 2.7 and
Theorem 2.8. This includes more cases, also with an indefinite metric and also
spaces of non-constant sectional curvature. Moreover, there is the following
stronger version:

Theorem 2.2. (alternative version)
Assume that there is a global and non-homothetic conformal diffeomorphism
F : M1 → M2 between two complete pseudo-Riemannian Einstein spaces.
Then each of them is isometric or anti-isometric with the Riemannian standard
sphere. In particular the metric must be definite.

Corollary 2.3. On a complete pseudo-Riemannian Ricci flat manifold there is
no complete and non-homothetic conformal vector field such that the gradient
of its divergence is everywhere isotropic.

Example 2.4. Let g1 denote the standard metric on the unit (n − 1)-sphere.
The unit n-sphere with the warped product metric g = dt2 + (sin t)2g1 carries
the conformal vector field V1(t, x) = sin t · ∂t with two antipodal zeros (north
and south pole). It is the gradient of the function f(t, x) = − cos t. The
divergence is divV (t) = n cos t. The function f can be regarded as the height
function in vertical direction with its minimum at the south pole. Another
conformal vector field V2 can be defined as the stereographic preimage of a
translational vector field on R

n. This is not closed and has precisely one zero
in the stereographic pole. See Example 2.9 (with ǫi = +1) for a stereographic
projection from the antipodal pole back to R

n. Each of them is a complete
vector field since the sphere is compact.
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The original version of Theorem 2.1 in Riemannian geometry is the following.

Theorem 2.5. (Yano and Nagano [43])
Assume that a complete Riemannian Einstein space admits a complete and
non-homothetic conformal vector field. Then it is isometric with the standard
sphere.

According to personal communication by Professor Nomizu, in 1959 this result
was regarded as a great achievement. However, the proof in [43] does not refer
to previous work in the 1920’s by Brinkmann on conformal mappings between
Einstein spaces (Riemannian or pseudo-Riemannian). With this reference the
proof can be simplified. Moreover, there is the following more general version
which implies Theorem 2.5:

Theorem 2.6. (alternative version, see [33, Thm.10.3] if M1 = M2 and [26,
Thm.27])
Assume that there is a global and non-homothetic conformal diffeomorphism
F : M1 → M2 between two complete Riemannian Einstein spaces. Then both
of them are isometric with the standard sphere.

An infinitesimal version of Theorem 2.6 is given in Kanai’s theorem below, an
infinitesimal version of Theorem 2.2 is Theorem 2.8. Under the assumption
of compactness there is, in either case, a simpler proof using the differential
equation ∇2ϕ = cϕg with a constant c since any non-constant function must
have a critical point. For Riemannian manifolds this equation was solved in
[38] and, more generally, in [41].

Theorem 2.7. (Kanai [21, Thm.G])
Assume that (M, g) is a complete Riemannian Einstein space of dimension
n ≥ 3 admitting a non-homothetic conformal vector field V . Then the following
hold:

(1) If there is a critical point of divV = nσ then (M, g) is isometric either
with the standard sphere or with the hyperbolic space.

(2) If there is no critical point of σ then (M, g) is isometric (up to scaling)
with one of the following spaces:
(a) The Euclidean space E

n where σ is a linear coordinate function,
(b) the product R × M∗, equipped with the warped product metric g =

dt2 + e2tg∗ where σ(t) = et and where (M∗, g∗) is a complete Ein-
stein space of dimension n − 1 with an Einstein constant k∗ = 0,

(c) the product R × M∗, equipped with the warped product metric g =
dt2 +(cosh t)2g∗ where σ(t) = sinh(t) and where (M∗, g∗) is a com-
plete Einstein space of dimension n − 1 and with a normalized
Einstein constant k∗ = −1.
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The cases (2b) and (2c) contain also the hyperbolic space as special subcases.
A pseudo-Riemannian analogue of Theorem 2.7 is slightly different as follows.
It was initiated by Kerckhove [23] where the case (2b) is discussed but not (2a)
and (2c).

Theorem 2.8. (compare [23], [28]) Assume that a (M, g) is a geodesically
complete pseudo-Riemannian Einstein space of dimension n ≥ 3 and signature
(j, n− j), 1 ≤ j ≤ n− 1 admitting a non-homothetic conformal vector field V .
Then the following hold:

(1) If there is a critical point of divV = nσ then (M, g) is a space of
constant sectional curvature k 6= 0. More precisely, it is isometric with
Sn

k , Hn
k or with a covering of Sn

n−1 or Hn
1 in the notation of [40, p.108].

(2) If there is no critical point of σ then (M, g) is isometric with one of
the following cases:
(a) (M, g) splits as a product M ∼= R × M∗, equipped with a warped

product metric g = ±dt2 +(cosh t)2g∗ where (M∗, g∗) is a complete
Einstein space of dimension n − 1,

(b) (M, g) is isometric with the pseudo-Euclidean space and σ is a
linear coordinate function in a spacelike or timelike direction. The
gradient of σ is a parallel and non-isotropic vector field.

(c) (M, g) is Ricci flat and the gradient of σ is a parallel and isotropic
vector field (in other words: (M, g) is a Ricci flat Brinkmann
space).

Each of these cases really occurs. There are closed conformal vector fields in
the cases (1) and (2a) where k 6= 0. On the flat pseudo-Euclidean space we
have special conformal vector fields in Example 2.9 for Case (2b) and in Exam-
ple 2.13 for Case (2c). A non-flat example for Case (2c) is also given in Exam-
ple 2.13. For 4-dimensional Lorentz manifolds the class of Ricci flat Brinkmann
spaces is precisely the class of Ricci flat pp-waves, see Definition 2.12.

Example 2.9. On the pseudo-Euclidean space R
n = {(t, x1, . . . , xn−1)} with

the metric g = dt2 +
∑

i ǫidx2
i we define the vector field

V (t, x1, . . . , xn−1) =
(

1
2
(t2 − ∑

i ǫix
2
i ), tx1, . . . , txn−1

)

.

This is conformal with divergence divV = t + (n − 1)t = nt, so the function
σ is nothing but the coordinate function t. On the t-level M∗ in the product
decomposition M = R×M∗ the vector field appears as t times the homothetic
radial vector field. The origin t = x1 = · · · = xn−1 = 0 is a zero of V and of
divV simultaneously. In the Euclidean plane one can describe the vector field
in terms of complex numbers z = t + ix simply as V (z) = 1

2
z2.
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The classical case of dimension 4 (Riemannian or not) is contained in these
results as follows.

Corollary 2.10. Any 4-dimensional Einstein space admitting a non-homothetic
conformal vector field V (or a non-trivial conformal mapping onto some other
Einstein space) is one of the following:

(1) If grad(divV ) is not isotropic on any open subset then the space is of
constant sectional curvature.

(2) If grad(divV ) is isotropic on an open subset then the space is Ricci flat
and carries an isotropic and parallel vector field. If it is a Lorentzian
manifold then this is also called a vacuum pp-wave.

Obviously the intersection of these two cases (with two distinct vector fields on
the same space) consists of flat spaces only.

This local result is due to Brinkmann [6], it holds also globally. In particular it
follows that under the same assumption a 4-dimensional Einstein space which
is not Ricci flat must have constant curvature, a fact which was also observed
in [18].

Corollary 2.11. Any vacuum spacetime admitting a non-homothetic confor-
mal vector field is either locally flat or it is locally a pp-wave, defined as follows.

Definition 2.12. The class of pp-waves (or plane-fronted waves) in general
is given by all Lorentzian metrics g on open parts of R

4 = {(u, v, x, y)} which
are of the form

g = −2H(u, x, y)du2 − 2dudv + dx2 + dy2

with an arbitrary function H, the potential, which does not depend on v. The
subclass of plane waves is given by all potentials H of the form

H(u, x, y) = a(u)x2 + 2b(u)xy + c(u)y2.

A pp-wave is Ricci flat if and only if Hxx + Hyy = 0. A particular class is the
class of polarized exact plane waves with a potential H(u, x, y) = h(u)(x2 − y2)
[7]. Isometric, homothetic and conformal vector fields of pp-waves were clas-
sified in a kind of a recursive normal form in [37], starting from the possible
Killing fields. Furthermore it is well known that the isometry group is of codi-
mension at most one in the homothety group, and that in turn the homothety
group is of codimension at most one in the conformal group, compare [19].
The dimension of the conformal group is at most 7, see [20]. Moreover, all
vacuum spacetimes admitting a 7-dimensional conformal group (together with
the vector fields themselves) can be explicitly determined in terms of elemen-
tary functions and a finite number of parameters [30]. Moreover there is one
family admitting a non-homothetic conformal vector field.
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Example 2.13. A typical example of a non-homothetic conformal vector field
on a pp-wave is the standard special conformal vector field (SCKV in [37])

Z1 = u2∂u + 1
2
(x2 + y2)∂v + ux∂x + uy∂y

for the Ricci flat metric g = −2u−4(x2 − y2)du2 − 2dudv + dx2 + dy2 which
is isotropic and which is also conformal on the flat Minkowski space with the
metric g0 = −2dudv + dx2 + dy2, see [30]. The flow of Z1 is explicitly given by

Φt(u, v, x, y) = 1
1−2tu

(

u, v(1 − 2tu) + t(x2 + y2), x, y
)

.

Any fixed trajectory is a straight line. However, the vector field is not complete
since there is always a pole along the u-lines. Note that u is the divergence of
the field. An attempt to visualize the flow can be found in [32].

An example of a complete and Ricci flat pp-wave carrying a non-homothetic
conformal vector field is the modified metric

g = −2(u2 + 1)−2(x2 − y2)du2 − 2dudv + dx2 + dy2

with the modified vector field

V = Z1 + ∂u = (u2 + 1)∂u + 1
2
(x2 + y2)∂v + ux∂x + uy∂y,

see [30, Thm.1]. This metric is geodesically complete by [7, Prop.3.5].

The case of pseudo-Riemannian spaces of constant scalar curvature carrying
non-isometric local gradient fields can also be classified, see [28, Thm.4.3]. In
particular there are generalizations of Ejiri’s compact example at the end of
this article, all as warped product metrics. The possible warping functions can
be explicitly determined.

There are many more examples of non-complete Einstein spaces carrying com-
plete non-homothetic vector fields. As an example, on the standard sphere
without north and south pole with the metric g = dt2 + (sin t)2g1 one can
replace the equatorial spheres with metric g1 by any Einstein space (M∗, g∗)
of the same Einstein constant as the unit sphere. Then the warped product
metric dt2 + (sin t)2g∗ admits the same complete gradient field V1 = sin t · ∂t

as in Example 2.4 above. Particular cases use a non-standard Einstein metric
on the sphere M∗, see [29]. This leads to an Einstein sphere with two isolated
metrical singularities.

3. Conformal vector fields on Einstein spaces: Proofs

The proof of the results in Section 2 involves several steps as follows:

(1) If there is a non-homothetic conformal vector field V then there is also
a non-trivial conformal gradient field. This in turn is characterized by
the equation (∇2σ)◦ = 0 where σ = divV .
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(2) There is a local normal form for metrics admitting a non-trivial solution
of (∇2σ)◦ = 0.

(3) If the manifold if complete and if gradσ is not isotropic on an open
subset then it has to contain a global warped product of the type ηdt2+
σ′2(t) g∗ where g∗ is a complete Einstein metric on the level. Moreover,
the function σ′ has to satisfy a standard ODE of type σ′′2+ηkσ′2 = σk∗,
and the only possibly solutions (as functions of t) are sin, cos, sinh, cosh
and linear functins.

(4) If in addition the function σ has a critical point then the level (M∗, g∗) is
isometric with the standard “sphere” of constant curvature, and around
the critical point we have polar coordinates with t as the radius. More-
over, the space (M, g) is of constant sectional curvature. Consequently,
in the compact case we have always a space of constant curvature, for
Riemannian and pseudo-Riemannian metrics.

(5) In the cases without a critical point (essentially only σ(t) = et and
σ(t) = sinh t) one has to decide whether the space can be complete
and whether there can be a conformal mapping onto another complete
manifold.

(6) If gradσ is isotropic on an open subset then similarly the manifold has
to contain globally a Brinkmann space carrying a parallel and isotropic
vector field, and the manifold must be Ricci flat. One has to decide
whether this can be complete and whether there can be a complete
conformal vector field which is non-homothetic.

Step 1: The conformal gradient field. For Einstein spaces with a confor-
mal vector field V we have the special situation that the divergence σ = divV
satisfies the differential equation (∇2σ)◦ = 0. This means that the gradient of
σ is again conformal. This can be used for further discussions whenever σ is
not constant, i.e., whenever V is non-homothetic.

Lemma 3.1. The following formula holds for any conformal change g 7→ g =
ϕ−2g:

(6) Ricg −Ricg = ϕ−2
(

(n− 2) · ϕ · ∇2ϕ +
[

ϕ ·∆ϕ− (n− 1) · ‖gradϕ‖2
]

· g
)

.

Moreover, if V is a conformal vector field with LV g = 2σg then the formula

(7) LV Ric = −(n − 2)∇2σ − ∆σ · g
holds and the following conditions are eqivalent:

(i) LV Ric = µg for a certain function µ
(ii) grad(divV ) is conformal
(iii) (∇2σ)◦ = 0



10 WOLFGANG KÜHNEL & HANS-BERT RADEMACHER

Equation 6 follows from the relationship between the two Levi-Civita connec-
tions ∇,∇ associated with g and g:

∇XY −∇XY = −X(log ϕ)Y − Y (log ϕ)X + g(X, Y )grad(log ϕ).

For a proof in the Riemannian case see [26, p.107]. Equation 7 can be found
in [42, p.160].

Corollary 3.2. The Einstein property of a metric is in general not preserved
under conformal changes. If g is an Einstein metric then the conformally
transformed metric g = ϕ−2g is Einstein if and only if

(∇2ϕ)◦ = 0,

that is, if the Hessian of ϕ is a scalar multiple of the metric tensor.

This follows directly from Equation 6 and from the assumption n ≥ 3.

Corollary 3.3. Assume that an Einstein space carries a conformal vector
field V which is not homothetic or isometric. Then it carries also a conformal
gradient field, namely, the gradient of σ = 1

n
divV . This function satisfies

the equation ∇2σ = −kσg where k is the normalized Einstein constant. This
gradient field does not vanish identically but it can happen that it is a parallel
vector field, hence isometric.

The proof follows from Equation 7 in connection with n ≥ 3 since for Einstein
spaces with Ric = λg = (n − 1)kg it reads as

2λσ · g = LV ((n − 1)kg) = LV Ric = −(n − 2)∇2σ − ∆σ · g.

It follows that ∇2σ must be some scalar multiple of g. From the trace of this
equation we obtain ∆σ = −nkσ.

Step 2: The local normal form of the metric. For any given smooth
function f the equation (∇2f)◦ = 0 or, equivalently, ∇2f = ∆f

n
g was already

analyzed by Brinkmann [6] in the 1920’s. He was the first who proved that in
the case g(gradf, gradf) 6= 0 the metric g is a warped product. Furthermore,
he proved that in the case g(gradf, gradf) = 0 the metric has a specific form
carrying a parallel isotropic vector field (now called a Brinkmann space) which
in dimension four became later important in physics as a pp-wave.

Theorem 3.4. (Brinkmann [6])
Assume that (M, g) is an Einstein space of dimension n ≥ 3 admitting a

non-constant solution f of the equation (∇2f)◦ = 0. Then the following hold:

(1) Around any point p with g(gradf(p), gradf(p)) 6= 0 the metric tensor
is a warped product g = ηdt2 + (f ′(t))2g∗ where gradf = f ′η∂t, η = ±1
and where the (n − 1)-dimensional Einstein metric g∗ does not depend
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on t. Moreover, f satisfies the ODE f ′′′ + kηf ′ = 0 where k denotes
the normalized Einstein constant.

(2) If in addition g(gradf, gradf) = 0 on an open subset then gradf is a
parallel isotropic vector field on that subset, and the metric tensor can
be brought into the form g = dudv + g∗(u) where gradf = ∂u = gradv
and where the (n − 2)-dimensional metric g∗(u) is Ricci flat for any
fixed u and does not depend on v. Consequently g itself must be Ricci
flat. These coordinates u, v, xi; i = 1, 2, . . . , n− 2 are sometimes called
Rosen coordinates.

The proof follows from Lemma 3.6 in connection with Lemma 3.5, as far as
Part (1) is concerned. The particular form of the ODE above follows from
the one in Lemma 3.5 by differentiation. The ODE above is nothing but the
equation of the harmonic oscillator with standard solutions for f ′(t) such as
sin t, cos t, sinh t, cosh t or linear functions at+b. For Part (2) see the discussion
of Case 6 (the isotropic case). In a local classification Kerckhove [24] listed
the warped product case also with a higher-dimensional basis under an extra
assumption on a symmetric bilinear form on the space of conformal vector
fields.

Lemma 3.5. The warped product (I, ηdt2)×f (M∗, g∗) is an Einstein metric (a
metric of constant sectional curvature) if and only if g∗ is an Einstein metric
( a metric of constant sectional curvature) and f ′2 + kηf 2 = ηk∗ where k, k∗

are the normalized Einstein constants of g, g∗.

This follows from the formulae for warped products in general, cf. [40, ch.7].
For the Riemannian case see [26].

It turns out that one can integrate Equation 3 (without any additional curva-
ture assumption) by reducing it to an ODE whenever the gradient of f is not
isotropic. In particular this leads to the warped product metric. This step of
the proof can be done along the lines of Brinkmann’s results [6]. The following
lemma was stated by Fialkow [14, p.471].

Lemma 3.6. Let (M, g) be a pseudo–Riemannian manifold. Then the follow-
ing conditions are equivalent:

(1) There is a non–constant solution f of the equation ∇2f = ∆f

n
g in a

neighborhood of a point p ∈ M with g (gradf(p), gradf(p)) 6= 0.
(2) There is a neighborhood U of p , a C∞–function f : (−ǫ, ǫ) → R

with f ′(t) 6= 0 for all t ∈ (−ǫ, ǫ) and a pseudo–Riemannian manifold
(M∗, g∗) such that (U, g) is isometric to the warped product

(

(−ǫ, ǫ) , ηdt2
)

×f ′ (M∗, g∗)) =
(

(−ǫ, ǫ) × M∗ , ηdt2 + (f ′(t))2g∗
)

where η := signg (gradf(p), gradf(p)) ∈ {±1}.
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Proof. (2) ⇒ (1): Define the function f by f(t, x) = f(t). Then we have
gradf = f ′η∂t and ∇∂t

gradf = f ′′η∂t. Let X be a lift of a vector field on M∗,
then we have ∇Xgradf = f ′′ηX by standard computations in warped products
[40].

(1) ⇒ (2) : Let U be a neigborhood of p ∈ M with compact closure and with
g (gradf(q), gradf(q)) 6= 0 for all q ∈ U . Hence c = f(p) is a regular value,
let M∗ be the connected component of f−1(c) containing p. Then there is an
ǫ > 0 such that the normal exponential map exp⊥ : (−ǫ, ǫ) ×M∗ → M defines
a diffeomorphism onto the image. Let q ∈ U , g(X, gradf(q)) = 0, then it
follows immediately that

(8) Xg(gradf, gradf) = 2∆f

n
g(gradf, X) = 0 .

Hence g (gradf, gradf) is constant along the level hypersurfaces f−1(c′) and
the level hypersurfaces of f are parallel. Therefore they coincide with the t–
levels and f can be regarded as a function only of t, written as f(t, x) = f(t)
by a slight abuse of notation and gradf(t, x) = f ′(t) · η∂t as well as

(9) ∇2f = 2f ′′ηg = ∆f

n
g .

The equation g(∂t, ∂t) = η = signg (gradf(p), gradf(p)) follows since each t-
curve is a geodesic. Let X be a lift of a vector field on M∗, then g(∂t, X) = 0
by the Gauss Lemma. If X1, X2 are vectors tangential to M∗ at x0 and Xi(t) =
d exp(t, x0)(Xi), i = 1, 2 then

d
dt
|t=sg(X1, X2)(t) = L∂t

g(X1, X2)(s) = η

f ′(s)
Lgradfg(X1, X2)(s) =

2η

f ′(s)
∇2

X1(s),X2(s)
f = 2f ′′(s)

f ′(s)
g(X1, X2)(s) .

It follows that the ODE ((f ′)−2g(X1, X2))
′(t) = 0 is satisfied for any t. Hence

we can define g∗(X1, X2) = (f ′)−2g(X1, X2) and use this metric g∗ as a non–
degenerate metric on the level hypersurface M∗ since it is orthogonal to the
time-like or space-like t-direction. �

Step 3: The global warped product. If M is a complete Einstein manifold
carrying a non-homothetic conformal vector field V then σ = 1

n
divV satisfies

the equation (∇2σ)◦ = 0 by Step 1, and by Step 2 around any non-critical
point of σ the manifold M contains a warped product part U of type I ×σ′ M∗

where M∗ itself must be a complete Einstein space. Now we consider a maximal
connected subset U0 = I0 ×σ′ M∗ of this type. There are two possible cases:

Case 1: I0 = R. Then we have a global warped product with a warping
function σ′ without a zero. However, it is not a trivial question whether this
warped product metric on U0 is complete. See Step 5 below.
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Case 2: I0 is bounded from above or from below. This can happen only if the
function σ′ runs into a zero at one of the ends of I0 (or both). In this case
the metric is not globally a warped product. Instead, there are exceptional
points, namely, critical points of σ. However, these critical points are isolated
according to the results of Step 4. Moreover in this case U0 must be of constant
sectional curvature since M∗ must be of constant sectional curvature.

Step 4: Polar coordinates around a critical point. Near a regular point
of a function f satisfying ∇2f = λg the metric has the structure of a warped
product, cf. Lemma 3.6. Around a critical point we can use geodesic polar
coordinates and obtain the following.

Proposition 3.7. ([22], [27], in the Riemannian case [41])
Let (M, g) be a pseudo–Riemannian manifold with a non–constant solution f
of the equation ∇2f = λg for a function λ and with a critical point p ∈ M .

(1) (cf. [41], [26, Lemma 18] in the Riemannian case) Then there are
functions f± such that the metric in geodesic polar coordinates (r, x) ⊂
R × Σ in a neighborhood U of p has the form

(10) g(r, x) = ηdr2 +
f ′

η(r)
2

f ′′
η (0)2

g1(x) ; η = g (x, x)

and f(r, x) = fη(r), λ(r, x) = λη(r) with λη(r) = ηf ′′(r) and with the
standard metric g1 on a hyperquadric Σ of constant sectional curvature.
In particular the metric is conformally flat in a neighborhood of the
critical point.

(2) If all geodesics through p are defined on the whole real line R then the
metric g is of the form above for all (r, x), as long as f ′

η(r) does not
vanish.

The proof follows by considering the two warped products near the critical
point in timelike directions (η = −1) and in spacelike directions (η = 1).
Along the lightlike directions they have to fit together smoothly. This implies
the conditions above. For the details of the proof see [27].

Proposition 3.8. [22, Prop.2] [27]
Let V be a non–trivial closed conformal vector field on the n–dimensional
pseudo–Riemannian manifold (M, g).

(1) If V (p) = 0, then divV (p) = n · λ(p) 6= 0, in particular all zeros of V
are isolated.

(2) Denote by C = C(M, g) the vector space of closed conformal vector
fields, then dim C ≤ n + 1.
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Part (1) follows from 3.7 above. Part (2) is well known, as well as the following
additional statement: If the dimension of the space of closed conformal vector
fields is maximal, i.e., if dim C(M, g) = n+1, then the manifold is of constant
sectional curvature.

Corollary 3.9. Any Einstein space with a warped product metric (I, ηdt2)×f

(M∗, g∗) is of constant sectional curvature if the function f has a zero on the
interval I.

This follows from 3.5 in connection with 3.7 since around the critical point
the level M∗ must be a sphere (or hyperquadric in pseudo-Euclidean space) of
constant sectional curvature.

Step 5: Complete solutions without a critical point. Let us assume that
there is a global solution of Equation 3 on an Einstein space. Up to scaling,
the only cases without a critical point have to contain the warped product
R × M∗ with the metric

±dt2 + e2tg∗ or ± dt2 + (cosh t)2g∗,

respectively. Here (M∗, g∗) has to be a complete Einstein space with an Ein-
stein constant k∗ = 0 or k∗ = ±1, respectively. In the second case this warped
product is always geodesically complete if M∗ is. However, in the first case it
is geodesically complete only if the metric is definite. Otherwise there is a null
geodesic γ(s) = (log s, c(s)) in R × M∗ whose natural parameter s cannot go
beyond 0, see [40, p.209]. In this case it is the question whether the warped
product R×et M∗ can be part of a complete manifold M which contains a point
p = lims→0 γ(s).

Let us assume that a non-homothetic conformal vector field V and its diver-
gence are defined on M . In particular they are defined in an open neighborhood
of the limit point p. From the flow of grad( 1

n
divV ) = et∂t we see that the flow

runs into a fixed point for t → −∞. This follows form the explicit formula

Φτ (t, x) =
(

− log(e−t − τ), x
)

for the flow Φτ of et∂t with the property Φτ+σ = Φτ ◦ Φσ whenever this is
defined. This is independent of the metric. For the specific null geodesic γ(s)
above we obtain

Φτ (γ(s)) =
(

− log
(

1
s
− τ

)

, 1
s

)

and see that Φτ (p) = Φτ (lims→0 γ(s)) = lims→0 Φτ (γ(s)) = p for an open inter-
val in τ . It follows that grad(divV )(p) = 0 and divV (p) = lims→0 divV (γ(s)) =
lims→0 nelog s = 0. This means that p is a critical point of a conformal gradient
field, and moreover div(gradσ)(p) = limt→−∞ net = 0, in contradiction with
the results in Step 4 above. By Proposition 3.8 the divergence at a critical
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point cannot vanish. Therefore such a conformal vector field V on M cannot
exist. Consequently, this case of a warped product R×et M∗ can occur only in
the Riemannian case if the manifold is assumed to be complete.

Step 6: The isotropic case. There remains a discussion of the case of a
conformal gradient field which is isotropic or null on an open set. It was called
the improper case in [6]. Here we have the following:

Theorem 3.10. (Brinkmann [6], Catalano [8])
Assume that (M, g) is a pseudo-Riemannian manifold of dimension n ≥ 3
admitting a non-vanishing and isotropic conformal gradient field, i.e., a non-
constant solution f of Equation 3 such that gradf is isotropic on an open
subset. Then gradf is in addition parallel, and the metric tensor can be brought
into the form g = 2dudv + g∗(u) where gradf = ∂v = gradu and where the
(n − 2)-dimensional metric g∗(u) does not depend on v. If in addition (M, g)
is Einstein then it is Ricci flat.

Such spaces carrying a parallel isotropic vector field are often called Brinkmann
spaces. The transition from a non-isotropic gradient to an isotropic one is
further explained in [8]. It corresponds to passing to the limit α → 0 in the
metric g = −α(u)du2 + 2dudv + g∗(u).

Sketch of proof: By assumption we have ∇2f = λg and g(gradf, gradf) = 0,
hence 0 = ∇X(g(gradf, gradf)) = 2g(∇Xgradf, gradf) = 2λg(X, gradf) for
any X. This implies λ = 0 and therefore ∇Xgradf = 0 for any X, so gradf
is parallel. If we use the function f as a coordinate u then the metric can
be brought into the form above, see [8]. By ∂v = gradu the metric does not
depend on v since gradu is parallel. From ∇X∂v = 0 one gets R(X, Y )∂v = 0
for any X, Y . It follows that λ = Ric(∂u, ∂v) = 0 if Ric = λg. �

In the isotropic case a generalized Liouville theorem was obtained in [31].
This concerns the possible conformal mappings preserving the Ricci tensor. In
particular this assumption is satisfied for any conformal transformation of a
Ricci flat space.

Proof of the results in Section 2.

Proof of Theorem 2.7: From Step 1 we obtain that σ = 1
n
divV is a non-

constant function such that gradσ is a conformal gradient field. From Step 2 we
see the local normal form of the metric as g = dt2 + (σ′(t))2 g∗ with a warping
function σ′ = dσ

dt
where the parameter t is the arc length along the trajectories

of gradσ. Moreover, from Lemma 3.5 we obtain the ODE σ′′2+kσ′2 = k∗ where
k, k∗ denote the normalized Einstein constants of M and M∗, respectively.

For k 6= 0 the solutions are σ′(t) = a cos t + b sin t if k = 1 and σ′(t) =
a cosh t + b sinh t if k = −1, up to scaling of the metric. By Step 3 the warped
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product is global unless the function σ′ has a zero (a critical point of divV )
which implies that the space is of constant sectional curvature. The global
cases without a zero are the cases a2 ≥ b2 for k = −1. Up to a change of the
parameter we obtain only the cases σ′(t) = et and σ′(t) = cosh t. Here (M∗, g∗)
must be complete and Einstein with k∗ = 0 in the first case and k∗ = −1 in
the second case. In all other cases σ′ has a zero, and by Step 4 the given space
(M, g) is of constant sectional curvature k 6= 0. Moreover, starting from the
zero the warped product implies that the space is simply connected and hence
isometric with the sphere or with the hyperbolic space.

It remains to discuss the Ricci flat case k = 0 with σ′′2 = k∗, hence σ′(t) = at+b
is linear. From Corollary 3.3 we get ∇2σ = 0, hence a = 0. Therefore σ′ = b is
constant with b 6= 0, and σ has no critical point. Up to scaling, we can assume
b = 1 and σ(t) = t. Consequently, the gradient of σ is ∂t which is parallel since
the t-lines are geodesics. It follows that (M, g) splits as a Riemannian product
(R×M∗, dt2 + g∗) where (M∗, g∗) is complete. Then V splits as an orthogonal
sum V = α∂t + V∗ with a vector field V∗ on (M∗, g∗) for any fixed t which is
not identically zero for some fixed t0 and with a function α defined on M . In
a first step from 2t = (LV g)(∂t, ∂t) one obtains the equation t = ∂α

∂t
, hence

β := α− t2

2
is a certain function on M∗ which is independent of t. In a second

step from 0 = (LV g)(∂t, X) = g(∇tV∗, X)+∇Xα = g∗(∇tV∗, X)+g∗(gradβ, X)
for arbitrary X tangential to M∗ it follows that ∇tV∗ is a gradient field. By
g(∇tV∗, ∂t) = 0 this is tangential to M∗ as well. Finally by a straightforward
calculation it follows that L∇tV∗

g∗ = 2g∗, so ∇tV∗ is homothetic on (M∗, g∗).
On the other hand it is well known [41, Thm.2] that a nontrivial homothetic
gradient field on a complete Riemannian manifold has precisely one zero, and
the manifold is isometric with the Euclidean space. Compare [25, p.242] for the
flatness of the space even if the homothetic vector field is not a gradient. This
implies that M∗ is isometric with the Euclidean space. Hence M = R × M∗

is Euclidean as well. Compare Example 2.9 where ∇tV∗ is nothing but the
position vector on R

n−1. �

Proof of Theorem 2.8: Again from Step 1 we obtain that σ = 1
n
divV is

a non-constant function such that gradσ is a conformal gradient field. From
Step 2 we see the local normal form of the metric as g = ηdt2 +(σ′(t))2 g∗ with
a warping function σ′ = dσ

dt
. Moreover, from Lemma 3.5 we obtain the ODE

σ′′2 + ηkσ′2 = ηk∗ where k, k∗ denote the normalized Einstein constants of M
and M∗, respectively.

For k 6= 0 the solutions are σ′(t) = a cos t + b sin t if ηk = 1 and σ′(t) =
a cosh t + b sinh t if ηk = −1, up to scaling ot the metric. By Step 3 the
warped product is global unless the function σ′ has a zero (a critical point of
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divV ). The global cases without a zero are the cases a2 ≥ b2 for ηk = −1.
Again this can be reduced to the cases σ′(t) = et and σ′(t) = cosh t. The first
case σ′(t) = et can be excluded by Step 5 above (this part was also claimed
in [28, p.242] but the proof was rather short). There remains only the second
case σ′(t) = cosh t with a complete Einstein space (M∗, g∗) with k∗ = −1.
In all other cases σ′ has a zero, and by Step 4 the given space (M, g) is of
constant sectional curvature around the zero where one of the functions λη in
Proposition 3.7 is λη(t) = sin t, the other one is λη(t) = sinh t. This implies
that there are only two critical points and the function σ is a height function
on a standard hyperquadric in some pseudo-Euclidean space [40, p.108], hence
(M, g) is isometric with Sn

j or Hn
j or, if j = 1 or j = n− 1, to a covering of it.

It remains to discuss the Ricci flat case k = 0 with σ′′2 = k∗, hence σ′(t) = at+b
is linear. From Corollary 3.3 we get ∇2σ = 0, hence a = 0. It follows that the
function ‖gradσ‖2 is constant and that σ has no critical point. Here an extra
case distinction comes in, called “proper” and “improper” by Brinkmann [6].

The proper case: ‖gradσ‖2 = ±b2 6= 0. By scaling we can assume that b = 1
and σ(t) = t. It follows that gradσ is a parallel vector field ±∂t. Hence (M, g)
splits as a pseudo-Riemannian product (R × M∗,±dt2 + g∗) where (M∗, g∗) is
complete. Then V splits as an orthogonal sum V = α∂t + V∗ with a vector
field V∗ on (M∗, g∗) which is not identically zero for some fixed t0. As above in
the proof of Theorem 2.7 we obtain that ∇tV∗ is a homothetic gradient field on
M∗. Then Theorem 3 in [22] implies that (M∗, g∗) is isometric with the pseudo-
Euclidean space. Consequently the same holds for (M, g). See Example 2.9
for an example in this particular case.

The improper case: ‖gradσ‖2 = 0 but gradσ 6= 0. It follows that gradσ is a
parallel isotropic vector field. Hence (M, g) is a Ricci flat Brinkmann space. �

Proof of Theorem 2.5 and Theorem 2.6:

We prove only the stronger version in Theorem 2.6. By assumption there is
a conformal diffeomorphism F : (M1, g1) → (M2, g2). We may consider two
complete metrics g1 and F ∗g2 on one manifold M1 such that the conformal
factor ϕ in the equation F ∗g2 = ϕ−2g1 is a global and non-constant function
which, therefore, does not have a zero. By Corollary 3.2 the equation (∇2ϕ)◦ =
0 is satisfied. From Theorem 3.4 we obtain the local form of the metric g1 as the
warped product g = dt2 + (ϕ′(t))2g∗ with a complete Einstein space (M∗, g∗)
and with ϕ′′′+kϕ′ = 0. Up to scaling there are only the cases k = ±1 and k = 0,
so the function is ϕ′(t) = a sinh t + b cosh t if k = −1 or ϕ′(t) = a sin t + b cos t
if k = 1 or ϕ′(t) = at + b if k = 0.

If ϕ′ has a zero then by Corollary 3.9 (M, g1) is a space of constant sectional
curvature since (M∗, g∗) is isometric with the standard sphere. Moreover, in
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this case we have ϕ′(t) = sinh t or ϕ′(t) = sin t or ϕ′(t) = t if the critical point
corresponds to the parameter t = 0. In the first case we have the metric of
the hyperbolic space in polar coordinates (t, x) with t ∈ [0,∞). This metric
g1 is complete. However, the conformally transformed metric ϕ−2g1 would
not be complete in this case, a contradiction. In the last case we have the
metric of the Euclidean space in polar coordinates. However, the conformally
transformed metric ϕ−2g1 would not be complete since the t-geodesics would
not be complete if ϕ(t) = 1

2
t2 + c for a constant c > 0. In the second case we

obtain the standard sphere in polar coordinates. This case really occurs with a
conformal factor ϕ(t) = − cos t+c for any constant c with |c| > 1. The metrics
g1 and g2 = ϕ−2g1 have constant sectional curvatures k1 = 1 and k2 = c2 − 1,
respectively. By scaling of g2 one obtains a 1-parameter family of conformal
transformation g1 7→ c2−1

(c−cos t)2
g1 of the unit sphere onto itself, depending on

c ∈ (1,∞).

If there is no zero of ϕ′ along the entire t-axis then we have either k = −1 and
ϕ′(t) = et or ϕ′(t) = cosh t (up to shift of the parameter) or we have k = 0 and
ϕ′ is constant. If ϕ′ is constant or if ϕ′(t) = cosh t then the function ϕ would
have a zero, a contradiction. In the last case we obtain the global warped
products R × M∗ with the metric g1 = dt2 + e2tg∗. This is complete if M∗ is
complete. However, the conformally transformed metric ϕ−2g1 would not be
complete, a contradiction. This last case shows that without the assumption
of the completeness of ϕ−2g1 the theorem would not be true. �

Remark: A verification of Equation 6 for ϕ(t) = c − cos t, defined on the unit
sphere, leads to the following expressions: From the equation ϕ = c − ϕ′′ one
obtains ‖gradϕ‖2 = ϕ′2, ∆ϕ = nϕ′′ = n(c − ϕ) and ∇2ϕ = (c − ϕ)g1 and

(n − 2)ϕ∇2ϕ + (ϕ∆ϕ − (n − 1)ϕ′2)g1

= (n − 1)(2ϕ′′(c − ϕ′′) − ϕ′2)g1 = −(n − 1)(1 + ϕ′′2 − 2cϕ′′)g1.

After multiplication with ϕ−2 we obtain

(n − 1)((c2 − 1)g2 − g1) = Ric2 − Ric1,

as expected. For c2 > 1 the transformed metric g2 is that of a round sphere, for
c2 = 1 a part of Euclidean space and for c2 < 1 a part of hyperbolic space in
polar coordinates. These cases may be called elliptic, parabolic and hyperbolic,
respectively.

Proof of Theorem 2.1 and Theorem 2.2:

Again we prove here the stronger version Theorem 2.2. The Riemannian case
was treated above. So we can assume that there is a conformal diffeomorphism
F : (M1, g1) → (M2, g2) between two pseudo-Riemannian manifolds with an
indefinite metric such that the conformal factor ϕ in the equation F ∗g2 = ϕ−2g1
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is a global and non-constant function which does not have a zero. Again the
equation (∇2ϕ)◦ = 0 is satisfied, and around any point with ‖gradϕ‖2 6= 0
we obtain the local form of the metric g1 as the warped product g = ηdt2 +
(ϕ′(t))2g∗ with an Einstein space (M∗, g∗) and with ϕ′′′ + ηkϕ′ = 0. Up to
scaling there are only the cases k = ±1 and k = 0, so the function is ϕ′(t) =
a sinh t+b cosh t if ηk = −1 or ϕ′(t) = a sin t+b cos t if ηk = 1 or ϕ′(t) = at+b
if k = 0.

If ϕ′ has a zero then by Corollary 3.9 (M, g1) is a space of constant sectional
curvature since (M∗, g∗) is isometric with a hyperquadric of constant sectional
curvature (a “sphere”). Moreover, in this case we have ϕ′(t) = sinh t or ϕ′(t) =
sin t or ϕ′(t) = t if the critical point corresponds to the parameter t = 0. More
precisely for k 6= 0 we have ϕ′(t) = sinh t in timelike [or spacelike] directions
and ϕ′(t) = sin t in spacelike [or timelike] directions around the critical point.
In any case there is a geodesic emanating from the critical point such that
ϕ′(t) = sinh t along the geodesic where t is the arc length parameter. This
implies that in the conformally transformed metric g2 = ϕ−2g1 this geodesic
is no longer complete, a contradiction. Hence the case of constant sectional
curvature k 6= 0 cannot occur with a critical point of ϕ. In the case k = 0 we
have the metric of the pseudo-Euclidean space in polar coordinates. However,
the conformally transformed metric ϕ−2g1 would not be complete since the
t-geodesics would not be complete if ϕ(t) = 1

2
t2 + c for a constant c > 0.

If there is no zero of ϕ′ along the entire t-axis then we have either ηk = −1 and
ϕ′(t) = et or ϕ′(t) = cosh t (up to shift of the parameter) or we have k = 0 and
ϕ′ is constant. If ϕ′ is constant or if ϕ′(t) = cosh t then the function ϕ would
have a zero, a contradiction. In the remaining case ϕ′(t) = et we obtain the
global warped products R × M∗ with the metric g1 = ηdt2 + e2tg∗. However,
this case can be excluded by the same reasoning as in Step 5 above since in a
limit point along the special null geodesic γ would have to be a critical point
of ϕ.

It remains to discuss the improper case of an isotropic gradient with ‖gradϕ‖2 =
0 but gradϕ 6= 0 on an open subset. Then by Theorem 3.10 we have a Ricci flat
Brinkmann space with a metric g1 = 2dudv + g∗(u). Moreover, the function ϕ
coincides with u, up to shift of the parameter. The u-lines are null geodesics
with their natural parameter since ∇∂u

∂u = 0. However, the conformal factor
ϕ has a zero along any u-line, a contradiction. Therefore this improper case
cannot occur if g1 is geodesically complete. �
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Final remarks. In the case of a Riemannian manifold any conformal vector
field without zeros can be made into an isometric vector field by a conformal
change. Such a field is called inessential, otherwise it is essential. Since much is
known about the isometry groups and Killing fields, it is here more interesting
to study essential conformal vector fields, that is, conformal vector fields which
never become isometric under a global conformal change of the metric. In the
compact case it has been known as the Lichnerowicz conjecture [36]. Now
the theorem states that a Riemannian manifold of dimension n admitting a
complete and essential conformal vector field is conformally diffeomorphic with
either the standard sphere Sn or with the Euclidean space E

n. This was proved
by Alekseevskii [1], Ferrand [12],[13] and Yoshimatsu [44], in the compact case
also by Obata [39], Lelong-Ferrand [36], Lafontaine [35]. Several steps in the
proof were made more precise in various papers, so the result cannot really
be attributed to a single person. For a more recent and alternative proof see
[17]. The case of a complete manifold carrying a complete and closed essential
conformal vector field was solved by Bourguignon [4].

No analogous result seems to be known yet in the case of a pseudo-Riemannian
manifold with an indefinite metric. It is the other part of the same Lichnerow-
icz conjecture that a compact and pseudo-Riemannian manifold carrying an
essential conformal vector field is conformally flat [15]. So far it seems that
in the case of an indefinite metric there is no example of a non-homothetic
conformal vector field wih a zero.

The situation with respect to inessential conformal vector fields is totally differ-
ent, even in the compact case and even under additional curvature restrictions.

Example 3.11. For any n there is a compact Riemannian n-manifold of con-
stant scalar curvature admitting a conformal vector field without zeros. The
simplest example of this kind for n = 4 is the product S1×S3 with the warped
product metric g = dt2 + (2 + cos t)g1 where g1 is the standard metric on the
unit sphere. In this case the closed vector field V =

√
2 + cos t ∂t is conformal

(and inessential), see [9, p.277]. There are similar examples g = dt2 +(f(t))2g∗
in any dimension, with a periodic warping function f which can be explic-
itly given. It has to satisfy the ODE nkf 2 + (n − 2)f ′2 + 2ff ′′ = (n − 2)k∗

where k, k∗ are the constant (normalized) scalar curvatures of g, g∗, respec-
tively. These examples can be extended to the case of a pseudo-Riemannian
metric, see [28].

Acknowledgment: This work was partially supported by the DFG under the
program “Global Differential Geometry” (SPP 1154).



EINSTEIN SPACES WITH A CONFORMAL GROUP 21

References

[1] D.V.Alekseevskii, Groups of conformal transformations of Riemannian spaces. (russian)
Mat. Sbornik 89 (131) 1972 = (engl.transl.) Math. USSR Sbornik 18 (1972) 285–301

[2] —, Selfsimilar Lorentzian manifolds. Ann. Glob. Anal. Geom. 3 (1985), 59–84
[3] A.Besse, Einstein manifolds. Erg. Math. 3. Folge, Band 10, Springer, Berlin, 1987
[4] J.P.Bourguignon, Transformation infinitésimales conformes fermées des variétés rie-
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