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Preface

These lecture notes are intented as an introduction to linear second order
elliptic partial differential equations. It can be considered as a continuation
of a chapter on elliptic equations of the lecture notes [17] on partial differen-
tial equations. In [17] we focused our attention mainly on explicit solutions
for standard problems for elliptic, parabolic and hyperbolic equations.

The first chapter concerns integral equation methods for boundary value
problems of the Laplace equation. This method can be extended to a large
class of linear elliptic equations and systems. In the following chapter we
consider Perron’s method for the Dirichlet problem for the Laplace equation.
This method is based on the maximum principle and on an estimates of
derivatives of solutions of the Laplace equation.

For additional reading we recommend following books: W. I. Smirnov [21],
I. G. Petrowski [20], D. Gilbarg and N. S. Trudinger [10], S. G. Michlin [14],
P. R. Garabedian [9], W. A. Strauss [22], F. John [13], L. C. Evans [5] and
R. Courant and D. Hilbert [4]. Some material of these lecture notes was
taken from some of these books.
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Chapter 1

Potential theory

The notation potential has its origin in Newton’s attraction rule

K(x, y) = −G
Mm

|y − x|2
y − x

|y − x| ,

where G = 6.67 · 10−11 m3/(kg · s2), and K is the force acting between two
mass points M and m located at x, y ∈ R

3, respectively. Since rot K = 0,
there is a scalar function Q(x, y), called potential, such that ∇xQ(x, y) =
K(x, y). Thus Q(x, y) = −GMm|y − x|−1 is a Newton potential. The
function Q(x, y) defines the work which has to be done to move one of the
mass points to infinity if the other one is fixed.

Let Ω ⊂ R
n be a bounded, connected and sufficiently regular domain.

Consider for given f and h the boundary value problem

−4v = f in Ω

v = h on ∂Ω.

We can transform this problem into a boundary value problem for the
Laplace equation by setting v = u − w, where

w(x) =

∫

Ω
s(|x − y|)f(y) dy.

Here s(r) denotes the singularity function, see also [17],

s(r) :=

{ − 1
2π

ln r : n = 2
r2−n

(n−2)ωn
: n ≥ 3

We recall that ωn = |∂B1(0)|. Since w ∈ C1(Rn) and −4w = f in Ω if
f is sufficiently regular, see Section 5.1, we arrive at the problem 4u = 0

7



8 CHAPTER 1. POTENTIAL THEORY

in Ω and v = h − w on ∂Ω. Consequently, it is sufficient to consider the
boundary value problem for the Laplace equation, which is a problem with
a homogeneous differential equation.

The Dirichlet problem (first boundary value problem) is to find a solution
u ∈ C2(Ω) ∩ C(Ω) of

4u = 0 in Ω (1.1)

u = Φ on ∂Ω, (1.2)

where Φ is given and continuous on ∂Ω.
The Neumann problem (second boundary value problem) is to find a

solution u ∈ C2(Ω) ∩ C1(Ω) of

4u = 0 in Ω (1.3)

∂u

∂n
= Ψ on ∂Ω, (1.4)

where Ψ is given and continuous on ∂Ω.
In [17], Chapter 7, we derived an explicit formula for the solution of (1.1),

(1.2) if Ω is a ball. In general, one gets explicit solutions, provided the Green
function is known for the domain Ω considered.

We denote (1.1), (1.2) by (Di) and (1.3), (1.4) by (Ni) to indicate that
the problems considered concerns the interior of Ω. Then (De) and (Ne)
denote the associated exterior problems, that is we have to replace in (1.1)
and (1.3) the domain Ω by its complement R

n \ Ω.

For the Dirichlet problems we make an ansatz with a dipole potential

W (z) =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|z − y|n−2

)

dSy (1.5)

if n ≥ 3. In the case that n = 2 we have to replace |z−y|2−n by − ln(|z−y|).
In the formula above ν(y) denotes the exterior unit normal at y ∈ ∂Ω and
σ(y) the dipole density.

For the Neumann problem we make an ansatz with a single layer potential

V (z) =

∫

∂Ω

σ(y)

|z − y|n−2
dSy (1.6)

if n ≥ 3. In the case that n = 2 we have to replace |z−y|2−n by − ln(|z−y|).
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Both potentials solve the Laplace equation in R
n \ ∂Ω.

In the rest of this chapter we assume that n ≥ 3.

We will see that discontinuous properties of these surface potentials lead
to integral equations which can be studied by using Fredholm’s results on
integral equations. Thus the method of surface potentials provide a beautiful
example for Fredholm’s theory.

1.1 Preliminaries

Let Ω ⊂ R
n be a bounded and connected domain with a sufficiently regular

boundary ∂Ω.

Definition. We say that ∂Ω ∈ C1,λ, 0 < λ ≤ 1, if:

(i) For each given x ∈ ∂Ω there exists a ρ > 0 and N = N(x, ρ) balls
B2ρ(xi) ⊂ R

n, i = 1, . . . , N , with centers xi ∈ ∂Ω, where x1 = x, such that

∂Ω ⊂
N
⋃

i=1

Bρ(xi).

(ii) Let Txi
be a plane which contains xi and denote by Z2ρ(xi) a circular

cylinder parallel to the normal on Txi
such that its intersection with the

plane Txi
is a ball in R

n−1 with radius 2ρ and the center at xi. We assume
the intersection ∂Ω ∩ Z2ρ(xi) has a local representation τ = f(ξ), f ≡ fi,
where ξ is in an (n − 1)-dimensional ball D2ρ = D2ρ(0) with radius 2ρ and
the center at 0 ∈ R

n−1. Moreover, we assume

f ∈ C1,λ(D2ρ), f(0) = 0, ∇f(0) = 0.

Lemma 1.1.1 (Partition of unity). There exists ηi ∈ C∞
0 (B2ρ(xi)), 0 ≤

ηi ≤ 1, such that
N

∑

i=1

ηi(x) = 1 if x ∈
N
⋃

i=1

Bρ(xi).

Proof. For given B2ρ(xi) there exists φi ∈ C∞
0 (B2ρ(xi)) with the properties
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T

Z

xi

2

2
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ρ

δΩ

(xi)

x
i

B2ρ(xi)

Figure 1.1: Definition of ∂Ω ∈ C1,λ

that φi = 1 in Bρ(xi) and 0 ≤ φi(x) ≤ 1, see an exercise. Set

η1 = φ1

= 1 − (1 − φ1),

ηi = φi(1 − φ1) · . . . · (1 − φi−1)

= (1 − (1 − φi))(1 − φ1) · . . . · (1 − φi−1).

Then
N

∑

i=1

ηi(x) = 1 − (1 − φ1) · . . . · (1 − φN ),

which implies that

N
∑

i=1

ηi(x) = 1, if x ∈
N
⋃

i=1

Bρ(xi)

since at least one of the factors is zero. 2

Assume ∂Ω ∈ C1,λ, then we define the area integral by

∫

∂Ω
g(y) dSy =

∫

∂Ω

N
∑

i=1

ηi(y) g(y) dSy

=
N

∑

i=1

∫

∂Ω
ηi(y) g(y) dSy,
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where
∫

∂Ω
ηi(y) g(y) dSy

=

∫

D2ρ

ηi(ξ, fi(ξ)) g(ξ, fi(ξ))
√

1 + |∇fi(ξ)|2 dξ.

Here we suppose that ∂Ω ∩ Z2ρ(xi) has the parametric representation y =
(ξ, fi(ξ)).

1.2 Dipole potential

Dipole density. The following consideration leads to the formula (1.5) for
the dipole potential in the case of three dimensions.

Consider two parallel surfaces, one inside of Ω and the other one outside,
of distance ε/2, ε > 0 small, from ∂Ω, see Figure 1.2. Assume there is a

x

y

y

ε/2

ε/2

δΩ

+

−

y

ν (y)

Figure 1.2: Double layer potential

charge of power ε−1 at y+ = y + (ε/2)ν(y) and a charge of power −ε−1 at
y− = y − (ε/2)ν(y). Set z+ = y+ − x and z− = y− − x, then the potential
at x of the dipole is

u =
1

ε

(

1

|z+| −
1

|z−|

)

=
1

ε

|z−|2 − |z+|2
(|z+| + |z−|)|z+||z−| .
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Since z− = z+ − εν(y), we have

|z−|2 = 〈z+ − εν(y), z+ − εν(y)〉
= |z+|2 − 2εz+ · ν(y) + ε2.

Thus

u = −1

ε

2εz+ · ν(y) + ε2

(|z+| + |z−|)|z+||z−| .

Set z = y − x, then

lim
ε→0

u = −z · ν(y)

|z|3

=
∂

∂ν(y)

(

1

|y − x|

)

is the potential of a single dipole with density σ(y) = 1 at y. Multiplication
with a density σ(y) and integration over ∂Ω leads to (1.5).

The right hand side of (1.5) is called dipole potential or potential of a double
layer with density σ. The dipole potential is in C∞(Rn \∂Ω) and a solution
of the Laplace equation in R

n \ ∂Ω. In fact, see the following proposition,
the right hand side of (1.5) is defined and continuous on ∂Ω provided the
boundary ∂Ω is sufficiently smooth, but W (x) makes a jump across ∂Ω.

Some of the following calculations are based on the formula for the di-
rectional derivative in direction ν(y)

∂

∂ν(y)

(

1

|z − y|n−2

)

=
1

|z − y|n
n

∑

i=1

(zi − yi)(ν(y))i. (1.7)

Lemma 1.2.1. Assume ∂Ω ∈ C1,λ and σ ∈ C(∂Ω). Then the right hand
side of (1.5) is defined and is continuous on ∂Ω.

Proof. Consider the case n ≥ 3. Let x be the center of a local coordinate
system and z ∈ ∂Ω ∩ Z2ρ(x), see Figure 1.3. We have to show that, see
Section 1.1 for the definition of the surface integral and formula (1.7),

q(ζ) :=

∫

D2ρ

η(ξ, f(ξ)) σ(ξ, f(ξ))
−(ζ − ξ) · ∇f(ξ) + f(ζ) − f(ξ)

(|ζ − ξ|2 + |f(ζ) − f(ξ)|2)n/2
dξ

is continuous in a neighbourhood of 0 ∈ R
n−1. Here is D2ρ = D2ρ(0),

z = (ζ, f(ζ)) and y = (ξ, f(ξ)) in local coordinates, and η ∈ C∞ in its
arguments.
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T

Z

x

2ρ

δΩ

(x )

x
yz

(y)ν

Figure 1.3: Local coordinates

Because of f ∈ C1,λ(D2ρ), f(0) = 0 and ∇f(0) = 0 we have

q(ζ) =

∫

D2ρ

A(ξ, ζ)

|ξ − ζ|n−1−λ
dξ,

where A(ξ, ζ) is bounded on D2ρ × D2ρ and continuous if ξ 6= ζ. Since the
integrand is weakly singular, it follows that q(ζ) is continuous on D2ρ, see
an exercise. 2

Let x0 ∈ ∂Ω and x ∈ R
n. Set

W (x) = W1(x) + σ(x0)W0(x),

where

W1(x) =

∫

∂Ω
(σ(y) − σ(x0))

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy, (1.8)

W0(x) =

∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy. (1.9)

The integral W0(x) is called Gauss integral.

Lemma 1.2.2. Suppose that ∂Ω ∈ C1,λ. Then

W0(x) =







−(n − 2)ωn : x ∈ Ω
0 : x 6∈ Ω

−n−2
2

ωn : x ∈ ∂Ω
.
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Proof. (i) If x ∈ R
n \ Ω is fixed, then there is a domain Ω0 ⊃⊃ Ω where

|x − y|2−n ∈ C∞(Ω0) and satisfies the Laplace equation. Then

0 =

∫

Ω
4y

(

1

|x − y|n−2

)

dy

=

∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.

(ii) Let x ∈ Ω be fixed, then there is a ball Bρ(x) ⊂ Ω. Then

0 =

∫

Ω\Bρ(x)
4y

(

1

|x − y|n−2

)

dy

=

∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy −
∫

∂Bρ(x)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy,

where in the second integral ν(y) denotes the exterior unit normal at the
boundary of Bρ(x). Using polar coordinates with center at x, we find for
the second integral

∫

∂Bρ(x)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy =

∫

∂B1(x)

∂

∂ρ

(

ρ2−n
)

ρn−1 dS

= (2 − n)ωn.

(iii) Let x ∈ ∂Ω and set for a sufficiently small ρ > 0,

Sρ = Ω ∩ ∂Bρ(x), Cρ = ∂Ω \ Bρ(x),

see Figure 1.4. Then

0 =

∫

Ω\Bρ(x)
4y

(

1

|x − y|n−2

)

dy

=

∫

Cρ

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy −
∫

Sρ

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.

Since, see an exercise,

lim
ρ→0

∫

Cρ

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy =

∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy,
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(y)

(y)

Cρ

Figure 1.4: Figure to the proof of Lemma 1.2.2

it follows that
∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy = lim
ρ→0

∫

Sρ

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.

We have
∫

Sρ

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy = −(n − 2)ρ1−n

∫

Sρ

dSy

and
∫

Sρ

dSy =
ωn

2
ρn−1

(

1 + O(ρ2λ)
)

.

The previous formula follows by introducing local coordinates at x. Let
(ξ, h(ξ)) ∈ ∂Bρ(x) ∩ ∂Ω, then

|h(ξ)| ≤ cρ1+λ.

Let F be a layer of a sphere with radius ρ of hight cρ1+λ, see Figure 1.5,
then

ωn

2
ρn−1 − |F | ≤ |Sρ| ≤

ωn

2
ρn−1 + |F |.

We have

|F | =
1

2
ρn−1ωn(1 − cos θ)

=
1

2
ρn−1ωn

(

1 − (1 − c2ρ2λ)1/2
)

=
1

2
ρn−1ωnO(ρ2λ)
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θ

δΩ
ρ

Figure 1.5: Estimate of |Sρ|

as ρ → 0. 2

Lemma 1.2.3. Let ∂Ω ∈ C1,λ. Then
∫

∂Ω

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)∣

∣

∣

∣

dSy

is uniformly bounded for x ∈ R
n.

Proof. (i) For fixed d > 0 consider x such that dist(x, ∂Ω) ≥ d/2. Then, see
formula (1.7),

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)∣

∣

∣

∣

≤ (n − 2)
2n−1

dn−1
,

which implies that
∫

∂Ω

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)
∣

∣

∣

∣

dSy ≤ (n − 2)2n−1

dn−1
|∂Ω|.

(ii) Consider x ∈ R
n such that dist(x, ∂Ω) < d/2 for a d > 0 and let

x0 ∈ ∂Ω : |x − x0| = min
y∈∂Ω

|x − y|.

Set Sd = ∂Ω ∩ Bd(x0). Then for y ∈ ∂Ω \ Sd we have

|y − x| ≥ |y − x0| − |x − x0| > d/2,

which implies that
∫

∂Ω\Sd

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)∣

∣

∣

∣

dSy ≤ (n − 2)2n−1

dn−1
|∂Ω \ Sd|

≤ (n − 2)2n−1

dn−1
|∂Ω|.
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(iii) Consider

Id :=

∫

Sd

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)
∣

∣

∣

∣

dSy.

In local coordinates, see Figure 1.6, we have, since x − x0 is perpendicular

δΩ

x
y

x

0 ξ

τ

(y)ν

Figure 1.6: Local coordinates, case (iii)

on the tangent plane Tx0
, that x = (0, . . . , 0, δ) and y = (ξ, f(ξ)), where

f ∈ C1,λ(Dρ), f(0) = 0, ∇f(0) = 0 and Dρ is a ball in R
n−1 with the center

at 0 ∈ R
n−1 and the radius ρ. We choose d > 0 such that ρ > d. Then, see

formula (1.7),

√

1 + |∇f(ξ)|2 ∂

∂ν(y)

(

1

|x − y|n−2

)

=
ξ · ∇f(ξ) + (δ − f(ξ))

(|ξ|2 + (δ − f(ξ))2)n/2

=
h1(ξ) + δ

(|ξ|2 + (δ + h2(ξ))2)
n/2

,

where hi ∈ C(Dρ(0)), |hi(ξ)| ≤ c|ξ|1+λ.
Since

|ξ|2 + |δ + h2(ξ))
2 = |ξ|2 + δ2 + 2δh2 + h2

2

≥ |ξ|2 +
1

2
δ2 − 7h2

2

≥ 1

2
|ξ|2 +

1

2
δ2,

provided ρ satisfies 7cρ2λ < 1/2. It follows that

Id ≤ 2n/2

∫

Dρ

c|ξ|1+λ + |δ|
(|ξ|2 + δ2)n/2

dξ. (1.10)
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The right hand side of (1.10) is uniformly bounded with respect to |δ| < d.
More precisely, we have

Id ≤ 2n/2ωn−1 max{cλ−1ρλ, π/2},

see an exercise. 2

Lemma 1.2.4. Assume σ ∈ C(∂Ω) and x0 ∈ ∂Ω. Then W1(x), see defini-
tion (1.8), is continuous at x0.

Proof. Set Sρ = ∂Ω ∩ Bρ(x0) and W1(x) = I1 + I2, where

I1(x) =

∫

Sρ

(σ(y) − σ(x0))
∂

∂ν(y)

(

1

|x − y|n−2

)

dSy

I2(x) =

∫

∂Ω\Sρ

(σ(y) − σ(x0))
∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.

We have

|W1(x) − W1(x0)| ≤ |I1(x)| + |I1(x0)| + |I2(x) − I2(x0)|

and

|I1(x)| ≤
∫

Sρ

|σ(y) − σ(x0)|
∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)∣

∣

∣

∣

dSy.

Set, see Lemma 1.2.3,

C = sup
x∈Rn

∫

∂Ω

∣

∣

∣

∣

∂

∂ν(y)

(

1

|x − y|n−2

)∣

∣

∣

∣

dSy

and choose for given ε > 0 a ρ = ρ(ε) such that

|σ(y) − σ(x0)| <
ε

3C

if y ∈ Sρ. Then |I1(x)| < ε/3 and |I1(x0)| < ε/3.

Consider x ∈ R
n such that |x − x0| < ρ/2, then

|y − x| ≥ |y − x0| − |x − x0| ≥ ρ/2,

provided that y ∈ ∂Ω \ Sρ. Since I2 is continuous in Bρ/2(x0), there is a
δ = δ(ε) such that

|I2(x) − I2(x0)| < ε/3
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if |x − x0| < δ(ε). Summarizing, we have

|W1(x) − W1(x0)| < ε

if |x − x0| < min{ρ(ε)/2, δ(ε)}. 2

Let x0 ∈ ∂Ω and denote by Wi(x0) the limit of W (x) from interior to x0

and by We(x0) the limit of W (x) from exterior to x0.

Proposition 1.2.1. Suppose that σ ∈ C(∂Ω) and x0 ∈ ∂Ω. The limits
Wi(x0) and We(x0) exist and satisfy the jump relations

Wi(x0) = −(n − 2)ωn

2
σ(x0) + W (x0),

We(x0) =
(n − 2)ωn

2
σ(x0) + W (x0).

Proof. We will prove the first of the jump relations. For x ∈ Ω we set W (x) =
W1(x) + σ(x0)W0(x), where W1(x) is continuous at x0, see Lemma 1.2.4,
and W0(x) is the Gauss integral, see Lemma 1.2.2. Thus

Wi(x0) = lim
x→x0,x∈Ω

(W1(x) + σ(x0)W0(x))

= W1(x0) − (n − 2)σ(x0)

=

∫

∂Ω
(σ(y) − σ(x0))

∂

∂ν(y)

(

1

|x0 − y|n−2

)

dSy − (n − 2)σ(x0)

= W (x0) −
(n − 2)ωn

2
σ(x0).

2

Corollary. The double layer potential

W (x) =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy,

where σ ∈ C(∂Ω), defines a solution of the interior Dirichlet problem (Di)
if and only if σ ∈ C(∂Ω) is a solution of the integral equation

Φ(x) = −(n − 2)ωn

2
σ(x) +

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy,
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where x ∈ ∂Ω, and W (x) is a solution of the exterior Dirichlet problem (De)
if and only if σ ∈ C(∂Ω) satisfies the integral equation

Φ(x) =
(n − 2)ωn

2
σ(x) +

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy

We recall that W is a solution of (Di) if and only if

Φ(x) = lim
z→x,z∈Ω

W (z),

and of (De) if and only if

Φ(x) = lim
z→x,z∈Rn\Ω

W (z).

1.3 Single layer potential

Consider the single layer potential

V (x) =

∫

∂Ω

σ(y)

|x − y|n−2
dSy,

where σ ∈ C(∂Ω).

Lemma 1.3.1. V ∈ C(Rn).

Proof. It remains to show that V (x) is continuous if x ∈ ∂Ω. Let x ∈ ∂Ω,
set Sρ = ∂Ω ∩ Bρ(x), ρ > 0 sufficiently small, and

V (x) = V1(x) + V2(x),

where

V1(x) =

∫

Sρ

σ(y)

|x − y|n−2
dSy,

V2(x) =

∫

∂Ω\Sρ

σ(y)

|x − y|n−2
dSy.

Consider z ∈ R
n, z in a neighbourhood of x. We have

|V (z) − V (x)| ≤ |V1(z)| + |V1(x)| + |V2(z) − V2(x)|.



1.3. SINGLE LAYER POTENTIAL 21

δΩ

x

y

ξ

z

ρ

ζ

Figure 1.7: Proof of Lemma 1.3.1

In local coordinates it is y = (ξ, f(ξ)), z = (ζ, δ), where ξ, ζ ∈ Dρ = Dρ(0),
see Figure 1.7, and

|V1(z)| ≤
∫

Dρ

|σ(ξ, f(ξ))|
√

1 + |∇f(ξ)|2
(|ζ − ξ|2 + (δ − f(ξ))2)(n−2)/2

dξ

≤ c

∫

Dρ

dξ

|ξ − ζ|n−2

≤ c

∫

D2ρ

dξ

|ξ|n−2

= 2cωn−1ρ.

Let ε > 0 be given and set ρ = ρ(ε) = ε/(6cωn−1), then |V1(z)| < ε/3 if
|z − x| < ρ(ε). Consequently, for those z we have

|V (z) − V (x)| ≤ 2

3
ε + |V2(z) − V2(x)|.

For fixed ρ > 0 there is a δ = δ(ε) > 0 such that

|V2(z) − V2(x)| <
ε

3

if |z − x| < δ(ε). Summarizing, we have

|V (z) − V (x)| < ε,
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provided that |z − x| < min{ρ(ε), δ(ε)}. 2

Definition. Assume u ∈ C1(Ω) and ∂Ω ∈ C1,λ. We say that there exists a
regular interior normal derivative of u at ∂Ω if the limit

(

∂u(x)

∂ν(x)

)

i

:= lim
z→x

∂u(z)

∂ν(x)

exists for each x ∈ ∂Ω. Here is z ∈ Ω on the line defined by the exterior
normal νx at x, see Figure 1.8, and this limit is uniform with respect x ∈ ∂Ω
and it is a continuous function on ∂Ω. Analogously, we define the regular

Ω

x

Bρ
ν

z

ξ

(x)

Figure 1.8: Normal derivative

exterior normal derivative of u ∈ C1(Rn \ Ω) on ∂Ω by

(

∂u(x)

∂ν(x)

)

e

:= lim
z→x

∂u(z)

∂ν(x)
,

where z ∈ R
n \ Ω is on the line defined by ν(x) and x.

Assume z 6∈ ∂Ω, then

∂V (z)

∂l
=

∫

∂Ω
σ(y)

∂

∂l

(

1

|z − y|n−2

)

dSy,

where l is any direction. If x ∈ ∂Ω we define

∂V (x)

∂ν(x)
:=

∫

∂Ω
σ(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy. (1.11)
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In some of the following considerations we need the formula

∂

∂ν(x)

(

1

|x − y|n−2

)

= − n − 2

|x − y|n
n

∑

i=1

(xi − yi)(ν(x))i. (1.12)

Lemma 1.3.2. The right hand side of (1.11) exists1 if x ∈ ∂Ω.

Proof. We introduce a local coordinate system with center at x as in previous
considerations and show that

Iρ(x) :=

∫

Sρ

σ(y)
∂

∂ν(x)

(

1

|x − y|n−2

)

dSy

exists, where Sρ = ∂Ω∩Bρ(x), ρ > 0 sufficiently small. In local coordinates
it is y = (ξ, f(ξ)). Using formula (1.12), we obtain

|Iρ(x)| ≤ c1

∫

Dρ

|f(ξ)|
|ξ|n dξ

≤ c2

∫

Dρ
|ξ|−n+1+λ dξ

= c2ωn−1λ
−1ρλ.

2

Let x ∈ ∂Ω and consider the sum

s(z) =
∂V (z)

∂ν(x)
+ W (z)

=

∫

∂Ω
σ(y)

(

∂

∂ν(x)

(

1

|z − y|n−2

)

+
∂

∂ν(y)

(

1

|z − y|n−2

))

dSy,

where W is the dipole potential and z is on the line defined by ν(x), see
Figure 1.8.

Lemma 1.3.3. The sum s(z) is continuous at x.

Proof. Set Sρ = ∂Ω ∩ Bρ(x), ρ > 0 sufficiently small, and

s(z) = s1(z) + s2(z),

1i. e., this weakly singular exists in the sense of Riemann or as a Lebesgue integral,
and it is bounded
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where

s1(z) =

∫

Sρ

σ(y)

(

∂

∂ν(x)

(

1

|z − y|n−2

)

+
∂

∂ν(y)

(

1

|z − y|n−2

))

dSy,

s2(z) =

∫

∂Ω\Sρ

σ(y)

(

∂

∂ν(x)

(

1

|z − y|n−2

)

+
∂

∂ν(y)

(

1

|z − y|n−2

))

dSy.

We have

|s(z) − s(x)| ≤ |s1(z)| + |s1(x)| + |s2(z) − s2(x)|.

Thus the lemma is shown if for given ε > 0 there exists a ρ = ρ(ε) > 0 such
that |s1(z)| < ε/3 if |x − z| < ρ(ε), see the proof of Lemma 1.3.1. It is,
see (1.7), (1.12),

∂

∂ν(x)

(

1

|z − y|n−2

)

+
∂

∂ν(y)

(

1

|z − y|n−2

)

= (n − 2)
1

|z − y|n

(

n
∑

i=1

(zi − yi)(ν(y))i −
n

∑

i=1

(zi − yi)(ν(x))i

)

,

where, in local coordinates, x = (0, . . . , 0, 0), z = (0, . . . , 0, δ), ν(x) =
(0, . . . , 0, 1) and

ν(y) =
1

√

1 + |∇f(ξ)|2
(−fξ1 , . . . ,−fξn−1

, 1).

It follows that

|s1(z)| ≤ c1

∫

Sρ

∣

∣

∣

∣

∂

∂ν(x)

(

1

|z − y|n−2

)

+
∂

∂ν(y)

(

1

|z − y|n−2

)∣

∣

∣

∣

dSy

≤ c2

∫

Dρ(0)

∣

∣

∣
ξ · ∇f(ξ) + (δ − f(ξ)) − δ

√

1 + |∇f(ξ)|2
∣

∣

∣

(|ξ|2 + |δ − f(ξ)|2)n/2
dξ

≤ c3

∫

Dρ(0)

|ξ|1+λ + |δ||ξ|2λ

(|ξ|2 + δ2)n/2
dξ

≤ c3ωn−1 max{λ−1ρλ, πρ2λ/2},

where the constants ci are independent of ρ. 2

Proposition 1.3.1. Suppose that ∂Ω ∈ C1,λ. Then there exists a regular
interior and a regular exterior normal derivative of V , and these derivatives



1.3. SINGLE LAYER POTENTIAL 25

satisfy the jump relations
(

∂V (x)

∂ν(x)

)

i

=
(n − 2)ωn

2
σ(x) +

∂V (x)

∂ν(x)
(

∂V (x)

∂ν(x)

)

e

= −(n − 2)ωn

2
σ(x) +

∂V (x)

∂ν(x)
,

where x ∈ ∂Ω.

Proof. The existence of regular normal derivatives follow from Lemma 1.3.3
and Proposition 1.2.1 since

∂V (z)

∂ν(x)
=

(

∂V (z)

∂νx
+ W (z)

)

− W (z),

where z is on the line defined by ν(x). From Lemma 1.3.3 it follows also

(

∂V (x)

∂ν(x)

)

i

+ Wi(x) =

(

∂V (x)

∂ν(x)

)

e

+ We(x)

=
∂V (x)

∂ν(x)
+ W (x),

where

∂V (x)

∂ν(x)
: =

∫

∂Ω
σ(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy,

W (x) : =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.

Using Lemma 1.3.1, we obtain
(

∂V (x)

∂ν(x)

)

i

= W (x) − Wi(x) +
∂V (x)

∂ν(x)

=
(n − 2)ωn

2
σ(x) +

∂V (x)

∂ν(x)

and
(

∂V (x)

∂ν(x)

)

e

= W (x) − We(x) +
∂V (x)

∂νx

= −(n − 2)ωn

2
σ(x) +

∂V (x)

∂ν(x)
.

2
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Remark. Let x ∈ ∂Ω, then it follows immediately that
(

∂V (x)

∂ν(x)

)

i

−
(

∂V (x)

∂νx

)

e

= (n − 2)ωnσ(x).

Corollary. The single layer potential

V (x) =

∫

∂Ω

σ(y)

|x − y|n−2
dSy,

where σ ∈ C(∂Ω) defines a solution of the interior Neumann problem (Ni)
if and only if σ ∈ C(∂Ω) is a solution of the integral equation

Ψ(x) =
(n − 2)ωn

2
σ(x) +

∫

∂Ω
σ(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy,

where x ∈ ∂Ω, and V (x) is a solution of the exterior Neumann problem (Ne)
if and only if σ ∈ C(∂Ω) satisfies the integral equation

Ψ(x) = −(n − 2)ωn

2
σ(x) +

∫

∂Ω
σ(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy.

We recall that V is a solution of (Ni) if and only if

Ψ(x) =

(

∂V (x)

∂ν(x)

)

i

,

and of (Ne) if and only if

Ψ(x) =

(

∂V (x)

∂ν(x)

)

e

.

1.4 Integral equations

Denote by H = L2(∂Ω) the Hilbert space with the inner product

〈σ, µ〉 =

∫

∂Ω
σ(x)µ(x) dSx,

and, if n ≥ 3, we define the linear operator T from H into H by

(Tσ)(x) =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy.
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Set

(T ∗σ)(x) =

∫

∂Ω
σ(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy,

then

〈Tσ, µ〉 = 〈σ, T ∗µ〉

for all σ, µ ∈ H. Below we will show that T is bounded. Then it follows
that T ∗ is the adjoint operator to T .

According to the above corollaries to Proposition 1.2.1 and Proposi-
tion 1.3.1, the potentials W and V are solutions of the boundary value
problems (Di), De), (Ni) and (Ne) if the density σ is continuous on ∂Ω and
satisfies the integral equations, respectively,

σ − 2

(n − 2)ωn
Tσ = − 2

(n − 2)ωn
Φ (Di)I

σ +
2

(n − 2)ωn
Tσ =

2

(n − 2)ωn
Φ (De)I

σ +
2

(n − 2)ωn
T ∗σ =

2

(n − 2)ωn
Ψ (Ni)I

σ − 2

(n − 2)ωn
T ∗σ = − 2

(n − 2)ωn
Ψ (Ne)I .

Remark. Since we make the ansatz with above potentials for the exterior
problems, we prescribe in fact the behaviour |u(z) ≤ c|z|1−n, |u(z) ≤ c|z|2−n,
respectively, as z → ∞.

The above integral equations are defined for σ ∈ L2(∂Ω). In the following we
will discuss whether or not there exist solutions in L2(∂Ω). From a regularity
result which says that an L2-solution is in fact in C(∂Ω), we recover that the
potentials define solutions of the boundary value problem, see the corollaries
to Proposition 1.2.1 and Proposition 1.3.1.

Proposition 1.4.1. Suppose that ∂Ω ∈ C1,λ. Then T is a completely
continuous operator from H into H.

Proof. (i) T is bounded. It is sufficient, see Section 1.1, to show that

(Pµ)(ζ) :=

∫

Dρ

a(ξ)µ(ξ)K(ξ, ζ) dξ
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is bounded from L2(Dρ) into L2(Dρ). Here is Dρ = Dρ(0) ⊂ R
n−1, a ∈

C∞
0 (Dρ), µ(ξ) = σ(ξ, f(ξ)) and

K(ξ, ζ) =
(n − 2) (−(ξ − ζ) · ∇f(ξ) + f(ζ) − f(ξ))

(|ξ − ζ|2 + (f(ξ) − f(ζ))2)n/2
.

Set q(ζ) := (Pµ)(ζ), then

q(ζ) =

∫

Dρ

µ(ξ)
A(ξ, ζ)

|ξ − ζ|n−1−λ
dξ,

where A is bounded on Dρ×Dρ) and continuous if ξ 6= ζ. Let κ = n−1−λ,
then we have, with constants ci independent of µ and ρ, that

|q(ζ)| ≤ c1

∫

Dρ

|µ(ξ)|
|ξ − ζ|κ/2

1

|ξ − ζ|κ/2
dξ,

|q(ζ)|2 ≤ c2

∫

Dρ

|µ(ξ)|2
|ξ − ζ|κ dξ

∫

Dρ

dξ

|ξ − ζ|κ

≤ c3ρ
λ

∫

Dρ

|µ(ξ)|2
|ξ − ζ|κ dξ,

∫

Dρ

|q(ζ)|2 dζ ≤ c3ρ
λ

∫

Dρ

|µ(ξ)|2
(

∫

Dρ

dζ

|ξ − ζ|κ

)

dξ

≤ c4ρ
2λ

∫

Dρ

|µ(ξ)|2 dξ.

(ii) T is completely continuous. According to a lemma due to Kolmogoroff,
see for example [21], pp. 246, or [1], pp. 31, P is completely continuous if
for given ε1 > 0 there exists an h0(ε1) > 0 such that

∫

Dρ

|q(ζ + h) − q(ζ)|2 dζ ≤ ε21

for all h ∈ R
n−1 such that |h| ≤ h0(ε1), and uniformly for ||µ||L2(Dρ) ≤ M ,

where M < ∞. Thus the set ||µ||L2(Dρ) ≤ M is uniformly continuous in the
mean. Above we set q(ζ) = 0 if ζ 6∈ Dρ. Let η ∈ C(R+), 0 ≤ η ≤ 1, such
that for given ε > 0

η(t) =

{

1 : 0 ≤ t ≤ ε/2
0 : t ≥ ε

.
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Set

q(ζ) = q1(ζ) + q2(ζ),

where

q1(ζ) =

∫

Dρ(0)
µ(ξ)

A(ξ, ζ)η(|ξ − ζ|)
|ξ − ζ|κ dξ

q2(ζ) =

∫

Dρ(0)
µ(ξ)

A(ξ, ζ) (1 − η(|ξ − ζ|))
|ξ − ζ|κ dξ.

We have

|q(ζ + h) − q(ζ)| ≤ |q1(ζ + h)| + |q1(ζ)| + |q2(ζ + h) − q2(ζ)|. (1.13)

Let ε > 0 be fixed, then for given τ > 0 there is an h0 = h0(τ) > 0 such that

|q2(ζ) − q2(ζ)| < τ (1.14)

for all |h| ≤ h0. Concerning q1(ζ) we have

|q1(ζ)| ≤ c

∫

Dρ(0)∩Bε(ζ)
|µ(ξ)| dξ

|ξ − ζ|κ

|q1(ζ)|2 ≤ c2

∫

Dρ(0)∩Bε(ζ)
|µ(ξ)|2 dξ

|ξ − ζ|κ
∫

Dρ(0)∩Bε(ζ)

dξ

|ξ − ζ|κ

≤ c2ωn−1ε
λλ−1

∫

Dρ(0)∩Bε(ζ)
|µ(ξ)|2 dξ

|ξ − ζ|κ
∫

Dρ(0)
|q1(ζ)|2 dζ ≤ c2ωn−1ε

λλ−1

∫

Dρ(0)

∫

Dρ(0)
|µ(ξ)|2 dξ

|ξ − ζ|κ dζ

= c2ωn−1ε
λλ−1

∫

Dρ(0)
|µ(ξ)|2 dξ

∫

Dρ(0)

dζ

|ξ − ζ|κ

≤ c2ωn−1ε
λλ−1

∫

Dρ(0)
|µ(ξ)|2 dξ

∫

D2ρ(ξ)

dζ

|ξ − ζ|κ

= c2ω2
n−1ε

λλ−2(2ρ)λ||µ||2L2(Dρ).
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Analogously we have

|q1(ζ + h)|2 ≤ c2

∫

Dρ(0)∩Bε(ζ+h)
|µ(ξ)|2 dξ

|ξ − (ζ + h)|κ
∫

Dρ(0)∩Bε(ζ+h)

dξ

|ξ − (ζ + h)|κ

≤ c2ωn−1ε
λλ−1

∫

Dρ(0)∩Bε(ζ+h)
|µ(ξ)|2 dξ

|ξ − (ζ + h)|κ
∫

Dρ(0)
|q1(ζ + h)|2 dζ ≤ c2ωn−1ε

λλ−1

∫

Dρ(0)

∫

Dρ(0)
|µ(ξ)|2 dξ

|ξ − (ζ + h)|κ dζ

= c2ωn−1ε
λλ−1

∫

Dρ(0)
|µ(ξ)|2 dξ

∫

Dρ(0)

dζ

|ξ − (ζ + h)|κ

≤ c2ωn−1ε
λλ−1

∫

Dρ(0)
|µ(ξ)|2 dξ

∫

D3ρ(ξ−h)

dζ

|ζ − (ξ − h)|κ

= c2ω2
n−1ε

λλ−2(3ρ)λ||µ||2L2(Dρ).

Combining these L2-estimates with (1.13) and (1.14) we obtain that the
mapping T is completely continuous. 2

From a result of functional analysis we have

Corollary. T ∗ is bounded with the same norm as T and T ∗ is completely
continuous.

In the following we study the question of the existence of solutions σ ∈
L2(∂Ω) of the above integral equations. To recover that the associated
surface potentials define solutions of the original boundary value problems,
we need more regularity, namely σ ∈ C(∂Ω). We obtain this property by
using the integral equations.

Proposition 1.4.2 (Regularity). Let w ∈ L2(Dρ) be a solution of the
integral equation

w(ζ) −
∫

Dρ

w(ξ)
A(ξ, ζ)

|ξ − ζ|κ dξ = b(ζ),

where κ = n − 1 − λ, Dρ = Dρ(0) ⊂ R
n−1, A is bounded in Dρ × Dρ and
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continuous if ξ 6= ζ. The function b ∈ C(Dρ) is given. Then it follows that
w ∈ C(Dρ).

Proof. Let η ∈ C(R+), 0 ≤ η ≤ 1, such that for given ε > 0

η(t) =

{

1 : 0 ≤ t ≤ ε/2
0 : t ≥ ε

.

Set
A(ξ, ζ)

|ξ − ζ|κ = K1(ξ, ζ) + K2(ξ, ζ),

where

K1(ξ, ζ) =
A(ξ, ζ)η(|ξ − ζ|)

|ξ − ζ|κ

K2(ξ, ζ) =
A(ξ, ζ) (1 − η(|ξ − ζ|)

|ξ − ζ|κ .

Then

w(ζ) −
∫

Dρ

w(ξ)K1(ξ, ζ) dξ = g(ζ),

where

g(ζ) =

∫

Dρ

w(ξ)K2(ξ, ζ) dξ + b(ζ)

is a continuous function on Dρ. Define the integral operator T1 from L2(Dρ)
into L2(Dρ) by

(T1w)(ζ) =

∫

Dρ

w(ξ)K1(ξ, ζ) dξ,

then we can write the above integral equation as (I − T1)w = g, where I
denotes the identity operator. The L2-norm of T1 satisfies the inequality
||T1|| < 1, provided ε > 0 is sufficiently small, see an exercise. It follows
that w is given by the Neumann series

w = (I − T1)
−1g =

∞
∑

n=0

Tn
1 g,

which is a uniformly convergent series of continuous functions, provided
ε > 0 was chosen sufficiently small, see an exercise. 2

FREDHOLM THEOREMS. Here we recall some results from functional
analysis, see for example [23]. Let H be a Hilbert space over C and T : H 7→
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H a completely continuous linear operator. Consider for given f, g ∈ H
and λ ∈ C the equations

u + λ Tu = f (I)

v + λ T ∗v = g (I∗)

and the associated homogeneous equations

u + λ Tu = 0 (Ih)

v + λ T ∗v = 0 (I∗h).

Equations (I∗), (I∗h) are called adjoint to (I), (Ih), respectively.

(i) Let λ be an eigenvalue of (Ih), then the linear space of solutions has
finite dimension.

(ii) The eigenvalue problem (Ih) has at most a countable set of eigenvalues
with at most one limit element at infinity.

(iii) λ is an eigenvalue of (Ih) if and only if λ is an eigenvalue of (I∗h) and
dim N(I + λT ) =dim N(I + λT ∗).

(iv) (I) has a solution if and only if f ⊥ N(I+λ T ∗) and (I∗) has a solution
if and only if g ⊥ N(I + λ T ).

We recall that N(A) denotes the null space N(A) = {w ∈ H : Aw = 0} of
a linear operator A.

Proposition 1.4.3. Suppose that ∂Ω ∈ C2, then λ0 = −2/((n − 2)ωn) is
no eigenvalue of the homogeneous integral equation to (Di).

Proof. Suppose that λ0 is an eigenvalue and µ0 ∈ L2(∂Ω) an associated
eigenvector of the adjoint problem (Ne)I . From Proposition 1.4.2 we have
that µ0 ∈ C(∂Ω). Consider the single layer potential

V (x) :=

∫

∂Ω

µ0(y)

|x − y|n−2
dSy.

From a jump relation of Proposition 1.3.1 it follows that

(

∂V (x)

∂ν(x)

)

e

= 0 (1.15)
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since µ0 is an eigenvector of (Ne)I .
Set for a (small) h > 0

Ωh = Ω ∪ {y ∈ R
n : y = x + sν(x), x ∈ ∂Ω, 0 ≤ s < h},

see Figure 1.9. The surface ∂Ωh is called parallel surface to ∂Ω.

x

z

h

Ω

δΩ

(x)=ν ν (z)

h

Figure 1.9: Parallel surface

Consider a ball BR = BR(0) such that Ωh ⊂ BR, then

∫

BR\Ωh

|∇V |2 dx =

∫

∂BR

V (x)
∂V (x)

∂ν(x)
dSx −

∫

∂Ωh

V (z)
∂V (z)

∂ν(z)
dSz. (1.16)

We have on ∂Ωh

ν(z) = ν(x). (1.17)

To show this equation, we consider the surface ∂Ω which is given (locally)
by x = x(u), where u ∈ U and U is an (n-1)-dimensional parameter domain.
Then the parallel surface ∂Ωh is defined by z(u) = x(u) + hν(x(u)). Then
we consider a C1-curve X(t) on ∂Ω with X(0) = x, and let Z(t) be the
associated curve on ∂Ωh. Then

|X(t) − Z(t)|2 = h2.

It follows

(X(t) − Z(t)) · X ′(t) − (X(t) − Z(t)) · Z ′(t) = 0,

which proves (1.17) since the first term is zero.
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Combining (1.16), (1.17), (1.15) and

lim
h→0

∂V (z)

∂ν(x)
=

(

∂V (x)

∂ν(x)

)

e

,

we obtain

lim
h→0

∫

BR\Ωh

|∇V |2 dx =

∫

∂BR

V (x)
∂V (x)

∂ν(x)
dSx

since the surface element dSz converges uniformly to dSx on U as h → 0.2

We have V = O(R2−n) and ∂V/∂ν(x) = O(R1−n), consequently

lim
R→∞

(

lim
h→0

∫

BR\Ωh

|∇V |2 dx

)

= 0.

Thus V = const. on R
n \ Ω. From the behaviour of V at infinity it follows

that V ≡ 0 on R
n \ Ω. Because of V ∈ C(Rn), see Lemma 1.3.1.

From the maximum principle we find that V ≡ 0 in Ω since 4V = 0 in
Ω and V = 0 on ∂Ω. Consequently the interior regular normal derivative
on ∂Ω is zero. Finally the jump relations, see Proposition 1.3.1, imply that
µ0(x) ≡ 0 on ∂Ω. 2

Proposition 1.4.3 and Fredholm’s theorems imply

Theorem 1.4.1. Let Ω be bounded and ∂Ω ∈ C2. Then there exists for
given Φ, Ψ ∈ C(∂Ω) a unique solution of the interior Dirichlet problem (Di)
and the exterior Neumann problem (Ne), respectively.3

Proof. N(I + λ0T ) = N(I + λ0T
∗) = {0}. 2

Proposition 1.4.4. Let Ω be bounded and ∂Ω ∈ C2. The number λ0 =
2/((n − 2)ωn) is a simple eigenvalue of (De)I to the eigenvector σ ≡ 1.

Proof. From, see Lemma 1.2.2,
∫

∂Ω

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy = −(n − 2)ωn

2

2In the case R
3 we have dSz =

√
EG − F 2du1du2, where E = zu1

· zu1
, G = zu2

· zu2
,

F = zu1
· zu2

and z(u) = x(u) + hν(x(u)).
3In this and in the following two theorems it is sufficient to assume that ∂Ω ∈ C

1,1 by
Rademacher’s Theorem: A Lipschitz continuous function is differentiable almost every-
where, see for example [5], pp. 280 or [6].
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we see that λ0 is an eigenvalue and σ ≡ 1 is an associated eigenvector. From
Fredholm’s theorems it follows that there exists at least one eigenfunction
µ0(x) to λ0 of (Ni)h. We will show that dim N(I + λ0 T ∗) = 1. Set

V (x) =

∫

∂Ω

µ0(y)

|x − y|n−2
dSy.

From the jump relations, see Proposition 1.3.1 and from the fact that µ0

is an eigenvector it follows that (∂V (x)/∂ν(x))i = 0. We obtain as in the
proof of Proposition 1.4.3 that V (x) = const. =: c0 in Ω. This constant is
different from zero. If not, then V = 0 on ∂Ω. Then the maximum principle
implies that V ≡ 0 in R

n \ Ω. We recall that V = O(|x|2−n) as |x| → ∞.
Consequently we have also (∂V (x)/∂ν(x))e = 0, which implies that µ0 = 0,
see the jump relations of Proposition 1.3.1.

Let µ1 be another eigenvector to λ0, then we can assume that µ1 ∈ C(∂Ω)
according to the regularity result Proposition 1.4.2. Set

V1(x) =

∫

∂Ω

µ1(y)

|x − y|n−2
dSy.

As above we conclude that V1(x) ≡ const. =: c1 in Ω, where c1 6= 0. The
linear combination µ2 := c1µ0 − c0µ1 is contained in the null space N(I +
λ0 T ∗). Set

V2(x) =

∫

∂Ω

µ2(y)

|x − y|n−2
dSy

= c1V0(x) − c0V1(x).

In Ω we have V2(x) = c1c0 − c0c1, and from the jump relations we find as
above that µ2(x) ≡ 0. Thus we have shown

µ1(x) =
c1

c0
µ0(x).

2

Then it follows from Fredholm’s theorems

Theorem 1.4.2. Let Ω be bounded and ∂Ω ∈ C2. Then there exists a
solution of (Ni) if and only if

∫

∂Ω
Ψ(y) dSy = 0.
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In fact, we obtain also the existence of a solution of (De)I under the as-
sumption that

∫

∂Ω
µ0(y)Φ(y) dSy = 0,

where µ0 is the eigenvector from above. It turns out that there is a solution of
the exterior Dirichlet problem without this restriction if we look for solutions
with a weaker decay at infinity. We make the ansatz of a sum of a double
layer and a single layer potential

u(x) =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy

+d

∫

∂Ω

µ0(y)

|x − y|n−2
dSy,

where d is a constant which we will determine later. The ansatz defines a
solution of the exterior Dirichlet problem if and only if

lim
y→x, y∈Rn\Ω

u(y) = φ(x),

where x ∈ ∂Ω. From a jump relation of Proposition 1.2.1 we see that the
unknown density σ must satisfy the integral equation

Φ(x) =

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy

+
(n − 2)ωn

2
σ(x) + d

∫

∂Ω

µ0(y)

|x − y|n−2
dSy.

Above we have shown that, if x ∈ ∂Ω,

∫

∂Ω

µ0(y)

|x − y|n−2
dSy = const. = c0

with a constant c0 6= 0. Thus we have to consider the integral equation

(n − 2)ωn

2
σ(x) +

∫

∂Ω
σ(y)

∂

∂ν(y)

(

1

|x − y|n−2

)

dSy = Φ(x) − dc0.

This equation has a solution if
∫

∂Ω
(Φ(x) − dc0)µ0(x) dSx = 0
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is satisfied. We can find an appropriate constant d such that this equation
is satisfied since

∫

∂Ω
µ0(x) dSx 6= 0.

This inequality is a consequence of a jump relation and of the fact that µ0

is an eigenvector:
(

∂V0(x)

∂ν(x)

)

e

= −(n − 2)ωn

2
µ0(x) +

∫

∂Ω
µ0(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy

0 =
(n − 2)ωn

2
µ0(x) +

∫

∂Ω
µ0(y)

∂

∂ν(x)

(

1

|x − y|n−2

)

dSy,

which implies that
(

∂V0(x)

∂ν(x)

)

e

= −(n − 2)ωnµ0(x).

Suppose that
∫

∂Ω
µ0(x) dSx = 0,

then
∫

∂Ω

(

∂V0(x)

∂ν(x)

)

e

dSx = 0,

which implies, see the proof of Proposition 1.4.3 for notations,
∫

BR\Ωh

|∇V0|2 dx =

∫

∂BR

V0(x)
∂V0(x)

∂ν(x)
dSx −

∫

∂Ωh

V0(z)
∂V0(z)

∂ν(z)
dSz.

Letting h → 0 and R → ∞, it follows V0 = const. in R
n \ Ω and V0 = c0

since V0(x) = const. = c0 on ∂Ω.
From the decay behaviour of V0 at infinity and since V ∈ C(Rn) we

find that V0 = 0 in R
n \ Ω. Thus we have c0 = 0, a contradiction to a

consideration above.

Thus we have shown

Theorem 1.4.3. Let Ω be bounded and ∂Ω ∈ C2. Then for given Φ ∈
C(∂Ω) there exists a unique solution u of (De) which the property u =
O(|x|2−n) as |x| → ∞.

Proof. It remains to show that the solution is unique. This follows from the
maximum principle. 2
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Remark. There is no uniqueness without the decay assumption. Let Ω =
BR(0) be a ball in R

3. Then u = 1/|x| and u = 1/R are two solutions of the
Laplace equation with the same boundary values on ∂Ω.

1.5 Volume potential

Set

Γ(x, y) = s(|x − y|),

where s(r) is the singularity function

s(r) :=

{

− 1
2π

ln r : n = 2
r2−n

(n−2)ωn
: n ≥ 3

We recall that ωn = |∂B1(0)|. Let Ω ∈ R
n a bounded and sufficiently

regular domain, then we define for given f the volume potential (or Newton
potential)

V (x) =

∫

Ω
Γ(x, y)f(y) dy.

If f is bounded in Ω and f ∈ C1(Ω), then V ∈ C2(Ω) and −4V = f in
Ω, see for example [17]. This result holds under the weaker assumption
that f is bounded and locally Hölder continuous in Ω, see Proposition 1.5.1.
In fact, also the second derivatives are Hölder continuous (with the same
Hölder exponent), see [10], for example.

Definition. Let f be a real function, defined in a fixed bounded neighbour-
hood D of x0 ∈ R

n. Then f is called Hölder continuous at x0 if there exists
a real number α, 0 < α ≤ 1, such that

[f ]α,x0
:= sup

x∈D\{x0}

|f(x) − f(x0)|
|x − x0|α

< ∞.

The constant [f ]α,x0
is called Hölder constant and α Hölder exponent.

The function f is said to be uniformly Hölder continuous with respect
to α in D if

[f ]α,D := sup
x,y∈D, x 6=y

|f(x) − f(y)|
|x − y|α < ∞,

and f is called locally Hölder continuous in a domain Ω if f is uniformly
Hölder continuous on compact subsets of Ω.
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In the following we will use the abbreviations Di = ∂/∂xi and Dij =
∂2/∂xi∂xj .

Proposition 1.5.1. (i) Let f be bounded and integrable over Ω. Then
V ∈ C1(Rn) and for any x ∈ Ω

DiV (x) =

∫

Ω
DiΓ(x, y)f(y) dy.

(ii) Let f be bounded and locally Hölder continuous in Ω with exponent 0 <
α ≤ 1. Then V ∈ C2(Ω), −4V = f in Ω, and for any x ∈ Ω

DijV (x) =

∫

Ω0

DijΓ(x, y)(f(y) − f(x)) dy (1.18)

−f(x)

∫

∂Ω0

DiΓ(x, y)(ν(y))j dSy,

where Ω0 ⊃ Ω is any domain for which the divergence theorem holds and f
is extended to vanish outside Ω.

Proof. See [10], Chapter 4. (i) Set for x ∈ R
n

v(x) =

∫

Ω
DiΓ(x, y)f(y) dy.

This function is well defined since |DiΓ| ≤ |x − y|1−n/ωn holds. We will
show that v = DiV and v ∈ C(Rn). Let η ∈ C1(R) be a fixed function
satisfying 0 ≤ η ≤ 1, 0 ≤ η′ ≤ 2, η(t) = 0 if t ≤ 1 and η(t) = 1 if t ≥ 2. For
a (small) ε > 0 set ηε = η(|x − y|/ε) and consider the regularized potential

Vε(x) =

∫

Ω
Γ(x, y)ηεf(y) dy.

Then Vε ∈ C1(Rn) and

v(x) − DiVε(x) =

∫

B2ε(x)
Di ((1 − ηε)Γ) f(y) dy.

We obtain

|v(x) − DiVε(x)| ≤ sup
Ω

|f |
∫

B2ε(x)
(|DiΓ| + 2|Γ|/ε) dy

≤ sup
Ω

|f |
{

4(1 + | ln(2ε)|)ε : n = 2
2nε/(n − 2) : n ≥ 3

.
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It follows that Vε and DiVε converge uniformly on compact subsets of R
n to

V and v, resp., as ε → 0. Consequently V ∈ C1(Rn) and DiV = v.

(ii) Set for x ∈ Ω

u(x) =

∫

Ω0

DijΓ(x, y)(f(y) − f(x)) dy

−f(x)

∫

∂Ω0

DiΓ(x, y)(ν(y))j dSy.

The right hand side is well-defined since f is locally Hölder continuous and
since |DijΓ| ≤ (1 + n)|x − y|n/ωn holds. Set v = DiV and define for ε > 0
the regularized function

vε(x) =

∫

Ω0

DiΓηεf(y) dy.

Then

Djvε =

∫

Ω0

Dj(DiΓηε)f(y) dy

=

∫

Ω0

Dj(DiΓηε)(f(y) − f(x)) dy

f(x)

∫

Ω0

Dj(DiΓηε) dy

=

∫

Ω0

Dj(DiΓηε)(f(y) − f(x)) dy

−f(x)

∫

∂Ω0

DiΓ(ν(y))j dSy,

provided ε > 0 is small enough such that ηε = 1 on ∂Ω0, see Figure 1.10.
Then

u(x) − Djvε(x) =

∫

B2ε(x)
Dj ((1 − ηε)DiΓ) (f(y) − f(x)) dy.

We suppose that 2ε < dist (x, ∂Ω) if x ∈ Ωc, Ωc ⊂⊂ Ω. Then

|u(x) − Djvε(x)| ≤ [f ]α,Ωc

∫

B2ε(x)
(|DijΓ| + 2|DiΓ|/ε) |x − y|α dy

≤ [f ]α,Ωc(4 + n/α)(2ε)α.
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Ω

δΩ

y

xc

0

δΩ

Figure 1.10: Proof of Proposition 1.5.1

It follows that V ∈ C2(Ω) and u = DijV since Divε converges to u uniformly
on compact subsets of Ω.

Set in formula (1.18) Ω0 = BR(x), R sufficiently large, then

4V = −f(x)

∫

∂BR(x)

n
∑

i=1

DiΓ(x, y)(ν(y))i dSy

= −f(x)
1

ωnRn−1

∫

∂BR(x)
ν(y) · ν(y) dSy

= −f(x).

2

From Proposition 1.5.1 and Theorem 1.4.1 we obtain

Theorem 1.5.1. Let Ω be a bounded domain with ∂Ω ∈ C2, f be bounded
and locally Hölder continuous in Ω and Φ ∈ C(∂Ω). Then there exists a
unique solution u ∈ C2(Ω) ∩ C(Ω) of the Dirichlet problem −4u = f in Ω,
u = Φ on ∂Ω.

Proof. Set u = V + w, where

V (x) =

∫

Ω
Γ(x, y)f(y) dy.
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Then u is a solution of the Dirichlet problem if and only if 4w = 0 in Ω and
w = Φ − V on ∂Ω. The existence of a w follows from Theorem 1.4.1. The
uniqueness of u is a consequence of the maximum principle. Moreover, w is
given by a dipole potential, see Theorem 1.4.1. 2
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1.6 Exercises

1. Let S be a surface in R
3 defined by z = f(x), x = (x1, x2), x ∈ U ,

where U is a neighbourhood of x = 0. Assume f ∈ C1,λ(U), f(0) =
0, ∇f(0) = 0. Consider the intersection I = S ∩ ∂Bρ0

(0), ρ0 > 0
sufficiently small, i. e.,

I = {(x, z) : z = f(x) and x2
1 + x2

2 + z2 = ρ2
0}.

Show that there is a function ε(ρ, φ), 0 < ρ ≤ ρ0, φ ∈ [0, 2π), 2π-
periodic in φ and in C1 with respect to φ, such that ε(ρ, φ) = O(ρλ)
as ρ → 0, uniformly in φ ∈ [0, 2π), and

x1 = ρ(1 + ε(ρ, φ)) cos φ

x2 = ρ(1 + ε(ρ, φ)) sin φ.

Hint: Implicit function theorem.

2. Let B2R(x0) ⊂ R
n be a ball with radius 2R and the center at x0. Show

that there is a function η ∈ C∞
0 (B2R(x0)) which satisfies 0 ≤ η ≤ 1 in

B2R(x0) and η ≡ 1 in BR(x0).

Hint: Set r = |x| and define

φ(r) = e−1/((3/(2R)−r)2−r2/4)

if R < r < 2R and set φ(r) = 0 if 0 < r < R or r ≥ 2R. Let

ψ(r) =

∫ r
0 φ(t) dt

∫ ∞
0 φ(t) dt

and χ(r) = 1−ψ(r). Show that η(x) = χ(|x−x0|) is a function which
satisfies the above properties.

3. Suppose that ∂Ω ∈ C1,λ and x ∈ ∂Ω. Show that

lim
ρ→0

∫

∂Ω\Bρ(x)

∂

∂ν(y)

(

1

|z − y|n−2

)

dSy = 0

Hint: Local coordinates and formula (1.7).
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4. Let Ω ⊂ R
n be a bounded and sufficiently regular domain and set

q(ζ) =

∫

Ω

A(ξ, ζ)

|ξ − ζ|n−λ
dξ,

where A is bounded in Ω × Ω and continuous if ξ 6= ζ and 0 < λ ≤ 1.
Show that q ∈ C(Ω).

Hint: Let η ∈ C(R) be a fixed function satisfying 0 ≤ η ≤ 1, η(t) = 0
if t ≤ 1 and η(t) = 1 if t ≥ 2. For (small) ε > 0 set ηε = η(|ζ − ξ|/ε).
Then consider the regularized function

qε(ζ) =

∫

Ω
ηε

A(ξ, ζ)

|ξ − ζ|n−λ
dξ

and prove that qε converges uniformly to q in Ω.

5. Show that

||K1w||L2(Dρ) ≤ cελ||w||L2(Dρ).

For the definition of K1 see the proof of Proposition 1.4.2.

6. Assume g ∈ C(Dρ). Prove that

(i) |K l
1g| ≤ (cελ)l maxDρ

|g(ζ)|.

(ii) K l
1g are continuous on Dρ.

(iii)
∑∞

l=1 K l
1g is uniformly convergent on Dρ, provided that ε > 0 is

small enough.

7. The solution u of the interior Dirichlet problem 4u = 0 in Ω and
u = Φ on ∂Ω, where Ω ⊂ R

2 and Φ ∈ C(∂Ω), is given by

u(x) = −
∫

∂Ω
σ(y)

∂

∂ν(y)
ln(|x − y|) dSy.

Here is σ(x), x ∈ ∂Ω, the solution of the integral equation

πσ(x) +

∫

∂Ω
σ(y)

∂

∂ν(y)
ln(|x − y|) dSy = −Φ.

Find the density σ if Ω is a disk BR(0).
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Hint: Show that
∂

∂ν(y)
ln(|x − y|) =

1

2R

if x, y ∈ ∂BR(0). This formula is a consequence of

∂

∂ν(y)
ln(|x − y|) =

1

|y − x|2 (y − x) · ν(y)

=
1

|y − x| cos β,

see Figure 1.11 for notations.

O

x

y

R

ν (y)
β

Figure 1.11: Notations to the exercise

8. Show that

Cα[a, b] := {u ∈ C[a, b] : ||u||α < ∞},

where −∞ < a < b < ∞ and 0 < α ≤ 1, defines a Banach space,
where

||u||α := max
x∈[a,b]

|u(x)| + sup
x,y∈[a,b],x 6=y

|u(x) − u(y)|
|x − y|α .

9. Show that C∞[a, b] is not dense in Cα[a, b], i. e., there is a u ∈ Cα[a, b]
such that no sequence un ∈ C∞[a, b] exists such that ||un − u||α tends
to zero.
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Hint: Consider u =
√

x and [a, b] = [0, 1]. We have
√

x ∈ C1/2[0, 1].
Assume

sup
x,y∈[a,b],x 6=y

|un(x) − u(x) − (un(y) − u(y))|
|x − y|α → 0

if n → ∞, where α = 1/2. Then

∣

∣

∣

∣

un0
(x) − un0

(0)√
x

− 1

∣

∣

∣

∣

≤ ε

for a given ε > 0 and an integer n0 = n0(ε).

10. Show that C∞
0 (a, b) is not dense in Cα[a, b].

Hint: Consider (a, b) = (−1, 1) and

u(x) =

{ √
x : 0 ≤ x ≤ 1
0 : −1 ≤ x ≤ 0

.



Chapter 2

Perron’s method

Perron’s method is a maximum principle based existence theory for second
order linear or quasilinear elliptic equations. In this chapter we consider the
Dirichlet problem for the Laplace equation 4u = 0 in Ω and u = Φ on ∂Ω,
where Ω ⊂ R

n is bounded and connected and Φ is a given function defined
on ∂Ω.

In contrast to many other existence theories the Perron method provides
results under rather weak assumptions on the boundary ∂Ω since the prob-
lem of existence is separated from the question of the boundary behaviour.

2.1 A maximum principle

We know that a harmonic function u must be a constant if u achieves its
supremum or infimum in a connected domain. This result is a consequence
of the mean value formula for harmonic functions, see [17], Chapter 7, for
example. Fortunately, there is a related principle for functions which satisfy
4u ≥ 0 or 4u ≤ 0 throughout in Ω.

Lemma 2.1.1 (Mean value theorems). Suppose that u ∈ C2(Ω) satisfies
4u = 0, 4u ≥ 0, 4u ≤ 0 in Ω, resp. Then for any ball B = BR(x) ⊂⊂ Ω

u(x) = (≤, ≥)
1

|∂B|

∫

∂B
u(y) dSy (2.1)

u(x) = (≤,≥)
1

|B|

∫

B
u(y) dy. (2.2)

47
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Proof. See [10], Chapter 2, for example. Let ρ ∈ (0, R) and Bρ = Bρ(x),
then

∫

Bρ

4u dy =

∫

∂Bρ

∂u

∂ν(y)
dSy

= (≥, ≤) 0,

respectively. Here is ν(y) the exterior unit normal at y on ∂Bρ.

Set r = |x − y|, ω = (y − x)/r, then u(y) = u(x + rω). Thus

∫

∂Bρ

∂u

∂ν(y)
dSy =

∫

∂Bρ

uyi
(x + ρω)ωi dSy

=

∫

∂Bρ

∂u(x + rω)

∂r

∣

∣

∣

∣

r=ρ

dSy

= ρn−1

∫

∂B1(0)

∂u(x + rω)

∂r

∣

∣

∣

∣

r=ρ

dω

= ρn−1 ∂

∂ρ

∫

∂B1(0)
u(x + ρω) dω

= ρn−1 ∂

∂ρ

(

ρ1−n

∫

∂Bρ

u(y) dSy

)

= (≥, ≤) 0.

Consequently for any ρ ∈ (0, R)

∂

∂ρ

(

ρ1−n

∫

∂Bρ

u(y) dSy

)

= (≥, ≤) 0.

It follows

ρ1−n

∫

∂Bρ

u(y) dSy = (≤, ≥) R1−n

∫

∂BR

u(y) dSy

or
1

|∂Bρ|

∫

∂Bρ

u(y) dSy = (≤, ≥)
1

|∂BR|

∫

∂BR

u(y) dSy.

Letting ρ → 0, we obtain

u(x) = (≤, ≥)
1

|∂BR|

∫

∂BR

u(y) dSy.
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Formula (2.2) follows from

ρn−1ωnu(x) = (≤, ≥)

∫

∂Bρ

u(y) dSy,

where 0 < ρ ≤ R. We recall that ωn = |∂B1(0)|. Integrating over (0, R), we
obtain

ωnRn

n
u(x) = (≤, ≥)

∫

BR

u(y) dy,

which is formula (2.2) since |BR| = Rn/(nωn). 2

As a consequence of Lemma 2.1.1 we get the following generalization of the
maximum principle for harmonic functions.

Theorem 2.1.1 (Strong maximum principle). Assume Ω ⊂ R
n is a con-

nected domain and u ∈ C2(Ω). Let 4u ≥ 0 (4u ≤ 0) in Ω and suppose
there exists a point y ∈ Ω for which u(y) = supΩ u (u(y) = infΩ u). Then u
is a constant.

Proof. Consider the case 4u ≥ 0 in Ω. Let x0 ∈ Ω such that

M := u(x0) = sup
x∈Ω

u(x).

Set Ω1 = {x ∈ Ω : u(x) = M} and Ω2 = {x ∈ Ω : u(x) < M}. The set
Ω1 is not empty and the set Ω2 is open since u ∈ C(Ω). Consequently Ω2

is empty if we can show that Ω1 is an open set. Let y ∈ Ω1, then there is a
ρ0 > 0 such that Bρ0

(y) ⊂ Ω and u(x) = M for all x ∈ Bρ0
(y). If not, then

there are ρ > 0, z ∈ Ω such that |z − y| = ρ, 0 < ρ < ρ0 and u(z) < M .
From Lemma 2.1.1 we have

M ≤ 1

ωnρn−1

∫

∂Bρ(y)
u(x) dSx

<
M

ωnρn−1

∫

∂Bρ(y)
u(x) dS = M,

which is a contradiction. 2

Corollary. Assume Ω is connected and bounded and u ∈ C2(Ω) ∩ C(Ω)
satisfies 4u ≥ 0 (4u ≤ 0) in Ω. Then u achieves its maximum (minimum)
on the boundary ∂Ω.
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Corollary. Assume Ω is connected and bounded and v, w ∈ C2(Ω) ∩ C(Ω)
satisfy 4v ≥ 4w in Ω and v ≤ w on ∂Ω. Then v ≤ w in Ω.

Proof. Exercise.

2.2 Subharmonic, superharmonic functions

Sometimes a function u ∈ C2(Ω) is called subharmonic (superharmonic) in
a domain Ω ∈ R

n if 4u ≥ 0 (4u ≤ 0) in Ω. It turns out that we can define
superharmonic and subharmonic functions if u merely is in C(Ω).

Definition. A function u ∈ C(Ω) is called subharmonic (superharmonic)
in Ω if for every ball B ⊂⊂ Ω and every function h harmonic in B, i. e.,
h ∈ C2(B) ∩ C(B) and 4h = 0 in B, satisfying u ≤ h (u ≥ h) on ∂B we
have u ≤ h (u ≥ h) in B.

Corollary. A harmonic function in Ω is both a superharmonic and a sub-
harmonic function. In particular, constants are super- and subharmonic.

Remark. A function u in the class C2(Ω) is subharmonic (superharmonic)
if 4(u− h) ≥ 0 (4(u− h) ≤ 0) in B for any harmonic function h in B such
that u ≤ h (u ≥ h) on ∂B.

Lemma 2.2.1 (Strong maximum principle). Assume Ω is connected. If a
subharmonic function u attends its supremum in Ω, then u ≡ const. in Ω,
and if a superharmonic function attends its infimum in Ω, then u = const.
in Ω.

Proof. Consider the case of a subharmonic function. Let x0 ∈ Ω and

M := u(x0) = sup
Ω

u(x).

We will show that
Ω1 = {x ∈ Ω : u(x) = M}

is an open set. It is not empty since x0 ∈ Ω1. Let x1 ∈ Ω1, then Bρ0
(x1) ⊂

Ω1 if ρ0 > 0 is sufficiently small such that Bρ0
(x1) ⊂ Ω. If not, then there

is a ρ, 0 < ρ ≤ ρ0 and an x2 ∈ ∂Bρ(x
1) such that u(x2) < M . Consider

a function h harmonic in B = Bρ(x
1) and h = u on ∂B. Then, since h is

harmonic in B and u is subharmonic in Ω,

M ≥ max
∂B

u = max
∂B

h ≥ h(x) ≥ u(x),
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where x ∈ B. Consequently h(x1) = M since u(x1) = M . Thus h = const.
in B since the harmonic function h attends its maximum in B. Since h(x) =
u(x) on ∂Ω we have u(x) = M for all x ∈ ∂B, a contradiction to u(x2) < M .
2

The following lemma is a generalization of the comparison principle for
u, v ∈ C2(Ω)∩C(Ω) which says that 4v ≤ 4u in Ω and v ≥ u on ∂Ω imply
that either v > u throughout Ω or v ≡ u.

Lemma 2.2.2. Suppose that Ω is bounded and connected. Let u ∈ C(Ω) be
a subharmonic and v ∈ C(Ω) a superharmonic function with u − v ≤ 01 on
∂Ω. Then either v > u throughout Ω or v ≡ u.

Proof. We will show that u− v ≡ const. in Ω if u− v attends a nonnegative
supremum in Ω. Let x0 ∈ Ω such that

M := sup
Ω

(u − v) = (u − v)(x0) ≥ 0.

Set Ω1 = {x ∈ Ω : (u − v)(x) = M}. This set is not empty since x0 ∈ Ω1.
We will show that Ω1 is an open set. Let x1 ∈ Ω1 and consider a ball
Bρ0

(x1) ⊂⊂ Ω. Then Bρ0
(x1) ∈ Ω1. If not, then there is a ball B = Bρ(x

1),
0 < ρ ≤ ρ0, and an x2 ∈ ∂B such that (u−v)(x2) < M . Let h1, h2 harmonic
in B with h1 = u on ∂B and h2 = v on ∂B. Then, if x ∈ B,

M ≥ max
∂B

(u − v) = max
∂B

(h1 − h2)

≥ h1(x) − h2(x) ≥ u(x) − v(x).

Set x = x1, then by assumption u(x1) − v(x1) = M which implies that
the harmonic function h1 − h2 attends its maximum in B. Consequently
h1−h2 = const. in B. Thus u(x)−v(x) = M on ∂B which is a contradiction
to u(x2) < M . We have seen that u − v ≡ M ≥ 0 in Ω. Finally the
assumption u − v ≤ 0 on ∂Ω implies u(x) ≡ v(x) in Ω. 2

Let u be subharmonic in Ω, B ⊂⊂ Ω a ball and u harmonic in B such that
u = u on ∂B.

1Here u − v ≤ 0 on ∂Ω means that

lim sup
y→x, y∈Ω, x∈∂Ω

(u − v) ≤ 0
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Definition. The function

U(x) =

{

u : x ∈ B

u(x) : x ∈ Ω \ B

is called harmonic lifting of u in B.

Lemma 2.2.3. U is subharmonic in Ω.

Proof. Let B′ ⊂⊂ Ω and h harmonic in B′ with h ≥ U on ∂B′. We have to
show that h ≥ U in B′. For some of the following notations see Figure 2.1.
On C1 = ∂B′ \ B we have h ≥ U ≡ u. On C3 = ∂B′ ∩ B it is, according to

B’

h>U

C

U=u

h>U
B

u=U

U>u

C

u=u

u=u=U

U=u

3

2

C1

Figure 2.1: Proof of Lemma 2.2.3

the definition of u, h ≥ U = u ≥ u. Combining these inequalities, we find
that h ≥ u on ∂B′ which implies that h ≥ u in B′. Then

U ≤ h in B′ \ B (2.3)

since U ≡ u in B′ \ B. It remains to show that also U ≤ h in B′ ∩ B. On
∂(B′ ∩ B) we have h ≥ U , see (2.3) and assumption h ≥ U on B′. Since
U ≡ u in B ∩ B′ and h is harmonic in B′ it follows h ≥ U in B ∩ B′. 2

Lemma 2.2.4. Let u1, u2, . . . , uN be subharmonic in Ω. Then

u(x) := max{u1(x), . . . , uN (x)}
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is also subharmonic in Ω, and if u1, . . . , uN are superharmonic, then u(x) :=
min{u1(x), . . . , uN (x)} is superharmonic in Ω.

Proof. Exercise.

Definition. Let Ω be bounded and φ a bounded function on ∂Ω. A subhar-
monic function u ∈ C(Ω) is called subfunction with respect to φ if u ≤ φ on
∂Ω, and a superharmonic function u ∈ C(Ω) is called a superfunction with
respect to φ if u ≥ φ on ∂Ω.

Here u ≤ φ on ∂Ω means that

lim sup
y→x, y∈Ω, x∈∂Ω

u(y) ≤ φ(x).

Lemma 2.2.5. Suppose u is a subfunction and u a superfunction with
respect to φ. Then u ≤ u in Ω.

Proof. Lemma 2.2.2 and

lim sup
y→x, y∈Ω, x∈∂Ω

(u(y) − u(y)) = lim sup
y→x, y∈Ω, x∈∂Ω

(u(y) − φ(x) + φ(x) − u(y))

≤ lim sup
y→x, y∈Ω, x∈∂Ω

(u(y) − φ(x))

+ lim sup
y→x, y∈Ω, x∈∂Ω

(φ(x) − u(y))

≤ 0.

2

Remark. The set of subfunctions with respect to φ and the set of super-
functions with respect to φ are not empty since constants ≤ inf∂Ω φ are
subfunctions and constants ≥ sup∂Ω φ are superfunctions.

Set
Sφ = {v ∈ C(Ω) subharmonic in Ω : v ≤ φ on ∂Ω}.

Theorem 2.2.1 (Perron, [19]). The function

u(x) := sup
v∈Sφ

v(x)

is harmonic in Ω.
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Proof. (i) We have in Ω that

inf
∂Ω

φ ≤ u(x) ≤ sup
∂Ω

φ.

To show this inequality, let v ∈ Sφ, then v(x) ≤ φ(x) ≤ sup∂Ω φ on ∂Ω.
Since the constant sup∂Ω φ is a superfunction with respect to φ and v is a
subfunction with respect to φ we obtain from Lemma 2.2.5 the inequality
v(x) ≤ sup∂Ω φ, x ∈ Ω. Consequently u(x) ≤ sup∂Ω φ, x ∈ Ω. The other
side of the above inequality follows since the constant inf∂Ω φ is an element
of Sφ.

(ii) Let y ∈ Ω be fixed. Then there is a sequence vn ∈ Sφ with limn→∞ vn(y) =
u(y). Let B = BR(y) ⊂⊂ Ω, R sufficiently small, and let Vn be the harmonic
lifting of vn in B. Then

Vn ∈ Sφ, (2.4)

and
lim

n→∞
Vn(y) = u(y). (2.5)

Proof of (2.4): That Vn is subharmonic is the assertion of Lemma 2.2.3.
Since Vn = vn on ∂B, we have Vn ≤ φ on ∂B.
Proof of (2.5): We have

vn(y) ≤ Vn(y)

since vn = Vn on ∂B, Vn is harmonic in B and vn is superharmonic. Then

u(y) ≤ lim inf
n→∞

Vn(y).

On the other hand, since Vn ∈ Sφ, we have

Vn(y) ≤ sup
v∈Sφ

v(y) = u(y),

which implies that
lim sup

n→∞
Vn(y) ≤ u(y).

(iii) For every function h harmonic in B we have,

sup
Bρ(y)

|Dαh| ≤ C(ρ, R, α, n) sup
BR(y)

|h|, (2.6)

where 0 < ρ < R and the constant C is finite. This inequality is a conse-
quence of Poisson’s formula for the solution of the Dirichlet problem in a
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ball, see [13, 10, 17], for example. Consequently for each fixed ρ, 0 ≤ ρ ≤ R
there exists a subsequence Vnk

which converges uniformly in Bρ(y) to a
harmonic function v. It follows that there is a subsequence of Vn, denoted
also by Vnk

, which converges uniformly on compact subsets of BR(0) to a
function v harmonic in BR(0). We have

v(x) ≤ u(x), x ∈ BR(y) (2.7)

since Vnk
(x) ≤ u(x) on BR(y), see the definition of u(x). At the center y it

is, see (2.5),
v(y) = u(y). (2.8)

(iv) Claim: v(x) = u(x), x ∈ B.
Proof: If not, then there is a z ∈ B such that v(z) < u(z). Then there exists
an u0 ∈ Sφ with v(z) < u0(z). Set

wk(x) := max(u0(x), Vnk
(x)).

Let Wk be the harmonic lifting of wk in B. A subsequence of Wk converges
uniformly on each compact subset of B to a function w harmonic in B such
that

v(x) ≤ w(x) ≤ u(x), x ∈ B = BR(y). (2.9)

These inequalities follow since wnk
(x) ≤ Wnk

(x), wnk
(x) ≥ Vnk

(x) and
Wnk

(x) ≤ u(x), where x ∈ B.
Combining equation (2.8) and inequalities (2.9) we obtain

v(y) = w(y) = u(y). (2.10)

Thus the harmonic function v −w is less or equal zero in B and zero in the
interior point y ∈ B. The strong maximum principle implies that

v(x) = w(x), x ∈ B. (2.11)

According to the assumption we have for a z ∈ B

v(z) < u0(z).

On the other hand, see the definition of wn and Wn, if x ∈ B then

u0(x) ≤ wnk
(x) ≤ Wnk

(x),

which implies that
u0(x) ≤ w(x), x ∈ B.
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Summarizing, we have for the particular z under consideration the inequal-
ities

v(z) < u0(z) ≤ w(z),

which is a contradiction to (2.11). 2

2.3 Boundary behaviour

One of the advantages of Perron’s method is that the boundary behaviour
of solutions is separated from the existence problem.

Definition. A C(Ω)-function w = wξ is called a barrier at ξ ∈ ∂Ω relative
to Ω if

(i) w is superharmonic in Ω,

(ii) w > 0 in Ω \ {ξ} and w(ξ) = 0.

w is called a local barrier at ξ ∈ ∂Ω if there is a neighbourhood N of ξ such
that w satisfies (i) and (ii) in Ω ∩N instead in Ω.

Let w be a local barrier at ξ ∈ ∂Ω, then we can define a barrier at ξ ∈ ∂Ω
relative to Ω as follows. Let B = BR(ξ), R > 0 sufficiently small such that
B ⊂⊂ N , see Figure 2.2. Set

.
ξ

B

N

Ω

Γ

Figure 2.2: Definition of a local barrier

m = inf
N\B

w
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. We have m > 0, see assumption (ii) in the above definition.

Lemma 2.2.6. The function

w0(x) =

{

min(m, w(x)) : x ∈ Ω ∩ B

m : x ∈ Ω \ B

is a barrier at ξ relative to ∂Ω.

Proof. The property w0 ∈ C(Ω) follows since w0 = m on Γ = ∂B ∩ Ω. If
not, then there is an x0 ∈ Γ with w(x0) < m, which is a contradiction to
the definition of m. Now we will show that w0 is superharmonic in Ω. This
follows since

w0(x) =

{

w1 : x ∈ Ω ∩ B

w2 : x ∈ Ω \ B
,

where w1(x) = min(m, w(x)), w2 = m and w1, w2 are superharmonic in
Ω ∩ B and Ω \ B, respectively, and since w1 = w2 on Γ. To show this,
consider a ball B′ ⊂⊂ Ω located as shown in Figure 2.3. Let h be harmonic

.
ξ

Ω

B

B´

w  =m
0

Figure 2.3: A local barrier defines a barrier

in B′ with h ≤ w0 on ∂B′. We have to show that h ≤ w0 in B′. Since
w0 ≤ m on ∂1B

′ = ∂B′ ∩ B and w0 = m on ∂2B
′ = ∂B′ \ ∂1B

′, we have
w0 ≤ m on ∂B′. Thus the assumption h ≤ w0 on ∂B′ implies that h ≤ m
on ∂B′. In particular h ≤ w0 in B′ \ B since w0 = m on B′ \ B. Finally we
have h ≤ w0 in B ∩ B′ since h ≤ w0 on B′ ∩ ∂B and on B ∩ ∂B′. We recall
that w0 = w1 in Ω∩B and w1 is superharmonic in Ω∩B, see Lemma 2.2.4.
2

Definition. A boundary point is called regular if there exists a barrier at
that point.
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Lemma 2.2.7. Let u be a harmonic function defined in Ω by the Perron
method with boundary data φ. If ξ is a regular point af ∂Ω and if φ is
continuous at ξ, then

lim
x→ξ,x∈Ω

u(x) = φ(ξ).

Proof. Fix ε > 0. Then there is a δ = δ(ε) > 0 such that |φ(x) − φ(ξ)| < ε
for all x ∈ ∂Ω satisfying |x − ξ| < δ. Set M = sup∂Ω |φ|. Let w be a barrier
at ξ. Then there is a k = k(ε) > 0 such that kw(x) > 2M if |x − ξ| ≥ δ.

Step 1. We will show that φ(ξ) + ε + kw(x) is a superfunction relative to φ.
We recall that w ∈ C(Ω), w is superharmonic in Ω, w > 0 in Ω \ {ξ} and
w(ξ) = 0. Then

φ(ξ) + ε + kw(x) ≥ φ(x)

on ∂Ω, since for x ∈ ∂Ω with |x − ξ| ≥ δ we have

φ(ξ) + ε + kw(x) ≥ φ(ξ) + ε + 2M

≥ φ(x),

and for x ∈ ∂Ω with |x − ξ| < δ we have

φ(x) − φ(ξ)| ≤ ε

since |φ(x) − φ(ξ)| ≤ ε if x ∈ ∂Ω ∩ Bδ(ξ) and kw(x) ≥ 0.

Step 2. Since

u(x) = sup
v∈Sφ

v(x)

and φ(ξ) − ε − kw(x) is a subfunction relative to φ, we have

φ(ξ) − ε − kw(x) ≤ u(x)

in Ω. The function φ(ξ) + ε + kw(x) is a superfunction relative to φ, see
Step 1. Concequently,

v(x) ≤ φ(ξ) + ε + kw(x)

for all v ∈ Sφ, see Lemma 2.2.5. This inequality implies that

u(x) ≤ φ(ξ) + ε + kw(x).
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Summarizing, we get

|u(x) − φ(ξ)| ≤ ε + kw(x).

Since limx→ξ,x∈Ω w(x) = 0, we obtain finally

lim
x→ξ,x∈Ω

u(x) = φ(ξ).

2

Theorem 2.2.2. Let Ω ⊂ R
n be bounded and connected. Then the Dirichlet

problem 4u = 0 in Ω, u = φ on ∂Ω, where φ ∈ C(∂Ω) is given, is solvable
if and only if the boundary points are all regular.

Proof. (i) Assume all points of ∂Ω are regular points. Then the assertion
follows from previous Lemma 2.2.7.
(ii) Assume the Dirichlet problem is solvable for all continuous φ ∈ C(∂Ω).
Set φ(x) := |x − ξ| and consider the Dirichlet problem with the boundary
condition u(x) = φ(x) on ∂Ω. Let uξ(x) be the solution, then uξ(x) is a
barrier at ξ. Consequently all boundary points are regular.

2

2.3.1 Examples for local barriers

Slit domains in R
2

Let Ω ⊂ R
2 with a slit along the negative x−axis at x = 0 as indicated in

Figure 2.4. Let Ln z := ln |z| + iφ, −π < φ ≤ π, be a branch of ln z. Then

Ω

x

x

1

2

Figure 2.4: A slit domain
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w := −Re

(

1

Lnz

)

= − ln r

ln2 r + φ2

is a local barrier at ξ = 0. Here w(0) is defined as the limit w(0) :=
limz→0,z∈Ω w(z). We have w(0) = 0 and w(x) > 0 in Ω ∩ BR(0). For higher
dimensions there are counterexamples. One of them was given by Lebesgue,
see [4], Part II, p. 272, for example, which shows that sufficiently sharp
cusps are not regular at the tip of the cusp, see Figure 2.5.

Ω

Figure 2.5: A cusp boundary point

Exterior sphere condition

We say that Ω satisfies the exterior sphere condition at ξ ∈ ∂Ω if there is a
sphere BR(y) ⊂ R

n \ Ω such that BR(y) ∩ Ω = {ξ}, see Figure 2.6. Let Ω

Ω

Figure 2.6: Exterior sphere condition

satisfies the exterior sphere condition at ξ ∈ ∂Ω, then

w(x) =

{

R2−n − |x − y|2−n : n ≥ 3

ln
(

|x−y|
R

)

: n = 2

is a local barrier at ξ.
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Exterior cone condition

We say that Ω satisfies an exterior cone condition at ξ ∈ ∂Ω if there is
a finite circular cone C with the vertex at ξ such that K ∩ Ω = {ξ}, see
Figure 2.7. Let ξ be the origin and assume the exterior cone property is

Ω

Figure 2.7: Exterior cone condition

satisfied at ξ ∈ ∂Ω. Then we can find a positive constant λ and a positive
function f(θ), where θ is the polar angle, such that

w = rλf(θ),

r = |x|, is a local barrier at ξ.

Two-dimensional domains. Here we find λ and f(θ) as follows. Let

C ⊂ {(r, θ) : r > 0, −α < θ < α},

see Figure 2.8 Introducing polar coordinates (r, θ), where

x1 = r sin θ, x2 = r cos θ,

we have

w(x) = W (r, θ) := w(r cos θ, r sin θ)

4w =
1

r

∂

∂r
(rWr) +

1

r2
Wθθ.

Consider the ansatz
W (r, θ) = rλ cos(µθ),

where λ and µ are positive constants, then

4w = rλ−2(λ2 − µ2) cos(µθ).
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Ω

θ

x

x

1

C

2

Figure 2.8: Local barrier, R
2

Consequently 4w ≤ 0 on C if λ ≤ µ and |µθ| ≤ π/2 for all θ satisfying
α < θ < 2π − α (0 < α < π/2).

Then w > 0 if r > 0 and α < θ < 2π − α. Thus w is a local barrier at
the origin if we choose λ = µ with a sufficiently small positive µ.

Higher dimensional case. Let M ⊂ ∂B1(O) be the manifold as indicated in
Figure 2.9. Consider the eigenvalue problem

−4′v = ν2v in M
v = 0 on ∂M,

where 4′ is the Laplace-Beltrami differential operator on the unit sphere.
We recall that in the two-dimensional case

4′ =
∂2

∂θ2

and in the three-dimensional case

4′ =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2

∂2

∂φ2
.

For the definition of the Laplace-Beltrami operator see for example [2]
and for n-dimensional polar coordinates see [7], Part III, pp. 395, for exam-
ple.
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Ω

θ

xn

0
M

Figure 2.9: Local barrier, R
n

Let ν1 be the first eigenvalue of the above eigenvalue problem. It is known
that ν1 is positive, a simple eigenvalue and the associated eigenfunction v1

has no zero in M. Thus, we can assume that v1 > 0 in M. Set

W = Arκv1 ≡ w(x)

where A and κ are positive constants. Then w > 0 in R
n \ C and

4w = Arκ−2v1 (κ(κ − 1) + (n − 1)κ − α1) ,

where

α1 = −n − 2

2
+

√

(

n − 2

2

)2

+ ν2
1 .

Consequently we have 4w ≤ 0 in R
n\C, provided κ > 0 is sufficiently small.

2.4 Generalizations

Perron’s method can be applied to the Dirichlet problem for a more general
class of linear elliptic equations of second order, see for example [10], pp. 102.
The previous discussion in the case of the Laplace equation showes that we
need a strong maximum principle, the existence of solutions of the Dirichlet
problem on a ball with continuous boundary data and some estimates for
the derivatives. Then we are able to prove the existence of a solution of
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the equation in the given domain. The problem of the boundary behaviour
requires an additional discussion.
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2.5 Exercises

1. Let Ω ⊂ R
n be a connected domain. Consider the eigenvalue problem

−4u = λu in Ω

u = 0 on ∂Ω.

Suppose λ0 ≥ 0 is an eigenvalue and u0 ∈ C2(Ω)∩C(Ω) an associated
eigenfunction satisfying u0(x) ≥ 0 in Ω. Show that u0(x) > 0 in Ω.

2. Prove the second corollary to Theorem 2.1.1.

3. Prove Lemma 2.2.4.
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Chapter 3

Maximum principles

Maximum principles provide powerful tools for linear and nonlinear elliptic
equations of second order. We consider linear equations.

3.1 Basic maximum principles

Set

Mu =
n

∑

i,j=1

aij(x)Diju +
n

∑

i=1

bi(x)Diu

Lu = Mu + c(x)u,

where ai,j , bi and c are real and defined on a simply connected domain
Ω ⊂ R

n. We assume aij = aji. Let λ(x) be the minimum of the eigenvalues
of the symmetric matrix defined by the coefficients aij and let Λ(x) be the
maximum of these eigenvalues.

Definition. L is called elliptic in Ω if λ(x) > 0 in Ω. L is said to be strictly
elliptic in Ω if λ(x) ≥ λ0 > 0 in Ω, where λ0 is a constant. An elliptic L is
called uniformly elliptic if Λ/λ is bounded in Ω.

In the following we suppose that L is at least elliptic and for each i

sup
x∈Ω

|bi(x)|
λ(x)

< ∞. (3.1)

Theorem 3.1.1 (Weak maximum principle). Let L be elliptic in the bounded
domain Ω. Assume a function u ∈ C2(Ω)∩C(Ω) satisfies Mu ≥ 0 (Mu ≤ 0)
in Ω. Then the supremum (infimum) of u on Ω is achieved on ∂Ω.

67
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Proof. Assume initially that Mu > 0 in Ω. Then u cannot achieves an inte-
rior maximum since ∇u(x0) = 0 at this point where u achives its maximum,
and since the matrix D2u(x0) = [Diju(x0)] is nonpositive (necessary condi-
tion of second order). It follows that, see an exercice in [17], for example,

Mu(x0) =
n

∑

i,j=1

aij(x0)Diju(x0) ≤ 0

since the matrix [aij(x0)] is nonnegative (even positive) by assumption. This
inequality is a contradiction to our assumption.

For a positive sufficiently large constant γ we calculate

Meγx1 = (γ2a11 + γb1)e
γx1

≥ λ(γ2 − γc1)e
γx1 > 0.

We recall that a11 ≥ λ and |b1|/λ ≤ c1, where c1 is a positive constant, see
assumption (3.1). Consequently for any ε > 0 we have in Ω

M (u + εeγx1) > 0.

Using the above result, we conclude that

sup
Ω

(u + εeγx1) = sup
∂Ω

(u + εeγx1) .

Letting ε → 0, we obtain
sup
Ω

u = sup
∂Ω

u.

2

The next theorem is the strong maximum principle. It follows from the
boundary point lemma due to E. Hopf [11]. The proof of this lemma needs
the previous weak maximum principle. The strong maximum principle is
the essential tool to show existence of a solution of the Dirichlet problem
via Perron’s method.

Lemma 3.1.1 (E. Hopf, 1952). Let L be uniformly elliptic. Assume u ∈
C2(Ω) satisfies Mu ≥ 0 in Ω. Let x0 ∈ ∂Ω and suppose that
(i) u is continuous at x0,
(ii) u(x0) > u(x) for all x ∈ Ω ∩ Ba(x0) for an a > 0,
(iii) ∂Ω satisfies the interior sphere condition at x0.
Then the outer normal derivative of u at x0, if it exists, satisfies

∂u

∂ν
(x0) > 0.
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Proof. Let B = BR(y) be the ball related to the interior sphere condition,
see Figure 3.1. Consider the function

.

.

.

x

x

y

B
R

(y)

ν

ρ

0

Figure 3.1: Proof of Hopf’s boundary point lemma

v(x) = e−αr2 − e−αR2

,

where r = |x − y| > ρ and α is a positive constant which we will determine
later. A calculation leads to

Mv = e−αr2
(

4α2
n

∑

i,j=1

aij(xi − yi)(xj − yj)

−2α
(

n
∑

i=1

aii +
n

∑

i=1

bi(xi − yi)
)

)

≥ e−αr2
(

4α2λ(x)r2 − 2α
(

n
∑

i=1

aii + |b|r
)

)

,

where b = (b1, . . . , bn). Since by assumption aii/λ and |b|/λ are bounded,
we may choose α large enough such that Mv ≥ 0 in the annular domain
A := BR(y) \ Bρ(y). Since u(x) − u(x0) < 0 on ∂Bρ(y) there is a constant
ε > 0 such that u(x) − u(x0) + εv(x) ≤ 0 on ∂Bρ(y). This inequality is
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also satisfied on ∂BR(y) by assumption on u and since v = 0 on ∂BR(y).
We have M

(

u(x)− u(x0) + εv(x)
)

= Mu + εMv. Then the weak maximum
principle implies that u − u(x0) + εv ≤ 0 in A. Thus

u(x0) − u(x) ≥ −ε
(

v(x0) − v(x)
)

,

where x ∈ A and on the line defined by x0 and ν. It follows

∂u

∂ν
(x0) ≥ −εV ′(R),

provided the normal derivative exists. Here is

V (r) = e−αr2 − e−αR2

.

2

Remark. If the normal derivative does not exist, then

lim inf
x→x0

u(x0) − u(x)

|x0 − x| > 0,

where the angle between x0−x and the exterior normal ν is less then (π/2)−δ
for a fixed δ > 0.

Corollary. Suppose that ∂Ω satisfies the interior sphere condition at x0 ∈
∂Ω, u ∈ C2(Ω)∩C(Ω) satisfies Lu ≥ 0 and u(x0) > u(x) in Ω∩U , where U
is a neighbourhood of x0. If additionally c ≤ 0 in Ω ∩ U and u(x0) > 0 then
∂u/∂ν(x0) > 0, provided the normal derivative exists.

Proof. Mu = Lu − cu ≥ 0 in Ω ∩ V, where V is a neighbourhood of x0. 2

In generalization to the strong maximum principle for 4 we have

Theorem 3.1.2 (Strong maximum principle). Let L be uniformly elliptic.
Assume u ∈ C2(Ω)∩C(Ω) satisfies Mu ≥ 0 (Mu ≤ 0) in a connected domain
Ω, not necessarily bounded. Then if u achieves its supremum (infimum) in
the interior of Ω, u is a constant.

Proof. Consider the case of a maximum. Assume u is not constant and
achieves its maximum m in the interior of Ω. Set Ω1 = {x ∈ Ω : u(x) = m}
and Ω2 = {x ∈ Ω : u(x) < m}. By assumption Ω1 is not empty. We will
show that Ω1 is open. Then Ω2 = ∅ since we suppose that Ω is connected.
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Let x1 ∈ Ω1. Consider a ball B = B2ρ0
(x1) ⊂⊂ Ω. If Ω1 is not open, then

there is an x2 ∈ Bρ0
(x1) such that u(x2) < m. Consequently there is a ball

Bρ(x
2), where 0 < ρ ≤ |x2 − x1|, and u(x) < m in Bρ(x

2) and there is an
x3 ∈ ∂Bρ(x

2) such that u(x3) = m. See Figure 3.2 for notations. Hopf’s

.

..

2

x

x

x
3

2

1
ρ

0

ρ
0

Figure 3.2: Proof of the strong maximum principle

lemma says that (∂u/∂ν) (x3) > 0, where ν is the exterior normal derivative
on x3 ∈ ∂Bρ(x

2) at u(x3) which is a contradiction to the fact that u attends
an interior maximum at x3. 2

In many cases the assumption c ≡ 0 in Ω is not satisfied. If c(x) ≤ 0 in
Ω, then we have the following corollary to the previous theorem. If c(x) is
positive on a subset of Ω, then the situation is more complicated. In this
case one studies an associated eigenvalue problem.

Corollary. Let Ω be a connected domain, not necessarily bounded. Suppose
L is uniformly elliptic and c(x) ≤ 0 in Ω. Assume u ∈ C2(Ω)∩C(Ω) satisfies
Lu ≥ 0 (Lu ≤ 0). If u achieves its positive supremum (negative infimum)
in the interior of Ω then u is a constant.

Proof. Consider the case of a maximum. Set m = supΩ u(x) and Ω1 = {x ∈
Ω : u(x) = m}, Ω2 = {x ∈ Ω : u(x) < m}. By assumption Ω1 is not empty.
We show that Ω1 is an open set. Let x1 ∈ Ω1. Then there is ball Bρ(x

1) ⊂ Ω
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where u is nonnegative. Thus

Mu ≡ Lu − c(x)u ≥ 0

in Bρ(x
1). The above strong maximum principle (Theorem 3.1.2) says that

u(x) = m for all x ∈ Bρ(x
1).

2

From this corollary follows a result important for many applications:

Theorem 3.1.3 (Comparison principle). Let Ω be a bounded and connected
domain. Suppose that L is uniformly elliptic and c(x) ≤ 0 in Ω. Assume
u, v ∈ C2(Ω) ∩ C(Ω) and satisfy Lu ≥ Lv in Ω and u ≤ v on ∂Ω. Then
u ≤ v in Ω.

Proof. Set w = u−v. Then Lw ≥ 0 in Ω and w ≤ 0 on ∂Ω. From the above
corollary we see that w can not achieve a positive maximum in Ω. 2

3.1.1 Directional derivative boundary value problem

As an application of the previous corollary we consider a generalization of
the Neumann problem. Let Ω ⊂ R

n be a bounded and connected domain,
and assume ∂Ω is sufficiently smooth. Consider

Lu = f, in Ω (3.2)

∂u

∂α
= φ on ∂Ω, (3.3)

where f, φ are given and sufficiently regular, and the direction α is not
tangential on ∂Ω at each point of ∂Ω, see Figure 3.3.

ν

x
0

α

t

Figure 3.3: Directional derivative boundary value problem

Proposition 3.1.1. Suppose that c ≤ 0 in Ω and let u1, u2 ∈ C2(Ω)∩ C1(Ω)
are solutions of (3.2), (3.3). Then u1 − u2 ≡ const. in Ω.
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Proof. Set u = u1 − u2, then Lu = 0 in Ω and ∂u/∂α = 0 on ∂Ω. Suppose
that u is not constant, then we can assume maxΩ u > 0. This maximum
is achieved at x0 ∈ ∂Ω and u(x0) > u(x) for all x ∈ Ω, see the corollary
to the strong maximum principle. For the tangential derivative we have
(∂u/∂t)(x0) = 0, and the assumption implies that (∂u/∂α)(x0) = 0. Thus

(∂u/∂ν)(x0) = a(x0)(∂u/∂t)(x0) + b(x0)(∂u/∂α)(x0)

= 0,

which is a contradiction to the corollary to the Hopf boundary point lemma
which says that ∂u/∂ν > 0 at x0. 2

3.1.2 Behaviour near a corner

Set Lu =
∑2

i,j=1 aij(x)uxixj
and consider the Dirichlet problem

Lu = f in Ω (3.4)

u = 0 on ∂Ω, (3.5)

where f is given. Suppose that the boundary of Ω ⊂ R
2 has a corner.

Without loss of generality we suppose that the corner is the origin. Set
Ωρ = Ω ∩ Bρ(0). Then we assume that there is a ρ > 0 such that in Ωρ

we have aij = aji, L is uniformly elliptic, aij ∈ Cα(Ωρ). An appropriate
rotation with center at the origin and a streching of the axis transforms
(3.4), (3.5) into a Dirichlet problem where aij(0, 0) = δij . Here we denote
the transformed coefficients aij(C

−1y) and the transformed right hand side
f(C−1y) by aij and f , resp., and y by x. The new domain is denoted by Ω
again. The new interior angle ω can be calculated from the original interior
angle γ and the original coefficients [aij(0, 0)], see an exercice. After this
mapping we arrived at the problem

Lu = 4u +
2

∑

i,j=1

(aij(x) − δij)uxixj
= f in Ωρ (3.6)

u = 0 on ∂Ω ∩ Ωρ, (3.7)

where
|aij(x) − δij | ≤ c|x|α.

Suppose that Ωρ is contained in a domain, see Figure 3.4, defined by 0 <
r < ρ and θ1(ρ) ≤ θ ≤ θ2(ρ), where r = (x2

1 + x2
2)

1/2. Set

ω = ω(ρ) = θ2(ρ) − θ1(ρ)
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π−θ  (ρ)

Ω

θ  (ρ)
1

2

ρ

ρ

x
1

2
x

Figure 3.4: Corner domain

and consider the function

v(θ) = sin
((π

ω
− h(ε)

)

(θ − θ1(ρ) + ε)
)

,

where 0 < ε ≤ ε0, ε0 sufficiently small, and h(ε) = 2πε/ω2. There is an
ε0 > 0 and a positive constant c, independent on ε such that v(θ) ≥ cε for
all 0 < ε ≤ ε0 and θ1 ≤ θ ≤ θ2 (exercise). Set

κ =
π

ω
− h(ε)

and consider the function

W (r, θ) = Arκ−ηv(θ)

= w(x1, x2),

where A and η are constants, 0 < η < κ. In polar coordinates we have

4w =
1

r

∂

∂r

(

r
∂W

∂r

)

+
1

r2

∂2W

∂θ2
.

Then
4w = Arκ−η−2

(

(κ − η)2 − κ2
)

v

and
|wxixj

| ≤ c|A|rκ−η−2.

The constant c, here and in the following formulas, are independent on r
and θ. Thus

Lw = Arκ−η−2
(

(κ − η)2 − κ2
)

v + O
(

Arκ−η−2+α
)

.
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Suppose that the constant A is positive, then from the above considerations
it follows that for given δ > 0, 0 < δ ≤ δ0, δ0 sufficiently small, there are
positive constants c(δ) and ρ = ρ(δ) such that

Lw ≤ −Ac(δ)r(π/ω)−δ−2

in Ωρ.

Proposition 3.1.2. Assume the right hand side f of (3.4) satisfies

|f | ≤ cr(π/ω)−2−δ+τ

in Ωρ0
, ρ0 > 0, for a τ > 0. Assume u ∈ C2(Ωρ0

) and supΩρ0
|u(x)| < ∞.

Then for given (small) ε > 0 there exists positive constants c(ε) and ρ(ε) > 0
such that

|u| ≤ c(ε)|x|(π/ω)−ε

in Ωρ(ε).

Proof. We have Lw ≤ Lu in Ωρ and w ≥ u on ∂Ωρ, provided ρ > 0 is
sufficiently small. 2

Remark. The additional assumption that u remains bounded up to the
corner is essential for the previous proposition since there exists also solu-
tions which are unbounded near the corner. An example is the boundary
value problem 4u = 0 in Ωα, u = 0 on ∂Ωα, where Ωα is the sector defined
by r > 0 and 0 < θ < α, where 0 < α < 2π. Solutions are given by

u(x) = rπk/α sin ((π/α)kθ) ,

where k ∈ {±1,±2, . . .}. For a class of quasilinear nonuniformly boundary
value problems the behaviour of the solution near the corner does not re-
quire such an additional assumption near the boundary, see [8, 16, 3, 18].
The behaviour follows from the problem itself. The reason for this striking
difference is that essential information is lost through the linearization.

Remark. Asymptotic expansions near a corner yield more precise be-
haviour near the corner, see [15] for a class of uniformly quasilinear elliptic
Dirichlet problems. In general, the expansion, depends on the solution con-
sidered, in contrast to some nonuniformly problems, see [16].
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3.1.3 An apriori estimate

Consider for given bounded functions f , Φ defined on Ω and on ∂Ω, respec-
tively, the Dirichlet problem

Lu =
n

∑

i,j=1

aij(x)Diju +
n

∑

i=1

bi(x)uxi
+ c(x) = f(x) in Ω (3.8)

u = Φ on ∂Ω (3.9)

where ai,j , bi and c are real and defined on a simply connected and bounded
domain Ω ⊂ R

n. We assume aij = aji, L is strictly elliptic and

sup
Ω

|bi(x)| < ∞

for every i = 1, . . . , n. Let K be a bound of b1 and set

α =
1

λ0

(

K + (K2 + 4λ0)
1/2

)

, (3.10)

where the positive constant λ0 is a lower bound of the minimum of the
eigenvalues of the matrix [aij(x)]. Set d = diam Ω.

Proposition 3.1.3. Suppose that c(x) ≤ 0 in Ω and let u ∈ C2(Ω) ∩ C(Ω)
be a solution of (3.8), (3.9). Then

sup
Ω

|u| ≤ sup
∂Ω

|Φ| +
(

eαd − 1
)

sup
Ω

|f |.

Proof. Suppose that Ω is contained in the strip defined by 0 ≤ x1 ≤ d.
Consider the function

g(x) = eαd − eαx1 ,

where α is positive constant which will be determined later. We have g(x) ≥
0 if x ∈ Ω. We get

Lg = −(a11α
2 + b1α)eαx1 + cg

≤ (λ0α
2 + Kα)eαx1

≤ −eαx1

≤ −1,

provided that α is large enough. We can choose α given by (3.10). Set

h = sup
∂Ω

|Φ| + g(x) sup
Ω

|f |.



3.2. A DISCRETE MAXIMUM PRINCIPLE 77

Then

Lh = Lg sup
Ω

|f | + c sup
∂Ω

|Φ|

≤ − sup
Ω

|f |.

We recall that c ≤ 0 on Ω. Summarizing, we have

Lh ≤ − sup
Ω

|f | in Ω

h ≥ sup
Ω

|Φ| on ∂Ω.

Set v = u − h, then

Lv = f − Lh ≥ f + sup
Ω

|f | ≥ 0 in Ω

v = Φ − sup
∂Ω

|Φ| ≤ 0 on ∂Ω.

The comparison principle says that v ≤ 0 in Ω. The same argument leads
to the inequality u ≥ −h in Ω if we set v = −u − h. Then

Lv = −f − Lh ≥ −f + sup
Ω

|f | ≥ 0 in Ω

v = −Φ − h ≤ −Φ − sup
∂Ω

|Φ| ≤ 0 on ∂Ω.

2

3.2 A discrete maximum principle

To simplify the presentation we consider here a subclass of elliptic boundary
value problems in a domain Ω ∈ R

2, see [12], pp. 458, for example. Set

Mu = 4u + b1(x, y)ux + b2(x, y)uy.

Suppose that there is a constant K such that

sup
Ω

(|b1(x, y)| + |b2(x, y)|) ≤ K. (3.11)

Let

Lu = Mu + c(x, y)u,
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where c(x, y) is defined on Ω. Then we consider for given f defined on Ω,
and Φ defined on ∂Ω, the Dirichlet problem

Lu = f in Ω (3.12)

u = Φ on ∂Ω. (3.13)

Let h > 0 be a (small) constant. Then we define an associated difference
operator to Mu by

Mhu =
u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)

h2

+b1(x, y)
u(x + h, y) − u(x − h, y)

2h
+ b2(x, y)

u(x, y + h) − u(x, y − h)

2h
.

We have limh→0 Mhu = Mu on every compact subdomain of Ω, provided
u ∈ C2(Ω).

Set P0 = (x, y) and assume P0 ∈ Ω. The four points P01 = (x + h, y),
P02 = (x, y+h), P03 = (x−h, y), P04 = (x, y−h) are called h-neighbourhood
of P0 or a star around P0. Consider the intersection of Ω with an h-net Nh

of R
2 defined by

Nh(x, y) = {(x + lh, y + kh) ∈ R
2 : k, l = 0,±1,±2, . . .},

where (x, y) ∈ R
2 is given. Let Ωh be the set of the points Pi of Ω∩Nh such

that each point of the star associated to Pi are contained in Ω. The set of
all star points not in Ωh is denoted by ∂Ωh, see Figure 3.5. Then we define

Figure 3.5: Definition of Ωh and ∂Ωh

Ωh = Ωh ∪ ∂Ωh.
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Suppose that Ωh is connected in the sense that for given P, R ∈ Ωh

there exists points Q1, Q2, . . . , Qs ∈ Ωh, where Q1 = P and Qs = R, such
that Qj is a point of the h-neighbourhood of Qj−1, j = 1, . . . , s + 1. We
assume that h > 0 is sufficiently small such that

hK < 1. (3.14)

Theorem 3.2.1. Let u be defined on Ωh. Suppose that Mhu ≥ 0 in Ωh and
u attends its maximum in Ωh. Then u is constant on Ωh.

Proof. Let Pi ∈ Ωh. From the definition of Mhu and the assumption Mhu ≥
0 we obtain that

u(Pi) ≤
4

∑

j=1

λiju(Pij),

where Pij are the points of the h-neighbourhood of Pi and

λi1 =
1

4

(

1 +
hb1(Pi)

2

)

, λi2 =
1

4

(

1 +
hb2(Pi)

2

)

λi3 =
1

4

(

1 − hb1(Pi)

2

)

, λi4 =
1

4

(

1 − hb2(Pi)

2

)

.

We have
∑4

j=1 λij = 1 and, see (3.14), λij > 0. Assume

m := max
Ωh

u(x) = u(Pi).

Then u = m in all points of the h-neighbourhood of Pi. Since Ωh is con-
nected, the theorem is shown. 2

Set Lhu = Mhu + c(x)u. The following corollary is the discrete version of
the corollary to the above Theorem 3.2.

Corollary. Suppose that c(x) ≤ 0 on Ωh and u defined on Ωh satisfies
Lhu ≥ 0 on Ωh. Then if u achieves its nonnegative supremum m in Ωh, u
is constant on Ωh.

Proof. Set Ωh,1 = {x ∈ Ωh : u(x) = m} and Ωh,2 = {x ∈ Ωh : u(x) < m}.
By assumption Ωh,1 is not empty. The set Ωh,1 is open in the sense that if
Pi ∈ Ωh,1 then u(Pil) = m for every point Pil, l = 1, 2, 3, 4, of the associated
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star to Pi. This follows from the inequality

u(Pi) ≤
3

∑

j=1

λiju(Pij) +
h2

4
c(Pi)u(Pi).

Thus u = m on Ωh since Ωh is connected by assumption. 2

From this corollary it follows

Theorem 3.2.2 (Comparison principle). Let Ωh be a bounded and connected
domain. Suppose that c(x) ≤ 0. Assume u, v are defined on Ωh and satisfy
Lhu ≥ Lhv in Ωh and u ≤ v on ∂Ωh. Then u ≤ v on Ω.

Proof. Set w = u − v. Then Lhw ≥ 0 in Ωh and w ≤ 0 on ∂Ωh. From the
above corollary we see that w can not achieve a nonnegative maximum in
Ω. 2

Suppose that Ωh is bounded and connected. We consider the discrete Dirich-
let problem

Lhu = f in Ωh (3.15)

u = Φ on ∂Ωh, (3.16)

where f is defined in Ωh and Φ on ∂Ωh. Assume c ≤ 0 and h is sufficiently
small such that the inequality (3.14) is satisfied.

Corollary. There exists a unique solution of the discrete Dirichlet prob-
lem (3.15), (3.16).

Proof. The Dirichlet problem defines a linear system of N equations in N
unknowns. From the comparison principle it follow that there is at most
one solution. From the linear algebra it is known that uniqueness implies
existence. 2

Proposition 3.2.1 (Apriori etimate). Assume u is a solution of the discrete
Dirichlet problem (3.15), (3.16), where c(x) ≤ 0. Then

max
Ωh

|u| ≤ max
∂Ωh

|Φ| + c max
Ωh

|f |,

where the constant c is independent of u and h, and 0 < h < h0, h0 suffi-
ciently small, see the following proof for an explicit h0.
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Proof. The proof is the same as the proof of the apriori estimate of Theo-
rem 3.4. Concerning notations in the following formula see the proof of this
theorem. For a sufficiently large α we have

Lh

(

eαd − eαx
)

= −α2eαx

(

sinh(αh/2)

αh/2

)2

−b1(x)αeαx sinh(αh)

αh
+ c(x)

(

eαd − eαx
)

≤ −eαx

(

α2

(

sinh(αh/2)

αh/2

)2

+ b1α
sinh(αh)

αh

)

.

Suppose that αh ≤ 1, then

Lh

(

eαd − eαx
)

≤ −eαx
(

α2 − Kα cosh(1)
)

≤ −1,

if we take an α which satisfies

α ≥ (K/2) cosh(1) +

√

((K/2) cosh(1))2 + 1.

We recall that we assume that Ω is bounded and is contained in the strip
0 < x1 < d, where d is the diameter of Ω. 2

The following result says that the solution of the discrete Dirichlet problem
is an approximation of the solution of the original problem, provided that
this solution is sufficiently smooth,

Corollary. Suppose that u ∈ C3(Ω) is a solution of the continuous Dirichlet
problem (3.12), (3.13), where c(x) ≤ 0 and Φ is defined on a boundary
strip and is in C1 in the closed strip. Let uh be a solution of the discrete
problem (3.15), (3.16). Then

max
Ωh

|u(x) − uh(x)| ≤ ch,

where the constant c is independent on h < h0, h0 sufficiently small.

Proof. Here we make the additional assumption that ∂Ωh ⊂ ∂Ω, see Fig-
ure 3.5 for an example. The proof of the general case is left as an exercise.
The assumption on u implies that

|Lhu − Lu| ≤ ch. (3.17)



82 CHAPTER 3. MAXIMUM PRINCIPLES

Let U be defined on Ωh. Then we have from the above apriori estimate that

max
Ωh

|U | ≤ max
∂Ωh

|U | + c max
Ωh

|LhU |.

Set U = u − uh, then

max
Ωh

|u − uh| ≤ c max
Ωh

|Lhuh − Lhu|

since u − uh = 0 on ∂Ωh. Finally, we have on Ωh that

Lhuh − Lhu = Lhuh − Lu + Lu − Lhu

= Lu − Lhu

since Lhuh = f and Lu = f on Ωh. Then the estimate of the corollary
follows from the estimate (3.17). 2
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3.3 Exercises

1. Let Ω ⊂ R
n be a bounded domain and assume u ∈ C(Ω) and

sup
Ω

(u + εeγx1) = sup
∂Ω

(u + εeγx1)

for each ε. Show that
sup
Ω

u = sup
∂Ω

u.

2. Let [aij ] be a real regular symmetric matrix in R
n. Find a regular

Matrix C in R
n such that

n
∑

i,j=1

aijuxixj
=

n
∑

i=1

Uyiyi
,

where U(y) := u(C−1y).

Hint: Let Z1,Z2 be an orthonormal system of eigenvectors to [aij ] to
the eigenvalues λ1, λ2, respectively. Set B = (Z1,Z2), then

C =

(

1/
√

λ1 0
0 1/

√
λ2

)

BT .

3. Let γ be the interior angle of a sector with its corner at the origin in
R

2. Calculate the interior angle ω of the sector transformed by the
above mapping.

4. Let u ∈ C1(Ω) ∩ C2(Ω) be a solution of

div
∇u

√

1 + |∇u|2
= f inΩ

u = Φ on ∂Ω,

where Ω ∈ R
2 and f, Φ are given. Suppose the origin is a corner of

Ω with interior angle γ, 0 < γ < π. Show that ω, see the previous
exercise, is the opening angle of the surface S defined by z = u(x1, x2),
over the origin, see Figure 3.6.

Hint:

div
∇u

√

1 + |∇u|2
=

2
∑

i,j=1

aij(x)uxixj
,
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z

ω

γ

S

Ω

Figure 3.6: Transformed opening angle

where

aij =
1

(1 + |∇u|2)3/2

(

δij −
uxi

uxj

1 + |∇u|2
)

.

5. Let Ωα be the sector in R
2 defined by r > 0 and 0 < θ < α, where

0 < α < 2π. Set Ωα,ρ = Ωα ∩ Bρ(0). Suppose that u ∈ C2(Ωα,ρ \ {0})
and supΩα,ρ

|u| < ∞ is a solution of 4u = 0 in Ωα,ρ, u = 0 on (∂Ωα ∩
Bρ(0)) \ {0}.
Show that there is a constant c such that

|u| ≤ c|x|π/α

in Ωα,ρ.

Hint: Choose the comparison function W = Arπ/α sin(πθ/α) and show
that −AW ≤ u ≤ AW on Ωα ∩ ∂Bρ(0) provided the positive constant
A is sufficiently large.

6. Let m, λj , cj be real numbers satisfying cj ≤ m, λj > 0 and
∑4

j=1 λj =

1. Show that m ≤ ∑4
j=1 λjcj implies cj = m.

7. Prove the corollary to Proposition 3.3.

Hint: The inclusion ∂Ωh ⊂ ∂Ω is not assumed. The result follows since
for given x ∈ ∂Ωh there exists an x1 ∈ ∂Ω such that |x − x1| < h.
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