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Preface

These lecture notes are intented as an introduction to linear second order
elliptic partial differential equations. It can be considered as a continuation
of a chapter on elliptic equations of the lecture notes [17] on partial differen-
tial equations. In [17] we focused our attention mainly on explicit solutions
for standard problems for elliptic, parabolic and hyperbolic equations.

The first chapter concerns integral equation methods for boundary value
problems of the Laplace equation. This method can be extended to a large
class of linear elliptic equations and systems. In the following chapter we
consider Perron’s method for the Dirichlet problem for the Laplace equation.
This method is based on the maximum principle and on an estimates of
derivatives of solutions of the Laplace equation.

For additional reading we recommend following books: W. I. Smirnov [21],
I. G. Petrowski [20], D. Gilbarg and N. S. Trudinger [10], S. G. Michlin [14],
P. R. Garabedian [9], W. A. Strauss [22], F. John [13], L. C. Evans [5] and
R. Courant and D. Hilbert [4]. Some material of these lecture notes was
taken from some of these books.
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Chapter 1

Potential theory

The notation potential has its origin in Newton’s attraction rule

Mm y—=x
K(z,y) = -Gr—57—
ly —z? ly — |

where G = 6.67- 10711 m3/(kg - s?), and K is the force acting between two
mass points M and m located at x, y € R3, respectively. Since rot K = 0,
there is a scalar function Q(x,y), called potential, such that V,Q(z,y) =
K(z,y). Thus Q(z,y) = —GMml|y — x|~! is a Newton potential. The
function Q(z,y) defines the work which has to be done to move one of the
mass points to infinity if the other one is fixed.

Let Q C R™ be a bounded, connected and sufficiently regular domain.
Consider for given f and h the boundary value problem

—Av = f inQ
v = h on 0f.

We can transform this problem into a boundary value problem for the
Laplace equation by setting v = v — w, where

w(z) = /Q s(1z — y) f(v) dy.

Here s(r) denotes the singularity function, see also [17],

—Inr : n=2
s(r) :—{ on
e 23

We recall that w, = |0B1(0)|. Since w € C'(R") and —Aw = f in Q if
f is sufficiently regular, see Section 5.1, we arrive at the problem Au = 0

7



8 CHAPTER 1. POTENTIAL THEORY

in Q and v = h — w on 0Q2. Consequently, it is sufficient to consider the
boundary value problem for the Laplace equation, which is a problem with
a homogeneous differential equation.

The Dirichlet problem (first boundary value problem) is to find a solution
u e C*(Q)NCA) of
Au = 0 in Q2 (1.1)
u = $ on 01,
where ® is given and continuous on 0f).

The Neumann problem (second boundary value problem) is to find a
solution u € C?(Q2) N CH(Q) of

Au = 0 in (1.3)
% = ¥ on 09, (1.4)

where W is given and continuous on 0f2.

In [17], Chapter 7, we derived an explicit formula for the solution of (1.1),
(1.2) if Q is a ball. In general, one gets explicit solutions, provided the Green
function is known for the domain 2 considered.

We denote (1.1), (1.2) by (D;) and (1.3), (1.4) by (XV;) to indicate that
the problems considered concerns the interior of 2. Then (D.) and (Ne)
denote the associated exterior problems, that is we have to replace in (1.1)
and (1.3) the domain § by its complement R" \ Q.

For the Dirichlet problems we make an ansatz with a dipole potential

we= [ 0w (o) (1

if n > 3. In the case that n = 2 we have to replace |z —y[>~" by —In(|z —y]).
In the formula above v(y) denotes the exterior unit normal at y € 92 and

o(y) the dipole density.

For the Neumann problem we make an ansatz with a single layer potential

V(z):/8 oW e (1.6)

o |z —y["?

if n > 3. In the case that n = 2 we have to replace |z—y|>~" by —In(]z —y|).
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Both potentials solve the Laplace equation in R™ \ 0fQ.

In the rest of this chapter we assume that n > 3.

We will see that discontinuous properties of these surface potentials lead
to integral equations which can be studied by using Fredholm’s results on
integral equations. Thus the method of surface potentials provide a beautiful
example for Fredholm’s theory.

1.1 Preliminaries

Let © C R™ be a bounded and connected domain with a sufficiently regular
boundary 0f2.

Definition. We say that 9Q € C1*, 0 < X < 1, if:
(i) For each given x € 0N there exists a p > 0 and N = N(z,p) balls

Boy(x;) CR™, i=1,..., N, with centers x; € 09, where x1 = z, such that

N
0Q c | By(xi).

=1

(ii) Let Ty, be a plane which contains z; and denote by Zs,(z;) a circular
cylinder parallel to the normal on T}, such that its intersection with the
plane T, is a ball in R"~! with radius 2p and the center at z;. We assume
the intersection 02 N Zs,(x;) has a local representation 7 = f(§), f = fi,
where £ is in an (n — 1)-dimensional ball Dy, = D3,(0) with radius 2p and
the center at 0 € R*~!. Moreover, we assume

€ CY(Dyy), f(0) =0, Vf(0)=0.
Lemma 1.1.1 (Partition of unity). There exists n; € C§°(Bay(z;)), 0 <
n; < 1, such that

N N
Zm(:p) =1 if vz e U By(x;).
i=1

=1

Proof. For given By,(x;) there exists ¢; € C§°(B2,(x;)) with the properties
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BZp(Xi )

0Q

ZZp (Xi)

Figure 1.1: Definition of 9Q € C1A

that ¢; =1 in B,(x;) and 0 < ¢;(x) < 1, see an exercise. Set

m = ¢
= 1-(1-¢1),
ni = ¢i(l—0¢1) ...-(1—¢i1)
= 1-01-¢)A—=¢1) ... (1 —¢i1).

Then

N
d @) =1—(1—¢1)-...- (1—on),
i1

which implies that

N N
> milz) =1, if x| By(x)
i=1

=1

since at least one of the factors is zero. O

Assume 0Q € C'*, then we define the area integral by

N
/8 () ds, - /a Y onw) g s,

=1

N
= ; /{99 ni(y) g(y) dSy,
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where
/ ni(y) 9(y) dSy
o0
- /D (6, £:(6)) 96, FOWT T VIO de.

2p

Here we suppose that 9Q N Zs,(x;) has the parametric representation y =

(&, fi(£))-

1.2 Dipole potential

Dipole density. The following consideration leads to the formula (1.5) for
the dipole potential in the case of three dimensions.

Consider two parallel surfaces, one inside of €} and the other one outside,
of distance €/2, ¢ > 0 small, from 0, see Figure 1.2. Assume there is a

Figure 1.2: Double layer potential

charge of power e 1 at y* = y + (¢/2)v(y) and a charge of power —e ! at

y~ =y — (e/2)v(y). Set 2T = yT —x and 2~ =y~ — x, then the potential

e Cals

R e e Eal

1
€
1
€
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_l’_

Since z~ = zT — ev(y), we have

T —ev(y))

127? = 2e2t - w(y) + €.

2P = e —evy), 2

Thus
1 2t -v(y) + €

U= —- .
e (lzF]+ =7 DI=*]]=7]
Set z =y — x, then
limu = _72-1/(3;)
e—0 ’Z|3

N afiw <|yi$|)

is the potential of a single dipole with density o(y) = 1 at y. Multiplication
with a density o(y) and integration over 0f) leads to (1.5).

The right hand side of (1.5) is called dipole potential or potential of a double
layer with density o. The dipole potential is in C*°(R™\ 9€2) and a solution
of the Laplace equation in R™ \ 9. In fact, see the following proposition,
the right hand side of (1.5) is defined and continuous on 92 provided the
boundary 02 is sufficiently smooth, but W (z) makes a jump across 0.

Some of the following calculations are based on the formula for the di-
rectional derivative in direction v(y)

: ( 1 ) : i%—y»(v(y))i. (1.7)

w(y) \lz—yl"2) |z —yl" &

Lemma 1.2.1. Assume 92 € C** and o € C(0Q). Then the right hand
side of (1.5) is defined and is continuous on OS).

Proof. Consider the case n > 3. Let = be the center of a local coordinate
system and z € 0 N Zy,(x), see Figure 1.3. We have to show that, see
Section 1.1 for the definition of the surface integral and formula (1.7),

_ ) (=9 VIO + Q) - £€)
0= [ METE) o€ ) | S

is continuous in a neighbourhood of 0 € R""!. Here is Dy, = Ds,(0),
z = (¢, f(€) and y = (&, f(&)) in local coordinates, and n € C* in its
arguments.

3
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0Q

Z50(6)

Figure 1.3: Local coordinates

Because of f € C1*(Ds,), f(0) =0 and Vf(0) = 0 we have

A )
(J(C):/D2 % dg,

where A(¢, () is bounded on Dy, x Dj, and continuous if £ # (. Since the
integrand is weakly singular, it follows that ¢({) is continuous on Dy,, see
an exercise. O

Let 2p € 99 and = € R™. Set
W(z) = Wi(x) + o(x0) Wo(z),

where

Wiw) = [ (o) >>8a (5opms) B8 ()

09 v(y) y[n—2

0
Wo(z) = / < > ds, 1.9
o) oo Ov(y) \|lz—yl"=2) % 49
The integral Wy(x) is called Gauss integral.

Lemma 1.2.2. Suppose that 0Q € CY*. Then

—(n—=2w, : €
Wo(l') = 0 : =z Qﬁ
—n=2y. oz €N
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Proof. (i) If x € R™\ Q is fixed, then there is a domain Qg DD Q where
|z — y|>~™ € C*°(Qp) and satisfies the Laplace equation. Then

! (fﬂ y[n- 2) =4
0 1
_ s,
o0 Ov(y) <I$—y|" 2> Y

(ii) Let = € Q be fixed, then there is a ball B,(x) C 2. Then

1
0 — / A <7> dy
ANBx)  \|z—y[2

)
0 1 / 0 ( 1 >
_ ds, — ds,.
a0 Ov(y) (|$ - y\"—2> Y o) Ov(y) \ |z —y[n? v

where in the second integral v(y) denotes the exterior unit normal at the
boundary of B,(x). Using polar coordinates with center at x, we find for
the second integral

9 1 )
dS = / _ 2—n n—1 dS
/aBp(x> 0 <|x—y|n—2> " g 37
= (2—n)wp.

(iii) Let = € 092 and set for a sufficiently small p > 0,
S, =QN0IB,(x), C, =00\ By(x),

see Figure 1.4. Then

1
0 = / By <ﬁ> dy
O\B,(z) |z —y

0 1 0 1
— ds, — ds,.
c, w(y) <|ﬂf—y|”2> s, ovy) <|ﬂf—y|”2> !

Since, see an exercise,

0 1
li -
i%/ 0 (|x— = ) B = J a0y (rx—yw—?) 45y
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Figure 1.4: Figure to the proof of Lemma 1.2.2

it follows that

0 1
o0 Ov(y) (I:U—yI"Q) fl’lﬂ%/ ov(y) < y[n- 2> @5

We have

d 1
dS, = —(n—2 1"/ ds.
s, v(y) <|~’U—y|"2> y=—n=2p s,

P

and
_Wn n-1 2\
/Sp dSy——2p (l—i-O(p )>

The previous formula follows by introducing local coordinates at x. Let
(&, h(€)) € AB,(z) N IQ, then

A(E)] < cp™

Let F be a layer of a sphere with radius p of hight cp'**, see Figure 1.5,

then

S~ Pl < IS)l < S 4 IF.

We have

1
|F| = ip”_lwn(l—cos@

1
— (1 (1- c2p2)\)1/2)

— _pnflwnO(pQ)\)

N — DN
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0Q

Figure 1.5: Estimate of |5,

as p— 0. O

Lemma 1.2.3. Let 0Q € CY. Then

/89 3'/8(.@) (lx_1y|n—2>’ dSy

s uniformly bounded for x € R™.

Proof. (i) For fixed d > 0 consider x such that dist(xz,9Q) > d/2. Then, see

formula (1.7),
0 1 on—1
<(n-2)"—
‘Ov(y) <|:c —y|n—2>‘ < (=2

which implies that

A

(ii) Consider z € R™ such that dist(x,9Q) < d/2 for a d > 0 and let

5, 1 (n —2)2n1
< —7—109).
o (s v < i —tom

€ o) : — = mi — .
0 |z — @0 yrrelggz\x yl

Set Sq = 0Q N By(xg). Then for y € 9N\ Sy we have

ly — x| =y — mo| — |z — zo| > d/2,
which implies that

1 —2)2n!
/ 0 < 2)‘ as, < =22 h0\ s,
ao\s, |Ov(y) \|z —y|" dn
(n —2)2n1
- an—1

199.
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fa:= /s ajy) (\x —2\%2)

In local coordinates, see Figure 1.6, we have, since x — xg is perpendicular

(iii) Consider

ds,.

0Q

Figure 1.6: Local coordinates, case (iii)

on the tangent plane Ty, that z = (0,...,0,0) and y = (§, f(£)), where
f e 0 (D,), f(0) =0, V£(0) =0 and D, is a ball in R*"! with the center
at 0 € R"! and the radius p. We choose d > 0 such that p > d. Then, see
formula (1.7),

@ (o) - EVO+0- S

Ovly) \le =yI"™2 ) (2 + (5 - F(©))2)"
hi(&) +6
(1€]2 + (6 + ha(€))2)™*

where h; € C(D,(0)), |hi(€)] < clg[A.
Since

€17 + 16+ ha(£))® = [€]* + 6% + 26ha + h3
1
€)% + 552 — 7h2

A\

1 2 12
- =5
IE + 562,

provided p satisfies Tcp?* < 1/2. Tt follows that

14+A
I; < 2”/2/ M de. (1.10)
D, (€ +82)"
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The right hand side of (1.10) is uniformly bounded with respect to || < d.
More precisely, we have

Iy < 22w, 1 max{cA~'p*, 7/2},
see an exercise. O

Lemma 1.2.4. Assume o € C(9) and xo € 0Q2. Then Wi(x), see defini-
tion (1.8), is continuous at xg.

Proof. Set S, = 0Q N B,(xg) and Wy (x) = I + I2, where

I R e

: v(y) \ |z —y|"2
B 1
hi@ = /asz\sp ) _J(xO))&/(y) <|f6—y|”‘2> By

We have

(Wi(z) — Wi(zo)| < [I1(2)] + 1 (wo)| + [L12(z) — I2(z0)]

and

L(2)] < / lo(y) — o (a0)|

Sp

) 1
ds,.
v (y) (!w—y!"‘2>’ !

Set, see Lemma 1.2.3,

0 1
C = sup / < >‘ ds
vekn Joa |OV(y) \ |z —y["2 Y

and choose for given € > 0 a p = p(e) such that

0(y) - o(a0)| < 5

if y € S,. Then |I1(z)| < €/3 and |I1(z0)| < €/3.
Consider x € R"™ such that |z — z¢| < p/2, then

ly — x| > |y — xo| — |z — 0| > p/2,

provided that y € 9Q \ S,. Since I is continuous in B, /5(z¢), there is a
0 = d(e) such that
|IQ(:L“) - IQ($0)| < 6/3
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if |x — x0| < §(€). Summarizing, we have
|W1(3?) — W1($0)| <€
if | — xo| < min{p(e)/2,0(€)}. O

Let 9 € 092 and denote by W;(z¢) the limit of W (x) from interior to g
and by We(xo) the limit of W(z) from exterior to xo.

Proposition 1.2.1. Suppose that o € C(0Q) and xo € 02. The limits
Wi(zo) and We(zg) exist and satisfy the jump relations

Witro) = — 729 ) £ W (a0),

2
We(zo) = %a(ggowmxo).

Proof. We will prove the first of the jump relations. For x € Q2 we set W (z
Wi(z) + o(zo)Wy(z), where Wi(z) is continuous at xg, see Lemma 1.
and Wy(z) is the Gauss integral, see Lemma 1.2.2. Thus

) =
A,

Wilwo) = lim_ (Wi(z)+0(z0)Wo(x))
= Wl(x()) — (TL — 2)0(%0)
0 1
= [ ot -t g (s ) 48, - (- 2ota)
= W(zg) — (n_;)wno—(xo).

Corollary. The double layer potential

Wi = [ sz (=) @

where o € C(0N), defines a solution of the interior Dirichlet problem (Dj)
if and only if o € C(9R) is a solution of the integral equation

_ (n- 2)wna . o 0 1
B(=) = TR )+/89 W) a) (Iw—yln‘2> Py
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where x € 0Y, and W (x) is a solution of the exterior Dirichlet problem (D.)
if and only if o € C(0N) satisfies the integral equation

B (n—2)wnax ” 0 1
o) = e+ [ o ()

We recall that W is a solution of (D;) if and only if

O(z) = lim W(z),

z—x,z€5)

and of (D) if and only if

O(x) = lim  W(z).
z—x,zER™\Q

1.3 Single layer potential

Consider the single layer potential

- a(y)
Vi) = /89 |z — y[n—2 45y

where o € C'(09).

Lemma 1.3.1. V € C(R").

Proof. It remains to show that V(x) is continuous if x € 0. Let z € 09,
set S, = 002N By(x), p > 0 sufficiently small, and

V(@) = Vi(a) + Va(w),

where
o(y)
Vi(z) = / —— 48,
o) = [ g

Vo(z) = /8 &dSy.

a\s, |z —y"?

Consider z € R", z in a neighbourhood of z. We have

V(z) = V(o) < Vi(2)[ + [Vi(2)] + [Va(z) = Va(z)].
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Figure 1.7: Proof of Lemma 1.3.1

In local coordinates it is y = (£, f(£)), z = ((, ), where &, ( € D, = D,(0),

see Figure 1.7, and

o (&, F(€)VIFIVFE)P
= /D (IC — €2 + (5 — f(£)2)m2/2

. adag
= /D €[

_dg
= /D €2

= 2cwp_1p.

Let € > 0 be given and set p = p(e) = €/(6cwn—1), then |Vi(2)| < €/3 if
|z — x| < p(e). Consequently, for those z we have

2
V(z) = V(@) < g€+ [Va(z) = Va()].
For fixed p > 0 there is a 6 = §(e) > 0 such that
€
V2(2) ~ Vale)] < &

if |z — x| < (€). Summarizing, we have

V(z) = V(@) <
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provided that |z — z| < min{p(e), d(¢)}. 0

Definition. Assume u € C1(Q) and 992 € C**. We say that there exists a
reqular interior normal derivative of u at 9S) if the limit

() ey 2

exists for each x € 9. Here is z € 2 on the line defined by the exterior
normal v, at x, see Figure 1.8, and this limit is uniform with respect x € 92
and it is a continuous function on 9€2. Analogously, we define the reqular

[~

N

Figure 1.8: Normal derivative

exterior normal derivative of u € C*(R™ \ ) on 99 by

o

where z € R™ \ © is on the line defined by v(z) and z.

Assume z ¢ 0f), then

ov(z) 0 1
i _/an "W (rzy|n2> 45y

where [ is any direction. If z € 9Q we define

ov(z) . 9 1
dv(z) /ag (y)al/(aj) (|x_y|n—2> dSy. (1.11)
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In some of the following considerations we need the formula

9 1 n—2 —
ov(x) <|x - y|n2> - |z — y| Z(m, —¥i)(w(2))s. (1.12)

i=1

Lemma 1.3.2. The right hand side of (1.11) exists' if x € O9Q.

Proof. We introduce a local coordinate system with center at x as in previous
considerations and show that

o) = /s Wy (g

exists, where S, = 0QN B,(z), p > 0 sufficiently small. In local coordinates
itis y = (&, f(£)). Using formula (1.12), we obtain

L) < cl/D ] e

4
S 02/ ’é—’—n-‘rl-‘w\ df
Dp
= ngn_l)\ilp)‘.

Let z € 99 and consider the sum

IV (2)
G =

= [ (e (=) * vy () 50

where W is the dipole potential and z is on the line defined by v(x), see
Figure 1.8.

+ Wi(z)

Lemma 1.3.3. The sum s(z) is continuous at x.
Proof. Set S, = 0QN B,(z), p > 0 sufficiently small, and

s(z) = s1(2) + s2(2),

i, e., this weakly singular exists in the sense of Riemann or as a Lebesgue integral,

and it is bounded
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where

ale) = /s 0 (g (7=op) * ey (s 50
2le) = /asz\sp 0 (e (7=op) + vty (s 450

We have

|s(2) = s(2)] < [s1(2)] + |s1(2)] + [s2(2) — s2(2)].

Thus the lemma is shown if for given € > 0 there exists a p = p(e) > 0 such
that |s1(2)] < €/3 if |z — z| < p(e), see the proof of Lemma 1.3.1. It is,
see (1.7), (1.12),

(91/(?96) (\Z - 1/!"‘2> i 5V(?y) <IZ - 1yl”‘z)

—(n-2) (Z@- — ) )i — > (e - yz-)(u(x))i) ,

z—yl" \im i=1

where, in local coordinates, x = (0,...,0,0), z = (0,...,0,0), v(z) =
(0,...,0,1) and

1

N NG
It follows that

a2l < /g au?m(\z—lyn-?)*aua(y)<|z—2|n-2>‘ Sy

[ € VIO + 0~ (&) = 0V/I+VFEP|
“Jo,0 (Ie[2 + 16— F(©)P)""

1+ 5 2\
Cof KRB,
Do) (€2 402

< cgwn_1 max{\"'p*, mp*/2},

(_f§17 o -)_fgnfp ]-)

IN

dg

where the constants ¢; are independent of p. O

Proposition 1.3.1. Suppose that 0Q € CYA. Then there exists a regular
interior and a regular exterior normal derivative of V, and these derivatives
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satisfy the jump relations

oV (x) _ (n=2)wn oV (x)
(81/($) >Z N 2 o) + ov(z)

oV (x) . (n- 2)wn0 . oV (x)
<01/(1‘) )e N 2 (z) + ov(x)’

where x € 0f).

Proof. The existence of regular normal derivatives follow from Lemma 1.3.3
and Proposition 1.2.1 since

V() (%VV(Z) . W(z)> —W(2),

ov(x)

where z is on the line defined by v(z). From Lemma 1.3.3 it follows also

@Z&))ﬁmm - @Z((f)))e*m(w)

where

Using Lemma 1.3.1, we obtain

(av«@) oV (z)

v (x) v (x)
_ (n—=2)wy oV (x)
N 2 o)+ ov(z)

and

<av(a:)>e _ W(m)—We(:p)Mw(ﬂ”)

ov(x) vy
o (n=2)w, oV (z)
= - 5 o(z)+ a(z)
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Remark. Let x € 092, then it follows immediately that

(31) - (952) =1
Corollary. The single layer potential

V() :/a oW,

o |l —y["?

where o € C(0N) defines a solution of the interior Neumann problem (Nj;)
if and only if o € C(0R) is a solution of the integral equation

(= 2)wy 0 1
v = 20w+ [ otz () 45

where x € 02, and V (x) is a solution of the exterior Neumann problem (N.)
if and only if o € C(0N) satisfies the integral equation

We recall that V' is a solution of (NV;) if and only if

0= (G,

and of (V) if and only if

1.4 Integral equations

Denote by H = L?(9Q) the Hilbert space with the inner product

(0, 1) = /8  o{)i(@) ds.,

and, if n > 3, we define the linear operator T' from H into H by

o) = [ g (F)
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Set
0

o= [ o () 45

(To,p) = (0, T"p)

for all o, € H. Below we will show that 7" is bounded. Then it follows
that T is the adjoint operator to T

According to the above corollaries to Proposition 1.2.1 and Proposi-
tion 1.3.1, the potentials W and V are solutions of the boundary value
problems (D;), D), (IV;) and (N,) if the density ¢ is continuous on 92 and
satisfies the integral equations, respectively,

then

2 2

g—mTa = —mq) (Di)r
Hﬁzﬂg - ﬁq» (D)
a+ﬁm _ ﬁxp (N:)1
a—ﬁ:r*a - —ﬁ\p (N

Remark. Since we make the ansatz with above potentials for the exterior
problems, we prescribe in fact the behaviour |u(z) < c|z|' ™, Ju(z) < ¢|z|*>7™,
respectively, as z — oo.

The above integral equations are defined for o € L?(992). In the following we
will discuss whether or not there exist solutions in L?(92). From a regularity
result which says that an L2-solution is in fact in C(0€2), we recover that the
potentials define solutions of the boundary value problem, see the corollaries
to Proposition 1.2.1 and Proposition 1.3.1.

Proposition 1.4.1. Suppose that 0Q € C'*. Then T is a completely
continuous operator from H into H.

Proof. (i) T is bounded. It is sufficient, see Section 1.1, to show that

(Pu)(¢) = / a(©uE)K(.C) d

Dy
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is bounded from L?*(D,) into L*(D,). Here is D, = D,(0) C R""! a €
Cgo<DP)7 M(§> = O-(ga f(g)) and

(n=2) (=(6 = Q) - VIO + F(O) — (&)
(1€ — 12+ (f(&) — F(C)1)"?

K(¢¢) =

Set (¢) == (Pu)(C), then

B A(E.0)
a0 = /D O

where A is bounded on D, x D,) and continuous if £ # (. Let k = n—1— A,
then we have, with constants ¢; independent of u and p, that

¢ 1
9(Q)] < Cl/Dp ‘g‘f(gfﬁ’/? o

) pOP ¢
4O < CQ/D,, E—c %), e

A (&) d
P /D e— ¢

2 A 2 dg
/Dp [g(QF dC < esp /Dp (&) (/Dp |§<|H> dg

cap™ / (€ de.

P

IN

IN

(ii) T is completely continuous. According to a lemma due to Kolmogoroff,
see for example [21], pp. 246, or [1], pp. 31, P is completely continuous if
for given €; > 0 there exists an hg(e1) > 0 such that

/D 19(C+ h) — g(Q) de < &

for all h € R"! such that |h| < ho(e1), and uniformly for llll2p,) < M,
where M < oo. Thus the set |[u]|z2(p,) < M is uniformly continuous in the
mean. Above we set ¢(¢() = 01if ( € D,. Let n € C(Ry), 0 <71 <1, such
that for given € > 0

n(t)z{l  0<t<e/2

0 : t>e
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Set
q(¢) = a1(¢) + ¢2(¢),
where
O e
I e
We have

lg(¢ + 1) — (O] < [qu(C+R)| + a1 (O] + [2(C + 1) — q2(Q)]. (1.13)

Let € > 0 be fixed, then for given 7 > 0 there is an hg = ho(7) > 0 such that

02(C) — q2(Q)] <7 (1.14)
for all |h| < hg. Concerning q;(¢) we have

e
@] < e /D e 11O e

¢
2 < 2 2
@OP < ¢ /D e HOF

J, -
D,0)NB.(¢) 1§ —¢I"

d
< Puma A P %
D, (0)NB.(Q) £ — d

/ (P d¢ < Pwn 1M\ / / )2 HdC
Dl o0 Joy0) | € - q

14
= Cwy_ 1M\ / 2 d§ /
n—1 D, (0) ‘/U’ ’ ) ’5 C|f€
< can—wA/\l/ [w(©)]? de / & "
D,(0) Dap() 1€ ¢

= Awl 1 N2 20)MullF2p, -
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Analogously we have

dg
B2 2 2 _
wc+nP < @[ e HOP
J G
Do (0)NBe(c+h) 1§ — (C+h)["

_ d¢
2 )\)\
< Ccwp_1€ / ONBL(C4h) |M(£)| |£ (C+h)|
_dag
h)|? d 21N
/D,,m)'ql(“ P de < Fun e /D /D e

d¢
— 2 e )\)\ 2d
¢ W / I dt D) € — (CFR)[F

< Puma A / (O de
D,(0)

Jowieon T
Ds,(e—h) [C— (€= h)["
= Pup @A EMpl2 o

Combining these L?-estimates with (1.13) and (1.14) we obtain that the
mapping 1" is completely continuous. O

From a result of functional analysis we have

Corollary. T* is bounded with the same norm as T and T* is completely
continuous.

In the following we study the question of the existence of solutions o €
L?(09) of the above integral equations. To recover that the associated
surface potentials define solutions of the original boundary value problems,
we need more regularity, namely o € C(92). We obtain this property by
using the integral equations.

Proposition 1.4.2 (Regularity). Let w € L%*(D,) be a solution of the
integral equation

A
w(¢) — / WO de = b0,

where k =n —1— X, D, = D,(0) C R""!, A is bounded in D, x D, and
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continuous if § # (. The function b € C(D,) is given. Then it follows that
w e C(D,).

Proof. Let n € C(R4), 0 <n <1, such that for given € > 0

n(t)—{ 1 @ 0<t<e¢/2

0 : t>e€
Set A
SO~ Ri60) + Kl 0),
where
A OnE -l
Kl(&aC) - ‘5_4’5
A QA =€ —¢)
K2(£7 C) - ‘g_c‘,{ .
Then
w©) = [ w(@Ki(€0) de = g(c).
where

9(C) = /D W(€)Ka(E,¢) dE +b(0)

is a continuous function on D,. Define the integral operator T} from L?(D,)
into L*(D,) by
Tw)(©) = [ w©KiE0) de
DP

then we can write the above integral equation as (I — T1)w = g, where I
denotes the identity operator. The L?-norm of T} satisfies the inequality
||T1]] < 1, provided € > 0 is sufficiently small, see an exercise. It follows
that w is given by the Neumann series

(o]
w=(I-T)""g=>) Ty,
n=0

which is a uniformly convergent series of continuous functions, provided
€ > 0 was chosen sufficiently small, see an exercise. O

FREDHOLM THEOREMS. Here we recall some results from functional
analysis, see for example [23]. Let H be a Hilbert space over Cand T': H —
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H a completely continuous linear operator. Consider for given f, g € H
and A\ € C the equations

u+ATu = f (1)
v+EAT Y = g (I*)

and the associated homogeneous equations

u+AXTu = 0 (I)
v+AT Y = 0 (I}).
Equations (1), (I};) are called adjoint to (1), (1), respectively.

(1) Let X\ be an eigenvalue of (Iy), then the linear space of solutions has
finite dimension.

(ii) The eigenvalue problem (Ir,) has at most a countable set of eigenvalues
with at most one limit element at infinity.

(iii) A is an eigenvalue of (Ip,) if and only if X is an eigenvalue of (I}) and
dim N(I + \T) =dim N(I + \T*).

(iv) (I) has a solution if and only if f L N(I+X T*) and (I*) has a solution
if and only if g L N(I+ X T).

We recall that N(A) denotes the null space N(A) = {w € H: Aw = 0} of
a linear operator A.

Proposition 1.4.3. Suppose that 0Q € C?, then \g = —2/((n — 2)wy,) is
no eigenvalue of the homogeneous integral equation to (D).

Proof. Suppose that \g is an eigenvalue and g € L?(99Q) an associated
eigenvector of the adjoint problem (N.);. From Proposition 1.4.2 we have
that py € C(092). Consider the single layer potential

o to(y)
V(z) = /BQ 7,33 — dsS,y.

From a jump relation of Proposition 1.3.1 it follows that

(g‘:{g)@ =0 (1.15)
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since pg is an eigenvector of (Ne);.
Set for a (small) h > 0

QG =QU{yeR": y=z+sv(z), z€d, 0<s<h},
see Figure 1.9. The surface 0§, is called parallel surface to 0SQ.

v(X)=v(2)

-

5Q,

Figure 1.9: Parallel surface

Consider a ball Br = Br(0) such that Q;, C Bpg, then

2 — . oV () _ ; aV(z)
fra VP o= [ V@ ds - [ VRS as. 1)

We have on 9€),

v(z) =v(x). (1.17)

To show this equation, we consider the surface 02 which is given (locally)
by = x(u), where v € U and U is an (n-1)-dimensional parameter domain.
Then the parallel surface 02, is defined by z(u) = x(u) + hv(z(u)). Then
we consider a Cl-curve X (t) on 9 with X(0) = z, and let Z(t) be the
associated curve on 0€2,. Then

X (t) — Z(t)]? = h2.

It follows

which proves (1.17) since the first term is zero.
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Combining (1.16), (1.17), (1.15) and
lim V(z) _ <8V(x)>e,

h—0 Ov(x) ov(x)
we obtain

lim IVV[? do = / vy 2V g,
h=0JBp\, dBR Ov(x)

since the surface element dS, converges uniformly to dS, on U as h — 0.2
We have V = O(R?>™™) and 0V /0v(z) = O(R'™™), consequently

lim lim/ IVV2dx | =0.
R—oo \ h—0 Br\Q»

Thus V = const. on R™\ Q. From the behaviour of V at infinity it follows
that V' =0 on R" \ Q. Because of V € C(R"), see Lemma 1.3.1.

From the maximum principle we find that V' =0 in  since AV =0 in
Q and V = 0 on 9f). Consequently the interior regular normal derivative
on 012 is zero. Finally the jump relations, see Proposition 1.3.1, imply that
to(z) =0 on 0N O

Proposition 1.4.3 and Fredholm’s theorems imply

Theorem 1.4.1. Let Q be bounded and 0Q € C?. Then there exists for
given ®©, ¥ € C(0Q) a unique solution of the interior Dirichlet problem (D;)
and the exterior Neumann problem (N.), respectively.

Proof. N(I + XoT) = N(I + X\T*) = {0}. m

Proposition 1.4.4. Let Q be bounded and 0 € C?. The number \g =
2/((n —2)wy) is a simple eigenvalue of (D.)y to the eigenvector o = 1.

Proof. From, see Lemma 1.2.2,

0 1 (n —2)wy,
ds, = — L= 2)n
o0 Ov(y) (’w - y!”—2> Y 2

2In the case R® we have dS, = VEG — F2duidus, where E = 2y, - 2uy, G = Zuy * Zuy,
F = zy, - zu, and z(u) = z(u) + hv(z(u)).

3In this and in the following two theorems it is sufficient to assume that 92 € C1! by
Rademacher’s Theorem: A Lipschitz continuous function is differentiable almost every-
where, see for example [5], pp. 280 or [6].
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we see that \g is an eigenvalue and ¢ = 1 is an associated eigenvector. From
Fredholm’s theorems it follows that there exists at least one eigenfunction
po(x) to Ag of (N;)p. We will show that dim N(I + Ao T%) = 1. Set

_ to(y)
V(z) = /{m A s,

From the jump relations, see Proposition 1.3.1 and from the fact that ug
is an eigenvector it follows that (OV(z)/0v(z)), = 0. We obtain as in the
proof of Proposition 1.4.3 that V(x) = const. =: ¢ in . This constant is
different from zero. If not, then V' = 0 on 9). Then the maximum principle
implies that V' = 0 in R” \ Q. We recall that V = O(|z|>™") as |z| — oo.
Consequently we have also (0V (z)/dv(z)), = 0, which implies that p9 = 0,
see the jump relations of Proposition 1.3.1.

Let p11 be another eigenvector to Ag, then we can assume that p € C(0€2)
according to the regularity result Proposition 1.4.2. Set

p1(y)
Vi(z) = /89 7@ — dsSy.

As above we conclude that Vi(z) = const. =: ¢; in Q, where ¢; # 0. The
linear combination pg := c1p9 — copq is contained in the null space N (I +
Y T*). Set

= aVo(z) — coVi(z).

In Q we have Va(x) = c1c9 — coc1, and from the jump relations we find as
above that po(x) = 0. Thus we have shown

m(z) = Lpo(x).
Co

Then it follows from Fredholm’s theorems

Theorem 1.4.2. Let Q be bounded and 9 € C?. Then there exists a
solution of (N;) if and only if

/ U(y) dS, = 0.
o0
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In fact, we obtain also the existence of a solution of (D.); under the as-
sumption that

/ to(y)®(y) dSy =0,
oN

where pg is the eigenvector from above. It turns out that there is a solution of
the exterior Dirichlet problem without this restriction if we look for solutions
with a weaker decay at infinity. We make the ansatz of a sum of a double
layer and a single layer potential

o) = [ g (o) o

Mo(y)
+d/ M) g,
o0 lz—yl=2 Y

where d is a constant which we will determine later. The ansatz defines a
solution of the exterior Dirichlet problem if and only if

lim  u(y) = é(x),
y—x, yeER?\Q

where x € 9). From a jump relation of Proposition 1.2.1 we see that the
unknown density o must satisfy the integral equation

0 1
2o) = /an U(y)3V(y) (\w—y\”‘2> 5y
+(n_2)wn0(x)+d/a IUO(y) dSy

2 o |z —y[n?

Above we have shown that, if z € 09,

/ |x'u0;y|2_2 dS, = const. = cy
o0 -

with a constant ¢y # 0. Thus we have to consider the integral equation

(n —2)wy 0 1 B2 — de
R +/aQ "W o) (Ix—y|"2) Ay = Blw) — deo

This equation has a solution if

/ (®(x) — deo)po(z) dSz =0
o0
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is satisfied. We can find an appropriate constant d such that this equation
is satisfied since

/ po(z) dSz # 0.
oN

This inequality is a consequence of a jump relation and of the fact that ug
is an eigenvector:

<88‘1//b((;))>8 = w;to(x)+/m Mo(y)aya(@ <‘$_;‘n2> dsy

_ m=2en 0 -
0 = 5 po( )+/89 “O(y)(‘)y(x) <|I_y|n2> dSy,

which implies that

@f((;)))e = —(n — 2)wnpo(2).

Suppose that
/ wo(x) dS; =0,
o0

L (86‘6((33)) % =0

which implies, see the proof of Proposition 1.4.3 for notations,

2 - . oVo(x) _ p Vo (2)
/BR\Qh e dw—/aBRw )G S /mhw )Gy d5-

Letting h — 0 and R — oo, it follows Vy = const. in R" \ﬁ and Vp = ¢
since Vy(x) = const. = ¢y on 0f2.

From the decay behaviour of Vj at infinity and since V' € C(R") we
find that Vp = 0 in R™ \ 2. Thus we have ¢y = 0, a contradiction to a
consideration above.

then

Thus we have shown

Theorem 1.4.3. Let Q be bounded and 0 € C?. Then for given ® €
C(09Q) there exists a unique solution w of (D.) which the property u =
O(|z|>™™) as |z| — .

Proof. It remains to show that the solution is unique. This follows from the
maximum principle. O
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Remark. There is no uniqueness without the decay assumption. Let Q) =
Bgr(0) be a ball in R3. Then u = 1/|z| and u = 1/R are two solutions of the
Laplace equation with the same boundary values on 0f2.

1.5 Volume potential

Set
I'(z,y) = s(lz — yl),

where s(r) is the singularity function

o —5Inr @ n=2
s(r) = (nf;)ln :n=>3

We recall that w, = |0B1(0)]. Let @ € R™ a bounded and sufficiently
regular domain, then we define for given f the volume potential (or Newton
potential)

V(z) = /Q P(x.9)f () dy.

If fis bounded in Q and f € C*(Q), then V € C%(Q) and —AV = f in
), see for example [17]. This result holds under the weaker assumption
that f is bounded and locally Holder continuous in €, see Proposition 1.5.1.
In fact, also the second derivatives are Holder continuous (with the same
Holder exponent), see [10], for example.

Definition. Let f be a real function, defined in a fixed bounded neighbour-
hood D of zg € R™. Then f is called Hélder continuous at xq if there exists
a real number o, 0 < o < 1, such that

[f]oz,xo = sup M < o0
veD\{z0}  |T — To|*

The constant [f]q.z, is called Hélder constant and o Hélder exponent.
The function f is said to be uniformly Hélder continuous with respect

to ain D if
a’/’ —_—
fpie swp  V@-TWI
wvyeD, oty T =Yl
and f is called locally Hélder continuous in a domain € if f is uniformly
Holder continuous on compact subsets of €.
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In the following we will use the abbreviations D; = 0/0x; and D;; =
0%/ 0x;0x;.

Proposition 1.5.1. (i) Let f be bounded and integrable over 2. Then
V € CY(R") and for any = € 0

_ / Dil'(z,)f(y) dy.
Q

(ii) Let f be bounded and locally Hélder continuous in 2 with exponent 0 <
a<1. ThenV € C?(Q), —AV = f in Q, and for any x € Q

DV ( / DT () (F(y) — £(x)) dy (1.18)

—f(@) Dil'(z, y)(v(y)); dSy,
Qo

where Qo D Q is any domain for which the divergence theorem holds and f
is extended to vanish outside €.

Proof. See [10], Chapter 4. (i) Set for x € R”

/1Dny y) dy.

This function is well defined since |D;I'| < |z — y[17"/w,, holds. We will
show that v = D;V and v € C(R"). Let n € C'(R) be a fixed function
satisfying 0 <n <1,0<7n' <2, n({t)=0if ¢t <1 and n(t) =1if t > 2. For
a (small) € > 0 set ne = n(|]z — y|/€) and consider the regularized potential

Vi(x) = /Q D, y)nef(y) dy.
Then V, € C1(R") and
o(x) — DiVi(x) = / Di (1 —no)T) £(y) dy.
Bae(z)
We obtain
lo(z) — DiV(x)| < suplf] / (ID,T| +2|T| /) d
Q Bae(z)

4(1+ [In(2¢)[)e : n=2
< sgpf\{ ome/(n—2) : n>3
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It follows that V. and D;V, converge uniformly on compact subsets of R" to
V and v, resp., as € — 0. Consequently V € C'(R") and D;V = v.

(ii) Set for z € Q

u(x) = DiL(, y)(f(y) — f(x)) dy

Qo

—f(=) Dil'(z, y)(v(y)); dSy-
99

The right hand side is well-defined since f is locally Holder continuous and
since |D;;I| < (14 n)|z — y|™/wy holds. Set v = D;V and define for € > 0
the regularized function

ve(w) = DiT'nef(y) dy.
Qo
Then

Djv. = D i (DiTne) f(y) dy

—f(z) Dil'(v(y)); dSy,
29

provided € > 0 is small enough such that 5. = 1 on 9, see Figure 1.10.
Then

) = Dy = [ D (1 =n)DiT) (0) — 1) dy.
2e
We suppose that 2¢ < dist (z,09) if z € Q,, Q. CC Q. Then

|u(z) = Djve(z)|

IN

Flac, / (IDT] + 2D, /€) [z — y|* dy
2e

< oo (4 +n/a)(26)%

A
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5Q

Figure 1.10: Proof of Proposition 1.5.1

It follows that V' € CQ(Q) and u = D;;V since D;v. converges to u uniformly
on compact subsets of ).
Set in formula (1.18) Q¢ = Bg(x), R sufficiently large, then

=1

AV = —f(a) /8 oy 2 DI@ W) S,
1

Lo = RO

= —f(=),

From Proposition 1.5.1 and Theorem 1.4.1 we obtain

Theorem 1.5.1. Let Q be a bounded domain with 0 € C?, f be bounded
and locally Hélder continuous in Q and ® € C(0N2). Then there exists a
unique solution u € C?(Q) N C(Q) of the Dirichlet problem —Au = f in Q,
u=® on 0f.

Proof. Set u =V + w, where
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Then w is a solution of the Dirichlet problem if and only if Aw = 0 in  and
w = ® —V on J0. The existence of a w follows from Theorem 1.4.1. The
uniqueness of u is a consequence of the maximum principle. Moreover, w is
given by a dipole potential, see Theorem 1.4.1. O
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1.6 Exercises

1. Let S be a surface in R? defined by z = f(z), * = (z1,72), € U,
where U is a neighbourhood of 2 = 0. Assume f € C*NU), f(0) =
0, Vf(0) = 0. Consider the intersection I = S N JdB,,(0), po > 0
sufficiently small, i. e.,

I={(x,2): z= f(x) and 2% + 23 + 2* = p2}.

Show that there is a function €(p,¢), 0 < p < po, ¢ € [0,27), 27-
periodic in ¢ and in C! with respect to ¢, such that €(p, ¢) = O(p*)
as p — 0, uniformly in ¢ € [0,27), and

1 = p(l+e(p,d))cos¢
zy = p(l+e(p,d))sing.

Hint: Implicit function theorem.

2. Let Bag(xg) C R™ be a ball with radius 2R and the center at zp. Show
that there is a function n € C§°(Bar(zo)) which satisfies 0 <n < 1in
Bar(zo) and n =1 in Bg(xo).

Hint: Set r = |z| and define

o(r) = o—1/((3/(2R)—r)?—r?/4)
if R<r<2Randset ¢(r) =0if 0 <7 < Rorr>2R. Let

_ Jo o(t) dt
Jo~ o(t) dt

and x(r) = 1 —(r). Show that n(x) = x(|x — x¢|) is a function which
satisfies the above properties.

e(r)

3. Suppose that 9Q € C** and z € 9. Show that

lim 0 < ! _2> dSZJZO
=0 Jao\B, (@) Ov(y) \ |z —y|"

Hint: Local coordinates and formula (1.7).
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4. Let 2 C R™ be a bounded and sufficiently regular domain and set

[ A
0= [ o e

where A is bounded in Q x Q and continuous if £ # ¢ and 0 < XA < 1.

Show that ¢ € C(Q).

Hint: Let n € C(R) be a fixed function satisfying 0 <n <1, n(t) =0
if t <1andn(t) =1if t > 2. For (small) € > 0 set ne = n(|¢ — &|/€).
Then consider the regularized function

_ A, Q)
qe(C)—/Q Tele— e dg

and prove that g, converges uniformly to ¢ in 2.

. Show that

A
[[K1wl|p2p,) < ce’l|wlL2(p,)-

For the definition of K7 see the proof of Proposition 1.4.2.

. Assume g € C(D,). Prove that

(i) 1Klg] < (ce®) maxpy- lg(C)]
(ii) K!g are continuous on D,,.

iii Klg is uniformly Convergent on D s provided that € > 0 is
=171 p
Small enough.

. The solution u of the interior Dirichlet problem Awu = 0 in © and

u = ® on 99, where Q C R? and ® € C(99), is given by

0
uw) == [ o) s we =) ds,

Here is o(x), x € 09, the solution of the integral equation

mo(x) + /{m o(y) In(jz —y|) dSy = —@.

v (y)
Find the density o if  is a disk Br(0).
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Hint: Show that
0 1

5oy 00— = 57

if x, y € 0BR(0). This formula is a consequence of

0 1

() In(jz —yl) = m(y—w)w(y)

1
= ———cosf,
ly — |

see Figure 1.11 for notations.

v(y)

Figure 1.11: Notations to the exercise

8. Show that
C%a,b] :=={u € Cla,b] : ||ul|la < o0},

where —o0 < a < b < 0o and 0 < a < 1, defines a Banach space,
where

u(z) —u
||u||o ;= max |u(x)|+  sup M
z€[a,b] 2 y€la,b),zty |z — yl

9. Show that C*[a, b] is not dense in C[a, b], i. e., there is a u € C*[a, D]
such that no sequence wu,, € C*[a, b] exists such that ||u, — u||, tends
to zero.
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Hint: Consider v = v/ and [a,b] = [0,1]. We have /z € CY/2[0,1].
Assume

wp @) — (@) — (0(y) — u(w))

— 0
z,y€la,b],z#y ‘.%' - y‘a

if n — oo, where @ = 1/2. Then

Ung (x) — Ung (0)
\/E

for a given € > 0 and an integer ng = ng(€).

—1'§6

Show that C§°(a, b) is not dense in C%a, b].
Hint: Consider (a,b) = (—1,1) and
: <z<
u(w) = { Vi 0<z<1

- 0 : —-1<zx<0 °



Chapter 2

Perron’s method

Perron’s method is a maximum principle based existence theory for second
order linear or quasilinear elliptic equations. In this chapter we consider the
Dirichlet problem for the Laplace equation Au =0 in Q and u = ® on 012,
where €2 C R" is bounded and connected and & is a given function defined
on 0f).

In contrast to many other existence theories the Perron method provides
results under rather weak assumptions on the boundary 02 since the prob-
lem of existence is separated from the question of the boundary behaviour.

2.1 A maximum principle

We know that a harmonic function v must be a constant if u achieves its
supremum or infimum in a connected domain. This result is a consequence
of the mean value formula for harmonic functions, see [17], Chapter 7, for
example. Fortunately, there is a related principle for functions which satisfy
Au > 0 or Au < 0 throughout in €.

Lemma 2.1.1 (Mean value theorems). Suppose that u € C?(2) satisfies
Au=0, Au>0, Au<0 inQ, resp. Then for any ball B = Br(x) CC Q2

(<5 2) 18] Jos u(y) dSy (2.1)

1
wa) = (<2) g [ ) dy (2.2)

47
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Proof. See [10], Chapter 2, for example. Let p € (0,R) and B, = B,(z),

then
/ Audy = / ﬂ das,
B, 9B, ov(y)

= (>, 90,

respectively. Here is v(y) the exterior unit normal at y on 0B5,,.
Set r = |x —y|, w=(y — z)/r, then u(y) = u(x + rw). Thus

ou
ds, = / Uy, (T + pw)w; dS,
/83p w(y) 7 oB, @+ p) Y

_ / ou(x + rw) as,
0B, or r=p
_ - / ou (:L';- rw) dw
B1(0) T

82 / u(zr + pw) dw

1 0

2 ( ) as )
= (>, 2)0.

Consequently for any p € (0, R)

2 1-n U _
5 <p /8& (v) dsy>— (= <)o

It follows
P [ awyds, = (<2 B[t as,
0B, dBR
or
! u(y) dS, = (<, >) ; u(y) dS
0B, Jas, Y T 77 10BR| Jagy, Y
Letting p — 0, we obtain
u(z) = (<, 2) u(y) dSy.

|0BRr| Jog,,
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Formula (2.2) follows from
P lule) = (<02) [ () ds,
9B,

where 0 < p < R. We recall that w, = |0B;(0)|. Integrating over (0, R), we
obtain

wpR"
uw) = (<. 2) [ () dy
n Br
which is formula (2.2) since |Bg| = R"/(nwy,). O

As a consequence of Lemma 2.1.1 we get the following generalization of the
maximum principle for harmonic functions.

Theorem 2.1.1 (Strong maximum principle). Assume Q@ C R™ is a con-
nected domain and u € C%*(Q). Let Au > 0 (Au < 0) in Q and suppose
there exists a point y € Q for which u(y) = supqu (u(y) = infqu). Then u
18 a constant.

Proof. Consider the case Au > 0 in 2. Let xg € 2 such that

M = u(zg) = sup u(x).
e

Set 9 ={z€Q: u(z)=M}and Q = {z € Q: u(z) < M}. The set
Q1 is not empty and the set Q9 is open since u € C(2). Consequently
is empty if we can show that €2y is an open set. Let y € €1, then there is a
po > 0 such that B, (y) C Q and u(x) = M for all € B,,(y). If not, then
there are p > 0, z € Q such that |z —y| = p, 0 < p < po and u(z) < M.
From Lemma 2.1.1 we have

1
M < — / u(z) dSqg
Wnp 0By(y)
M
< — u(z) dS = M,
Wnp 0By(y)
which is a contradiction. O

Corollary. Assume Q is connected and bounded and v € C?(Q) N C(Q)
satisfies Au >0 (Au < 0) in Q. Then u achieves its maximum (minimum,)
on the boundary 0S2.
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Corollary. Assume Q is connected and bounded and v, w € C?*(Q) N C(Q)
satisfy Av > Aw in Q and v < w on 0. Then v < w in Q.

Proof. Exercise.

2.2 Subharmonic, superharmonic functions

Sometimes a function u € C2(12) is called subharmonic (superharmonic) in
a domain Q € R™ if Au >0 (Au < 0) in Q. It turns out that we can define
superharmonic and subharmonic functions if u merely is in C'(2).

Definition. A function v € C(2) is called subharmonic (superharmonic)
in Q if for every ball B CC (2 and every function h harmonic in B, i. e.,
h € C*(B)NC(B) and Ah = 0 in B, satisfying u < h (u > h) on OB we
have u < h (u > h) in B.

Corollary. A harmonic function in € is both a superharmonic and a sub-
harmonic function. In particular, constants are super- and subharmonic.

Remark. A function u in the class C?(€2) is subharmonic (superharmonic)
if A(u—nh) >0 (A(u—h) <0) in B for any harmonic function  in B such
that w < h (u > h) on OB.

Lemma 2.2.1 (Strong maximum principle). Assume Q is connected. If a
subharmonic function u attends its supremum in ), then u = const. in 2,

and if a superharmonic function attends its infimum in 2, then u = const.
wn ).

Proof. Consider the case of a subharmonic function. Let 20 € Q and

M = u(z®) = sgp u(x).

We will show that

QG ={reQ: ulx)=M}
is an open set. It is not empty since z° € Q. Let ! € Qy, then B, (2') C
Qy if po > 0 is sufficiently small such that B, (z!) C Q. If not, then there
isap, 0<p<pand an 22 € B,(x') such that u(z?) < M. Consider
a function h harmonic in B = B,(z') and h = u on B. Then, since h is
harmonic in B and u is subharmonic in €2,

M > maxu = maxh > h(z) > u(x),
0B 0B
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where 2 € B. Consequently h(z') = M since u(z') = M. Thus h = const.
in B since the harmonic function A attends its maximum in B. Since h(z) =
u(z) on 9 we have u(z) = M for all x € OB, a contradiction to u(x?) < M.
O

The following lemma is a generalization of the comparison principle for
u, v € C?(Q)NC(Q) which says that Av < Au in Q and v > u on 99 imply
that either v > u throughout Q or v = w.

Lemma 2.2.2. Suppose that Q2 is bounded and connected. Let uw € C(2) be
a subharmonic and v € C(Q) a superharmonic function with u — v < 0' on
0. Then either v > u throughout 2 or v = .

Proof. We will show that u —v = const. in Q) if u — v attends a nonnegative
supremum in . Let 2% € Q such that

M = sup(u —v) = (u —v)(z") > 0.
Q

Set O = {r € Q: (u—v)(x) = M}. This set is not empty since x° € Q.
We will show that €, is an open set. Let 2! € Q; and consider a ball
B,y (z') CC Q. Then B,y (z') € ;. If not, then there is a ball B = B,(z!),
0 < p < po, and an 22 € B such that (u—wv)(z?) < M. Let hy, hy harmonic
in B with hy = v on 9B and hy = v on dB. Then, if z € B,

> _— = —_—
M > né%x(u v) Hé%x(hl ho)

> hi(x) — he(x) > u(z) — v(x).

Set * = z!, then by assumption u(z') — v(z') = M which implies that
the harmonic function h; — he attends its maximum in B. Consequently
hi—ha = const. in B. Thus u(x) —v(z) = M on 0B which is a contradiction
to u(z?) < M. We have seen that w —v = M > 0 in Q. Finally the
assumption v — v < 0 on 02 implies u(x) = v(z) in Q. O

Let u be subharmonic in 2, B CC €2 a ball and @ harmonic in B such that
uw=wuon 0B.

'Here u — v < 0 on 9 means that

limsup (u—wv)<0
y—x, ye, €N
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Definition. The function

is called harmonic lifting of v in B.
Lemma 2.2.3. U is subharmonic in ).

Proof. Let B’ cC Q and h harmonic in B’ with h > U on 0B’. We have to
show that h > U in B’. For some of the following notations see Figure 2.1.
On C; = 9B’ \ B we have h > U = u. On C5 = 9B’ N B it is, according to

Figure 2.1: Proof of Lemma 2.2.3

the definition of w, h > U = u > u. Combining these inequalities, we find
that h > u on OB’ which implies that A > u in B’. Then

U<h in B'\B (2.3)

since U = u in B’ \ B. It remains to show that also U < h in B'N B. On
J(B' N B) we have h > U, see (2.3) and assumption h > U on B’. Since
U =win BN B’ and h is harmonic in B’ it follows h > U in BN B’. O

Lemma 2.2.4. Let uy, us,...,uny be subharmonic in €. Then

u(z) := max{u(x),...,un(x)}
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is also subharmonic in Q, and if uy, ..., un are superharmonic, then u(x) :=
min{u;(x),...,un(x)} is superharmonic in .

Proof. Exercise.

Definition. Let © be bounded and ¢ a bounded function on 9€). A subhar-
monic function u € C(Q) is called subfunction with respect to ¢ if u < ¢ on
09, and a superharmonic function u € C(Q) is called a superfunction with
respect to ¢ if u > ¢ on 0f).

Here u < ¢ on 92 means that

lmsup  wu(y) < 6(z).
y—x, yeQ, €N

Lemma 2.2.5. Suppose u is a subfunction and u a superfunction with
respect to ¢. Then u < u in Q.

Proof. Lemma 2.2.2 and

limsup  (u(y) —uly)) = limsup  (u(y) — ¢(z) + ¢(z) —u(y))
y—x, yeQ, €N y—x, yeQ, €N

< limsup  (u(y) — ¢(x))
y—z, ye, €N

+ limsup  (¢(x) —u(y))
y—x, yeQ, €N

IA
o

|

Remark. The set of subfunctions with respect to ¢ and the set of super-
functions with respect to ¢ are not empty since constants < infyg ¢ are
subfunctions and constants > supyq ¢ are superfunctions.

Set
S¢ = {v € C(£2) subharmonic in : v < ¢ on 0N }.
Theorem 2.2.1 (Perron, [19]). The function

u(x) := sup v(z)
vESy

1s harmonic in €.
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P 00]. (l) We have in ) that
i f < < .
11 (Zs U(Hf) Sal 19[) (ZS

To show this inequality, let v € Sy, then v(z) < ¢(x) < supyg ¢ on €.
Since the constant supyq, ¢ is a superfunction with respect to ¢ and v is a
subfunction with respect to ¢ we obtain from Lemma 2.2.5 the inequality
v(z) < supyq ¢, x € Q. Consequently u(x) < supgq ¢, € Q. The other
side of the above inequality follows since the constant infsq ¢ is an element
OfS@.

(i) Let y € 2 be fixed. Then there is a sequence v, € Sy with lim,, . v, (y) =
u(y). Let B = Br(y) CC Q, R sufficiently small, and let V;, be the harmonic
lifting of v, in B. Then

V., € 5@, (2.4)

and
lim V;,(y) = u(y). (2.5)

n—oo

Proof of (2.4): That V,, is subharmonic is the assertion of Lemma 2.2.3.
Since V,, = v, on 0B, we have V,, < ¢ on 0B.
Proof of (2.5): We have

v (y) < Val(y)

since v, = V,, on 9B, V,, is harmonic in B and v,, is superharmonic. Then

u(y) < liminf V,,(y).

n—oo

On the other hand, since V;, € Sy, we have

Valy) < sup v(y) = u(y),
vESy

which implies that
limsup V. (y) < u(y).

n—oo

(iii) For every function h harmonic in B we have,

sup [D®h| < C(p, R,ayn) sup [hl, (2.6)
By (y) Br(y)

where 0 < p < R and the constant C' is finite. This inequality is a conse-
quence of Poisson’s formula for the solution of the Dirichlet problem in a



2.2. SUBHARMONIC, SUPERHARMONIC FUNCTIONS 95

ball, see [13, 10, 17], for example. Consequently for each fixed p, 0 < p < R
there exists a subsequence V,,, which converges uniformly in B,(y) to a
harmonic function v. It follows that there is a subsequence of V,,, denoted
also by V,,,, which converges uniformly on compact subsets of Br(0) to a
function v harmonic in Br(0). We have

v(z) <wu(x), x€ Br(y) (2.7)

since V;,, (x) < u(z) on Bgr(y), see the definition of u(x). At the center y it
is, see (2.5),
v(y) = u(y). (2.8)

(iv) Claim: v(z) = u(x), x € B.
Proof: If not, then there is a z € B such that v(z) < u(z). Then there exists
an ug € Sy with v(z) < up(z). Set

wi () = max(ug(x), Vi, (z)).

Let Wi be the harmonic lifting of wy in B. A subsequence of W, converges
uniformly on each compact subset of B to a function w harmonic in B such
that

v(z) <w(z) <wu(z), =€ B=Bgr(y). (2.9)

These inequalities follow since wy, (x) < Wy, (z), wp,(z) > V,,(z) and
W, (x) < u(z), where z € B.
Combining equation (2.8) and inequalities (2.9) we obtain

v(y) = w(y) = u(y). (2.10)

Thus the harmonic function v — w is less or equal zero in B and zero in the
interior point y € B. The strong maximum principle implies that

v(z) =w(z), =€ B. (2.11)
According to the assumption we have for a z € B
v(z) < up(2).
On the other hand, see the definition of w,, and W,, if x € B then
() < tny () < Wy (1),

which implies that
uo(z) <w(zx), x € B.
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Summarizing, we have for the particular z under consideration the inequal-
ities
v(z) <wuo(z) < w(2),

which is a contradiction to (2.11). O

2.3 Boundary behaviour

One of the advantages of Perron’s method is that the boundary behaviour
of solutions is separated from the existence problem.

Definition. A C()-function w = wg is called a barrier at & € 99 relative
to Q if

(i) w is superharmonic in €,
(i) w > 0 in Q\ {¢} and w(€) = 0.

w is called a local barrier at £ € 9N if there is a neighbourhood N of £ such
that w satisfies (i) and (ii) in Q@ NN instead in €.

Let w be a local barrier at £ € 02, then we can define a barrier at £ € OS2
relative to 2 as follows. Let B = Bgr(&), R > 0 sufficiently small such that
B cC N, see Figure 2.2. Set

e

Figure 2.2: Definition of a local barrier

m = inf w
N\B
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. We have m > 0, see assumption (ii) in the above definition.

Lemma 2.2.6. The function

[ min(m,w(x)) : z€QNB
wo(x)—{ m : xe€Q\B

18 a barrier at & relative to 0f).

Proof. The property wy € C(Q2) follows since wg = m on I' = BN Q. If
not, then there is an z¢ € I' with w(zp) < m, which is a contradiction to
the definition of m. Now we will show that wg is superharmonic in Q. This
follows since L

wo(x)—{wl : J:EQOB

wy : xe€Q\B

where wy(z) = min(m,w(x)), we = m and w;, we are superharmonic in
QN B and Q\ B, respectively, and since w; = ws on I'. To show this,
consider a ball B' cC 2 located as shown in Figure 2.3. Let h be harmonic

Q

s

Figure 2.3: A local barrier defines a barrier

in B’ with h < wg on B’. We have to show that h < wg in B’. Since
wog < mon B =09B' NB and wy = m on B’ = 0B’ \ 0, B’, we have
wo < m on OB’. Thus the assumption A < wg on OB’ implies that h < m
on OB’. In particular h < wp in B"\ B since wy = m on B’\ B. Finally we
have h < wg in BN B’ since h < wg on B'NIB and on BN AB’'. We recall
that wyg = w1 in QN B and w; is superharmonic in 2N B, see Lemma 2.2.4.
O

Definition. A boundary point is called regular if there exists a barrier at
that point.
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Lemma 2.2.7. Let u be a harmonic function defined in Q by the Perron
method with boundary data ¢. If & is a regular point af 02 and if ¢ is
continuous at &, then

lim__u(x) = ¢(§).

x—E&,x€N

Proof. Fix € > 0. Then there is a § = d(¢) > 0 such that |¢(z) — @(£)]| < €
for all x € 99 satisfying |z — £| < . Set M = supyq |¢|. Let w be a barrier
at & Then there is a k = k() > 0 such that kw(z) > 2M if |z — &| > 6.

Step 1. We will show that ¢(§) + € + kw(z) is a superfunction relative to ¢.
We recall that w € C(2), w is superharmonic in ©, w > 0 in Q\ {¢} and
w(§) = 0. Then

P(§) + €+ kw(z) = ¢(x)

on 09, since for x € 9 with |x — &| > ¢ we have

B(§) + € + kw(z) (&) + e+ 2M

>
> P(x),

and for x € 9Q with |z — £] < § we have

p(z) —o(§) <€
since |p(x) — ¢(&)| < e if x € 90 N Bs(§) and kw(x) > 0.

Step 2. Since

u(x) = sup v(z)
vESy

and ¢(§) — € — kw(x) is a subfunction relative to ¢, we have

$(§) — € — kw(z) < u(x)

in Q. The function ¢(&) + € + kw(z) is a superfunction relative to ¢, see
Step 1. Concequently,

v(z) < ¢(§) + €+ kw(x)
for all v € Sy, see Lemma 2.2.5. This inequality implies that

u(x) < (&) + € + kw(x).
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Summarizing, we get

u(z) = ¢(§)] < e+ kw(x).

Since lim, ¢ zeq w(x) = 0, we obtain finally

lim u(e) = 6(E).

z—E&,x€Q

|

Theorem 2.2.2. Let Q2 C R™ be bounded and connected. Then the Dirichlet
problem Au =0 in Q, u = ¢ on O, where ¢ € C(IN) is given, is solvable
if and only if the boundary points are all reqular.

Proof. (i) Assume all points of 02 are regular points. Then the assertion
follows from previous Lemma 2.2.7.
(ii) Assume the Dirichlet problem is solvable for all continuous ¢ € C(9%).
Set ¢(z) := |xr — £| and consider the Dirichlet problem with the boundary
condition u(x) = ¢(x) on 0. Let u¢(x) be the solution, then ug(x) is a
barrier at £. Consequently all boundary points are regular.

O

2.3.1 Examples for local barriers
Slit domains in R?

Let Q C R? with a slit along the negative xz—axis at x = 0 as indicated in
Figure 2.4. Let Ln z :=1In|z| +i¢, —71 < ¢ < 7, be a branch of Inz. Then

%2

ol B
_

Figure 2.4: A slit domain
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1 Inr
w:i=—Re|— )| =————
Lnz In?r + ¢2

is a local barrier at & = 0. Here w(0) is defined as the limit w(0) :=
lim, 0 .cqw(z). We have w(0) = 0 and w(z) > 0 in QN Br(0). For higher
dimensions there are counterexamples. One of them was given by Lebesgue,
see [4], Part II, p. 272, for example, which shows that sufficiently sharp
cusps are not regular at the tip of the cusp, see Figure 2.5.

Figure 2.5: A cusp boundary point

Exterior sphere condition

We say that (2 satisfies the exterior sphere condition at £ € O€) if there is a
sphere Br(y) C R™\ Q such that Br(y) N Q = {£}, see Figure 2.6. Let 2

Figure 2.6: Exterior sphere condition

satisfies the exterior sphere condition at £ € 0f), then

{ RQ—n _ |.’£ _ y|2—n

()

w(z) =

is a local barrier at .
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Exterior cone condition

We say that {2 satisfies an exterior cone condition at £ € O0f) if there is
a finite circular cone C with the vertex at £ such that K N Q = {{}, see
Figure 2.7. Let £ be the origin and assume the exterior cone property is

Figure 2.7: Exterior cone condition

satisfied at £ € 9. Then we can find a positive constant A and a positive
function f(#), where € is the polar angle, such that

w=1*f(0),

r = |x|, is a local barrier at &.

Two-dimensional domains. Here we find A and f(6) as follows. Let
Cc{(r,0): r>0, —a<0<al,
see Figure 2.8 Introducing polar coordinates (r,0), where
r1 =rsinf, xo =r7rcosb,
we have

w(z) = W(r,0) :=w(rcosf,rsinf)
10

pw = ror

1
(TWT) + T—2W99.

Consider the ansatz
W (r,0) = 1 cos(ub),

where A and u are positive constants, then

Aw = 11 2(\2 — 1i2) cos(pb).
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Figure 2.8: Local barrier, R?

Consequently Aw < 0 on C if A < p and |pf| < 7/2 for all 6 satisfying
a<f<2r—a(0<a<n/2).

Then w > 0if r > 0 and o < 6 < 27 — . Thus w is a local barrier at
the origin if we choose A = p with a sufficiently small positive pu.

Higher dimensional case. Let M C 9B1(O) be the manifold as indicated in
Figure 2.9. Consider the eigenvalue problem

~Nv = v in M
v = 0 ondM,

where A’ is the Laplace-Beltrami differential operator on the unit sphere.
We recall that in the two-dimensional case

i
062
and in the three-dimensional case
1 0 0 1 92
AN — [ sinf— — .
sin 0 00 <Sm aa) T SinZ 092
For the definition of the Laplace-Beltrami operator see for example [2]
and for n-dimensional polar coordinates see [7], Part III, pp. 395, for exam-
ple.
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Figure 2.9: Local barrier, R"

Let 11 be the first eigenvalue of the above eigenvalue problem. It is known
that vy is positive, a simple eigenvalue and the associated eigenfunction vy
has no zero in M. Thus, we can assume that v; > 0 in M. Set

W = Arfv; = w(x)
where A and k are positive constants. Then w > 0 in R™ \ C and

Aw = Ar" vy (k(k — 1) + (n — 1)k — o),

n—2+ n—2 2+ 9
(0% P Vy.
! 2 2 1

Consequently we have Aw < 0in R™\C, provided x > 0 is sufficiently small.

where

2.4 Generalizations

Perron’s method can be applied to the Dirichlet problem for a more general
class of linear elliptic equations of second order, see for example [10], pp. 102.
The previous discussion in the case of the Laplace equation showes that we
need a strong maximum principle, the existence of solutions of the Dirichlet
problem on a ball with continuous boundary data and some estimates for
the derivatives. Then we are able to prove the existence of a solution of
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the equation in the given domain. The problem of the boundary behaviour
requires an additional discussion.
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2.5 Exercises

1. Let Q C R™ be a connected domain. Consider the eigenvalue problem

—Au = Au in Q
u = 0 on 9.

Suppose \g > 0 is an eigenvalue and up € C%(Q2) N C(£2) an associated
eigenfunction satisfying ug(z) > 0 in . Show that ug(z) > 0 in Q.

2. Prove the second corollary to Theorem 2.1.1.

3. Prove Lemma 2.2.4.
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Chapter 3

Maximum principles

Maximum principles provide powerful tools for linear and nonlinear elliptic
equations of second order. We consider linear equations.

3.1 Basic maximum principles

Set

Mu = Z a;j(x)Diju + Z bi(xz)Diu
ij=1 i=1
Lu = Mu+ c(x)u,

where a;;, b; and ¢ are real and defined on a simply connected domain
1 C R". We assume a;; = a;j;. Let A(z) be the minimum of the eigenvalues
of the symmetric matrix defined by the coefficients a;; and let A(z) be the
maximum of these eigenvalues.

Definition. L is called elliptic in Q if A(xz) > 0in Q. L is said to be strictly
elliptic in Q if A(z) > Ao > 0 in , where )¢ is a constant. An elliptic L is
called uniformly elliptic if A/X is bounded in .

In the following we suppose that L is at least elliptic and for each ¢

[bi(2)]
gsﬁtelgw < 00. (3.1)

Theorem 3.1.1 (Weak maximum principle). Let L be elliptic in the bounded
domain Q. Assume a function u € C*(Q)NC(Q) satisfies Mu >0 (Mu < 0)
in Q. Then the supremum (infimum) of u on Q is achieved on ON.

67
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Proof. Assume initially that Mwu > 0 in . Then u cannot achieves an inte-
rior maximum since Vu(zo) = 0 at this point where u achives its maximum,
and since the matrix D?u(z¢) = [D;;u(x¢)] is nonpositive (necessary condi-
tion of second order). It follows that, see an exercice in [17], for example,

n

Mu(xo) = Z aij(z0) Diju(zo) < 0
ij=1

since the matrix [a;;(x0)] is nonnegative (even positive) by assumption. This
inequality is a contradiction to our assumption.
For a positive sufficiently large constant v we calculate

Me™™ = (y2ay; + yby)e?™
> A2 —qe1)e?™ > 0.

We recall that a1; > A and |b1]|/\ < ¢1, where ¢; is a positive constant, see
assumption (3.1). Consequently for any € > 0 we have in )

M (u+ ee™) > 0.
Using the above result, we conclude that

sup (u + ee’™) = sup (u + ee?™!).
Q oN
Letting e — 0, we obtain

sup u = sup u.
Q o0
O

The next theorem is the strong maximum principle. It follows from the
boundary point lemma due to E. Hopf [11]. The proof of this lemma needs
the previous weak maximum principle. The strong maximum principle is
the essential tool to show existence of a solution of the Dirichlet problem
via Perron’s method.

Lemma 3.1.1 (E. Hopf, 1952). Let L be uniformly elliptic. Assume u €
C?(Q) satisfies Mu > 0 in . Let zg € 0Q and suppose that
(i) u is continuous at x,
(i) u(zo) > u(zx) for all x € QN By(zo) for an a >0,
(iii) OSY satisfies the interior sphere condition at xg.
Then the outer mormal derivative of u at xq, if it exists, satisfies
ou
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Proof. Let B = Bg(y) be the ball related to the interior sphere condition,
see Figure 3.1. Consider the function

Figure 3.1: Proof of Hopf’s boundary point lemma

2 o
v(z) =e " —e o,

where r = |z — y| > p and « is a positive constant which we will determine

later. A calculation leads to

n

My = e (4a2 > aij(ai — i) (wj — yj)

1,j=1

~20( Y i+ 3 bilai — ) )
=1

=1

> oo (4042)\(36)7”2 — 20 i aj; + |b|7"))a
i=1

where b = (b1,...,b,). Since by assumption a;; /A and |b|/\ are bounded,
we may choose « large enough such that Mv > 0 in the annular domain
A = Bpg(y) \ By(y). Since u(z) — u(xg) < 0 on 0B,(y) there is a constant
e > 0 such that u(r) — u(xg) + ev(xz) < 0 on 0B,(y). This inequality is
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also satisfied on dBg(y) by assumption on u and since v = 0 on dBg(y).
We have M (u(x) — u(zo) + ev(z)) = Mu+ eMv. Then the weak maximum
principle implies that v — u(xg) + ev < 0 in A. Thus

u(zo) — u(z) > —€e(v(zo) — v()),
where = € A and on the line defined by z¢ and v. It follows

ou
“w0) > ~V'(R),

provided the normal derivative exists. Here is

Vir)= emor® _ gmoR?,

Remark. If the normal derivative does not exist, then

lim inf 7u($0) — ulz)

>0,
z—zo |z —

where the angle between xo—2z and the exterior normal v is less then (7/2)—§
for a fixed 6 > 0.

Corollary. Suppose that 0S) satisfies the interior sphere condition at xg €
00, u € C?(Q)NC(Q) satisfies Lu > 0 and u(zg) > u(x) in QNU, where U
is a neighbourhood of xy. If additionally ¢ <0 in QNU and u(zg) > 0 then
Ou/0v(xy) > 0, provided the normal derivative exists.

Proof. Mu = Lu — cu > 0in Q2 NV, where V is a neighbourhood of zg. O
In generalization to the strong maximum principle for A we have

Theorem 3.1.2 (Strong maximum principle). Let L be uniformly elliptic.
Assumeu € C2(Q)NC(Q) satisfies Mu > 0 (Mu < 0) in a connected domain
Q, not necessarily bounded. Then if u achieves its supremum (infimum) in
the interior of €1, u is a constant.

Proof. Consider the case of a maximum. Assume w is not constant and
achieves its maximum m in the interior of Q. Set Q; = {x € Q: u(z) = m}
and Q2 = {z € Q: u(r) < m}. By assumption 2 is not empty. We will
show that € is open. Then Qs = () since we suppose that Q is connected.
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Let z! € Q. Consider a ball B = Boy, (x!) cc Q. If Q is not open, then
there is an 2 € B, (z!) such that u(2z?) < m. Consequently there is a ball
B,(x?), where 0 < p < |22 — 2|, and u(z) < m in B,(2?) and there is an
23 € 0B,(2?) such that u(z®) = m. See Figure 3.2 for notations. Hopf’s

Figure 3.2: Proof of the strong maximum principle

lemma says that (du/dv) (x3) > 0, where v is the exterior normal derivative
on 23 € OB,(x?) at u(z?) which is a contradiction to the fact that u attends
an interior maximum at 3. ]

In many cases the assumption ¢ = 0 in Q is not satisfied. If ¢(x) < 0 in
Q, then we have the following corollary to the previous theorem. If ¢(z) is
positive on a subset of €2, then the situation is more complicated. In this
case one studies an associated eigenvalue problem.

Corollary. Let Q) be a connected domain, not necessarily bounded. Suppose
L is uniformly elliptic and c(z) < 0 in Q. Assume u € C*(Q)NC(Q) satisfies
Lu >0 (Lu <0). Ifu achieves its positive supremum (negative infimum)
in the interior of ) then u is a constant.

Proof. Consider the case of a maximum. Set m = supq u(z) and Q = {z €
Q: ulx) =m}, Qo ={zr € Q: u(x) <m}. By assumption §2; is not empty.
We show that €21 is an open set. Let z! € 1. Then there is ball B,(z!) C Q
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where u is nonnegative. Thus
Mu=Lu—c(z)u>0

in B,(z'). The above strong maximum principle (Theorem 3.1.2) says that
u(z) = m for all x € B,(x!).
a
From this corollary follows a result important for many applications:

Theorem 3.1.3 (Comparison principle). Let Q2 be a bounded and connected
domain. Suppose that L is uniformly elliptic and c(z) < 0 in Q. Assume
u, v € C*Q)NC(Q) and satisfy Lu > Lv in Q and u < v on Q. Then
u<win .

Proof. Set w =u—wv. Then Lw > 0 in 2 and w < 0 on 95). From the above
corollary we see that w can not achieve a positive maximum in (2. O

3.1.1 Directional derivative boundary value problem

As an application of the previous corollary we consider a generalization of
the Neumann problem. Let Q@ C R™ be a bounded and connected domain,
and assume 0f? is sufficiently smooth. Consider

Lu = f, inQ (3.2)
ou
% = QZS on BQ, (33)

where f, ¢ are given and sufficiently regular, and the direction « is not
tangential on 9f) at each point of 052, see Figure 3.3.

Figure 3.3: Directional derivative boundary value problem

Proposition 3.1.1. Suppose that c < 0 inQ and let uy, us € C*(Q)N C1(Q)
are solutions of (3.2), (3.3). Then uy — uz = const. in Q.
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Proof. Set u = u; — ug, then Lu = 0 in Q and du/da = 0 on 9€). Suppose
that u is not constant, then we can assume maxgu > 0. This maximum
is achieved at zp € 002 and u(xg) > u(x) for all x € €, see the corollary
to the strong maximum principle. For the tangential derivative we have
(Ou/0t)(xp) = 0, and the assumption implies that (Ou/0a)(z¢) = 0. Thus

(Qu/ov)(xzo) = a(xo)(Ou/0t)(xo) + b(xo)(Ou/da)(z0)
- 0,

which is a contradiction to the corollary to the Hopf boundary point lemma
which says that Ou/dv > 0 at xo. O

3.1.2 Behaviour near a corner
Set Lu = 212 i1 @ij()Uz;; and consider the Dirichlet problem

Lu = f inQ (3.4)
u = 0 on 09, (3.5)

where f is given. Suppose that the boundary of @ C R? has a corner.
Without loss of generality we suppose that the corner is the origin. Set
Q, = QN B,(0). Then we assume that there is a p > 0 such that in Q,
we have a;; = aj;, L is uniformly elliptic, a;; € CO‘(Q_p). An appropriate
rotation with center at the origin and a streching of the axis transforms
(3.4), (3.5) into a Dirichlet problem where a;;(0,0) = d;;. Here we denote
the transformed coefficients a;;(C~'y) and the transformed right hand side
f(C~1y) by a;; and f, resp., and y by x. The new domain is denoted by 2
again. The new interior angle w can be calculated from the original interior
angle v and the original coefficients [a;;(0,0)], see an exercice. After this

mapping we arrived at the problem

2
Lu = Au+ Z (aij(z) = 6ij) Ugy; = f In (3.6)
ij=1
u = 0 ondNQ,, (3.7)

where
|aij(z) — 04| < cla|*.

Suppose that €, is contained in a domain, see Figure 3.4, defined by 0 <
r < pand 61(p) < 0 < 0s(p), where r = (27 4 23)"/2. Set

w =w(p) = b2(p) — b1(p)
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1'[—92 (p)(’ \91 )

Figure 3.4: Corner domain

and consider the function

() = sin ((3 - h(e)) (0 — 61(p) + e)) ,

w

where 0 < € < ¢, ¢ sufficiently small, and h(e) = 2me/w?. There is an
€0 > 0 and a positive constant ¢, independent on e such that v(6) > ce for
all 0 < e < ¢p and 01 < 0 < Oy (exercise). Set

m:z—h(e)

w

and consider the function

W(r,0) = Ar" v(6)

= w(xy,z2),

where A and n are constants, 0 < n < k. In polar coordinates we have

p L0 (00 1w
Y=o \Uor r2 062 °
Then
Aw = Ar"""2 ((k —n)* — k) v
and

|wmj] < C\A|r”_77_2.

The constant ¢, here and in the following formulas, are independent on r
and 6. Thus

Lw = ApF=172 ((Ii —n)? - /~€2) v+ O (Ar”_”_2+a) )
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Suppose that the constant A is positive, then from the above considerations
it follows that for given § > 0, 0 < § < &g, &g sufficiently small, there are
positive constants ¢(d) and p = p(9) such that

Lw < —Ac(6)r(m/w)=0=2

in €2,.
Proposition 3.1.2. Assume the right hand side f of (3.4) satisfies

’f‘ < CT(TK‘/W)*Q*(S*FT

in Qpes po > 0, for a > 0. Assume u € C?(Q,,) and supq, |u(z)| < oo.
Then for given (small) € > 0 there exists positive constants c(e) and p(e) > 0
such that

Jul < efe)la] T

m Qp(e) .
Proof. We have Lw < Lu in €, and w > u on 0%,, provided p > 0 is
sufficiently small. O

Remark. The additional assumption that u remains bounded up to the
corner is essential for the previous proposition since there exists also solu-
tions which are unbounded near the corner. An example is the boundary
value problem Au =0 in Q,, u = 0 on 0{2,, where £, is the sector defined
by r > 0 and 0 < § < «, where 0 < o < 27. Solutions are given by

w(x) = 7™ sin (/o) k6) ,

where k € {£1,£2,...}. For a class of quasilinear nonuniformly boundary
value problems the behaviour of the solution near the corner does not re-
quire such an additional assumption near the boundary, see [8, 16, 3, 18].
The behaviour follows from the problem itself. The reason for this striking
difference is that essential information is lost through the linearization.

Remark. Asymptotic expansions near a corner yield more precise be-
haviour near the corner, see [15] for a class of uniformly quasilinear elliptic
Dirichlet problems. In general, the expansion, depends on the solution con-
sidered, in contrast to some nonuniformly problems, see [16].
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3.1.3 An apriori estimate

Consider for given bounded functions f, ® defined on Q and on 9, respec-
tively, the Dirichlet problem

n

Lu = Z a;j(x)Dyju + Z bi(x)ug, +c(x) = f(x) inQ  (3.8)
i=1

i,j=1

u = @ ondf) (3.9)

where a; ;, b; and c are real and defined on a simply connected and bounded
domain 2 C R". We assume a;; = aj;, L is strictly elliptic and

sup [by(z)| < o0
Q

for every i =1,...,n. Let K be a bound of b; and set

1
o=+ (K + (K2 + 4)\0)1/2) , (3.10)
0
where the positive constant Ay is a lower bound of the minimum of the
eigenvalues of the matrix [a;j(x)]. Set d = diam .

Proposition 3.1.3. Suppose that c(z) < 0 in Q and let u € C*(2) N C(Q)
be a solution of (3.8), (3.9). Then

sup |u| < sup |®| + (ead — 1) sup | f|.
Q o0 Q

Proof. Suppose that €2 is contained in the strip defined by 0 < z; < d.
Consider the function

g(.ﬁE) = ead - eaxlv
where « is positive constant which will be determined later. We have g(x) >
0if x € Q. We get

Lg —(a11a2 + bya)e™t + ¢g

(Noo? + Ka)e™®!

VARRVANNVAN
|
o
Q
S

provided that « is large enough. We can choose « given by (3.10). Set

h = sup 9] + g(z) sup | f1.
o0 Q
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Then
Lh = Lg sup|f|+ c sup|®|
Q o
< —suplf].
Q
We recall that ¢ < 0 on 2. Summarizing, we have

Lh < —suplf| inQ
Q
h

V

sup |®| on 9.
Q

Set v = u — h, then

Lv = f—Lh>f+sup|f|>0 inQ
Q

v = ®—sup|P| <0 on IN.
[2/9]

The comparison principle says that v < 0 in 2. The same argument leads
to the inequality v > —h in Q if we set v = —u — h. Then

Lv = —f—Lh>—f+sup|f|>0 in
Q

v = —®—-h<—-®—sup|P| <0 on IN.
o0

3.2 A discrete maximum principle

To simplify the presentation we consider here a subclass of elliptic boundary
value problems in a domain €2 € R?, see [12], pp. 458, for example. Set

Mu = Au+ bi(z,y)ug + ba(z,y)u,.
Suppose that there is a constant K such that

Sgp(!bl(way)\ + [ba(z, y)]) < K. (3.11)

Let
Lu = Mu + c(z,y)u,
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where c(x,y) is defined on Q. Then we consider for given f defined on €,
and ¢ defined on 02, the Dirichlet problem

Lu = f inQ (3.12)
u = & on 0N0. (3.13)

Let h > 0 be a (small) constant. Then we define an associated difference
operator to Mwu by

u(z + h,y) +ulx — h,y) +u(x,y+ h) +u(z,y — h) — 4du(z,y)

Mpu = 52
u(x + h,y) — u(x — h, uw(xz,y+h) —u(x,y—h
b1 (2.y) ( y) — u( y)+b2($,y) (z,y +h) —u(z,y —h)
2h 2h
We have limy,_.g Mpu = Mwu on every compact subdomain of €2, provided
u € C%(Q).

Set Py = (z,y) and assume Py € Q. The four points Py; = (z + h,y),
Py = (z,y+h), Py = (x—h,y), Poa = (z,y—h) are called h-neighbourhood
of Py or a star around F,. Consider the intersection of 2 with an A-net IV,

of R? defined by
Nu(z,y) = {(z +lh,y + kh) € R®: k,1 =0,+1,£2,...},

where (z,y) € R? is given. Let Qj, be the set of the points P; of QN Ny, such
that each point of the star associated to P; are contained in Q. The set of
all star points not in  is denoted by 0, see Figure 3.5. Then we define

Figure 3.5: Definition of 5 and 90,

Q_h = Qp, U OQy,.
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Suppose that €2, is connected in the sense that for given P, R €
there exists points Q1,Qo,...,Qs € Qp, where Q1 = P and Qs = R, such
that @); is a point of the h-neighbourhood of Q;_1, j = 1,...,5s+1. We
assume that A > 0 is sufficiently small such that

hK < 1. (3.14)

Theorem 3.2.1. Let u be defined on Q. Suppose that Myu > 0 in €y, and
u attends its mazximum in Q. Then u is constant on §y,.

Proof. Let P; € Q. From the definition of Mju and the assumption Mpu >
0 we obtain that

4
u(P) <3 Aju(Py),
j=1
where P;; are the points of the h-neighbourhood of P; and

o 1<1+ hbl(Pi)>’ Ny = 1 <1+ th(pi)>

4 2 4 2
1 hby(P;) 1 hba(P;)
Nis = —[(1— C Au=-(1- .
s 4( 2 ) 4 4< 2

We have Z?:l Aij =1 and, see (3.14), A;; > 0. Assume

m := maxu(x) = u(P;).
Qp

Then v = m in all points of the h-neighbourhood of P;. Since () is con-
nected, the theorem is shown. O

Set Lpu = Mpu+ c(x)u. The following corollary is the discrete version of
the corollary to the above Theorem 3.2.

Corollary. Suppose that c(x) < 0 on Qp and u defined on Sy, satisfies
Lpu >0 on Q. Then if u achieves its nonnegative supremum m in Qp, u
is constant on $y,.

Proof. Set Q1 ={x € Qp : u(r) =m} and Qo = {z € Q1 u(x) < m}.
By assumption 231 is not empty. The set €1}, 1 is open in the sense that if
P; € Q1 then u(P;) = m for every point Py, [ = 1,2, 3,4, of the associated
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star to P;. This follows from the inequality

3 32
w(P) <) Niju(Py) + — c(B)u(F).
j=1

Thus u = m on , since ), is connected by assumption. O
From this corollary it follows

Theorem 3.2.2 (Comparison principle). Let Qp, be a bounded and connected
domain. Suppose that c(x) < 0. Assume u, v are deﬁried on Qy, and satisfy
Lpu > Lypv in Qp and u < v on 9Qy,. Then u < v on €.

Proof. Set w = u —wv. Then Lyw > 0 in Q and w < 0 on 0€p,. From the
above corollary we see that w can not achieve a nonnegative maximum in

Q. O

Suppose that 2, is bounded and connected. We consider the discrete Dirich-
let problem

Lhu = f in Qh (315)
u = & on 0y, (3.16)

where f is defined in ; and ® on 9. Assume ¢ < 0 and h is sufficiently
small such that the inequality (3.14) is satisfied.

Corollary. There exists a unique solution of the discrete Dirichlet prob-
lem (3.15), (3.16).

Proof. The Dirichlet problem defines a linear system of N equations in N
unknowns. From the comparison principle it follow that there is at most
one solution. From the linear algebra it is known that uniqueness implies
existence. O

Proposition 3.2.1 (Apriori etimate). Assume u is a solution of the discrete
Dirichlet problem (3.15), (3.16), where c¢(x) < 0. Then

max |u| < max |®| 4+ cmax | f|,
Qp, 121973 Qp

where the constant ¢ is independent of w and h, and 0 < h < hg, ho suffi-
ciently small, see the following proof for an explicit hg.
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Proof. The proof is the same as the proof of the apriori estimate of Theo-
rem 3.4. Concerning notations in the following formula see the proof of this
theorem. For a sufficiently large o we have

. 2
ad _ ox _  _ 2.0 Slnh(ah/Q)
Ly (e e ) = —a‘e <—ah/2

ax Sinh(ah) ad ax
S e (- e)

o sinh(ah/2)\ 2 sinh(ah)
< —e (a2 <T/2> —|—b1a7>.

—bi(z)ae

Suppose that ah < 1, then

L, <e°‘d — ea’”)

IN

—e*® (a? — Kacosh(1))
~1,

IN

if we take an « which satisfies

a > (K/2)cosh(1) + \/((K/Q) cosh(1))? + 1.

We recall that we assume that €2 is bounded and is contained in the strip
0 < x1 < d, where d is the diameter of €. O

The following result says that the solution of the discrete Dirichlet problem
is an approximation of the solution of the original problem, provided that
this solution is sufficiently smooth,

Corollary. Suppose that u € C3(Q) is a solution of the continuous Dirichlet
problem (3.12), (3.13), where c(z) < 0 and ® is defined on a boundary
strip and is in C' in the closed strip. Let uj, be a solution of the discrete
problem (3.15), (3.16). Then

max |u(z) — up(x)| < ch,
Qp

where the constant ¢ is independent on h < hg, ho sufficiently small.

Proof. Here we make the additional assumption that 0; C 012, see Fig-
ure 3.5 for an example. The proof of the general case is left as an exercise.
The assumption on u implies that

|Lpu — Lu| < ch. (3.17)
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Let U be defined on Q,. Then we have from the above apriori estimate that
max |U| < max |U| + cmax | Ly U|.
Qp oy, Qp
Set U = u — uy, then
max |u — up| < emax |Lpup, — Lyu|
Qn Qn
since u — up, = 0 on 9. Finally, we have on ), that

Lyup, — Lpyy = Lpup, — Lu+ Lu — Lyu
= Lu—Ljyu

since Lyup, = f and Lu = f on . Then the estimate of the corollary
follows from the estimate (3.17). O
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3.3 Exercises

1.

Let Q@ C R" be a bounded domain and assume u € C(Q) and

sup (u + ee’) = sup (u + ee’*)
Q o0
for each €. Show that

Sup 4 = sup u.
Q o0

. Let [a;j] be a real regular symmetric matrix in R". Find a regular

Matrix C' in R" such that
n n
D it = 3 Uy
ij=1 i=1
where U(y) := u(C~y).

Hint: Let Z1, Z5 be an orthonormal system of eigenvectors to [a;;] to
the eigenvalues A1, A2, respectively. Set B = (2, Z3), then

C:(l/‘o/E 1/\%—2) BT,

. Let v be the interior angle of a sector with its corner at the origin in

R2. Calculate the interior angle w of the sector transformed by the
above mapping.

. Let u € CY(Q) N C?() be a solution of

. Vu
div——
1+ |Vul?
u = ¢ on 09,

= f inQ)

where Q € R? and f, ® are given. Suppose the origin is a corner of
Q) with interior angle v, 0 < v < w. Show that w, see the previous
exercise, is the opening angle of the surface S defined by z = u(z1, z2),
over the origin, see Figure 3.6.

Hint:
2

Vu
div— = ;i (T)Ugp, 2.
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Figure 3.6: Transformed opening angle

where

1 Ug,; Uy
g = — g )
T4 | Vu2)32 Y 14 | Vul?

. Let Q, be the sector in R? defined by » > 0 and 0 < 6 < «, where

0 < a < 2w Set Qq,p = Qa N B,(0). Suppose that u € C*(Qy,, \ {0})
and supgq,,  |u| < oo is a solution of Au =0 in Qqp, u =0 on (9% N

B,(0)) \ {0}

Show that there is a constant ¢ such that

Jul < elz|™/®

in Qg p.

Hint: Choose the comparison function W = Ar™® sin(7f/a) and show
that —AW < u < AW on Q, N0B,(0) provided the positive constant
A is sufficiently large.

. Let m, A, ¢; bereal numbers satisfying ¢; < m, A; > 0 and Z?:l Aj =

1. Show that m < Z?Zl Ajc¢;j implies ¢; = m.

. Prove the corollary to Proposition 3.3.

Hint: The inclusion 9€);, C 9€ is not assumed. The result follows since
for given x € 08, there exists an z! € 99 such that |z — z!| < h.
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