Potts model and spanning forests

Meik Hellmund

Mathematisches Institut, Universität Leipzig

- Potts model and cluster representation
- (2) A $q \rightarrow 0$ limit: spanning trees, determinants and fermions
- ③ Another q → 0 limit: spanning forests (alias "arboreal gas" alias "tree percolation")
 - I High-T expansion
 - 2 1/d expansion
 - 3 Results for \mathbb{Z}^d , d=3,4,...

References

Recent work on Spanning forests/Tree percolation/Arboreal gas

- Transfer matrix, *d* = 2: *Jacobsen, Salas, Sokal,* J. Stat. Phys. 119, 1153 (2005) [cond-mat/0401026]
- Fermionic/Susy field theory: Jacobsen, Saleur, Nucl. Phys. B 716, 439 (2005) [cond-mat/0502052]
- MC, *d* = 3, 4, 5: *Deng*, *Garoni*, *Sokal*, PRL 98, 030602 (2007) [cond-mat/0610193]

• HT series, all d: MH, WJ, in preparation

Potts model

- Potts 1952
- Graph G = (V, B): vertices and bonds
- discrete local degrees of freedom (spins) $s_i \in \{1, \dots, q\}$ on vertices

$$Z = \sum_{\{s_i\}} e^{-\beta H}, \quad H = -J \sum_{b \in B} \delta(s_{b_1}, s_{b_2})$$

q = 4 Potts configuration

Potts model

Infinite volume limit $G \to \mathbb{Z}^d$: Phase transition for some critical value β_c

- First order PT for large q
- ${\ensuremath{\, \circ }}$ Second order PT for, e.g., $q\leq 4$ in d=2 and $q\leq 2$ in d>2
 - diverging correlation length, universal critical exponents

•
$$\xi \sim |\beta - \beta_c|^{-\nu}$$

•
$$\chi \sim |\beta - \beta_c|^{-\gamma}$$

• continuum limit can be described by an Euclidean field theory

HT cluster

• Fortuin, Kasteleyn 1972: bond active only with probability $1 - e^{-\beta J}$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Spanning tree:
$$V' = V, |G'| = 1, c(G') = 0$$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Spanning tree:
$$V' = V, |G'| = 1, c(G') = 0$$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

c(G) = |B| - |V| + |G|

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Spanning tree:
$$V' = V, |G'| = 1, c(G') = 0$$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

$$c(G) = |B| - |V| + |G|$$

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Spanning tree:
$$V' = V, |G'| = 1, c(G') = 0$$

• Spanning forest: $V' = V, |G'| \ge 1, c(G') = 0$

• Graph G = (V, B): vertices and bonds

• Cyclomatic number = number of indept. loops

$$c(G) = |B| - |V| + |G|$$

(bonds - vertices + conn. components)

• Subgraph
$$G' = (V', B')$$
: $V' \subseteq V, B' \subseteq B$

• Spanning subgraph (=cluster): V' = V

• Spanning tree:
$$V' = V, |G'| = 1, c(G') = 0$$

• Spanning forest: $V' = V, |G'| \ge 1, c(G') = 0$

FK cluster representation

Potts partition function as cluster sum

$$\begin{split} Z_G(q,w) &= \sum_{\{s_i\}} \prod_{b \in B_G} (1 + w \delta(s_{b_1}, s_{b_2})) \\ &= \sum_{C \subseteq G} q^{|C|} w^{|B|} \text{ where } w = e^{\beta J} - 1 \end{split}$$

• Correlation function and susceptibility:

$$\begin{split} G(i,j) &= \frac{1}{Z} \sum_{\substack{C_{ij} \subseteq G \\ i \text{ and } j \text{ in same component}}} q^{|C_{ij}|} w^{|B|} \\ \chi_G(q,w) &= \frac{1}{|V|} \sum_{i,j \in V} G(i,j) \end{split}$$

mean cluster size, magnetic susceptibility as long as $\langle s_i \rangle = 0$ (high-T phase)

Spanning forests

The limit $q \rightarrow 0, w/q$ finite describes an ensemble of spanning forests

$$\begin{split} Z_G(q,w) &= \sum_{C \subseteq G} q^{|C|} w^{|B|} \\ &= q^{|V|} \sum_C q^{c(C)} \left(\frac{w}{q}\right)^{|B|} \\ \lim_{q \to 0} q^{-|V|} Z_G(q,q\alpha) &= F_G(\alpha) = \sum_{c(C)=0} \alpha^{|B|} \text{ where } \alpha = w/q \end{split}$$

Spanning trees

The limit $q \rightarrow 0, w/q^{\sigma}$ finite, $0 < \sigma < 1$ describes an ensemble of spanning trees

$$\begin{split} Z_G(q,w) &= \sum_{C \subseteq G} q^{|C|} w^{|B|} \\ &= q^{\sigma|V|} \sum_C q^{\sigma c(C) + (1-\sigma)|C|} \left(\frac{w}{q^{\sigma}}\right)^{|B|} \\ \lim_{q \to 0} q^{-\sigma|V| - (1-\sigma)} Z_G(q,q^{\sigma} \alpha) &= \sum_{c(C) = 0, |C| = 1} \alpha^{|B|} \text{ where } \alpha = w/q^{\sigma} \\ &= T_G \alpha^{|V| - 1} \end{split}$$

where $T_G = \#\{\text{spanning trees of } G\}$

trivial, no phase transition

Spanning trees, determinants and fermions

• Adjacency matrix:
$$|V| \times |V|$$
 matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$
• Laplacian $\Delta = \operatorname{diag}(\operatorname{deg}(v_1), \dots, \operatorname{deg}(v_{|V|})) - A$

$$\Delta = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

- Kirchhoff 1847: $T_G = \det \Delta'$ Proof: $f(G) = f(G \setminus b) + f(G/b)$ $f(\Box) = f(\Box) + f(\Xi)$
- free massless symplectic fermions: $T_G = \int {\cal D}(\psi,\bar\psi)\,e^{\bar\psi\Delta\psi}$

Spanning forests

- Equivalent to bond percolation with local bond probability $p = \frac{\alpha}{1+\alpha}$ and the nonlocal constraint that clusters are free of loops: tree percolation
- d > 2: phase transition at some α_c :

• $\alpha < \alpha_c$: forests consist of small trees

- at α_c : one component of the forest percolates
- $\alpha > \alpha_c$: ensemble is dominated by configurations where a single infinite tree covers a finite fraction of the lattice

• $\alpha \to \infty$: this fraction approaches 1: spanning trees

- d = 2: phase transition only in the antiferromagnetic regime $\alpha_c < 0$.
- ${\ensuremath{\, \bullet }}$ Fermionic field theory with OSp(1|2) supersymmetry:

$$\int \mathcal{D}(\psi,\bar{\psi}) \exp\left[\bar{\psi}\Delta\psi + t\sum_{i}\bar{\psi}_{i}\psi_{i} - t\sum_{\langle i,j\rangle}\bar{\psi}_{i}\psi_{i}\bar{\psi}_{j}\psi_{j}\right] = t^{|V|}F_{G}(1/t)$$

Series generation techniques - Star graph expansion

Potts model: $\log Z$ and $1/\chi$ have star-graph expansions, i.e. expansions including only biconnected graphs (*no* articulation points)

• Construct all star graphs embeddable in \mathbb{Z}^d up to a given order (number of edges E):

order E	8	9	10	11	12	13	14	15	16	17	18	19	20	21
#graphs	2	3	8	9	29	51	142	330	951	2561	7688	23078	55302	165730

- Count the (weak) embedding numbers $E(G; \mathbb{Z}^d)$
- Calculate Z and correlations $G_{ij} = \langle \delta_{s_i, s_j} \rangle$ for every graph with symbolic parameter q and coupling v (using a cluster representation).
- $\bullet~{\rm Calculate}~{\rm log}\,Z,~C_{ij}=G_{ij}/Z~{\rm up}~{\rm to}~O(v^N)$
- Inversion of correlation matrix and subgraph subtraction $W_{\chi}(G) = \sum_{i,j} (C^{-1})_{ij} \sum_{g \subset G} W_{\chi}(g)$
- Collect the results from all graphs $1/\chi = \sum_G E(G; \mathbb{Z}^d) \ W_{\chi}(G)$

Examples for weak embedding numbers in \mathbb{Z}^d

Result: susceptibility series

- 396*q^9*V^20*d^3 - 71664*q^8*V^20*d^3 - 7920*q^8*V^19*d^3 - 35783268*q^7*V^20*d^3 - 4004*q^7*V^20*d^2 - 922320*q^7*V^19*d^3 -99288*q^7*V^18*d^3 - 2640*q^7*V^17*d^3 + 510996630*q^6*V^20*d^3 + 437960*q^6*V^20*d^2 - 99295644*q^6*V^19*d^3 + 12072*q^6*V^19*d^2 - 3177328*q^6*V^18*d^3 - 4676*q^6*V^18*d^2 - 1035600*q^6*V^17*d^3 - 264*q^6*V^17*d^2 - 16896*q^6*V^16*d^3 -2160*q^6*V^15*d^3 - 23291841468*q^5*V^20*d^3 - 52837608*q^5*V^20*d^2 + 2790612816*q^5*V^19*d^3 + 7837920*q^5*V^19*d^2 -284468212*a^5*V^18*d^3 - 1011024*a^5*V^18*d^2 + 20133864*a^5*V^17*d^3 + 97460*a^5*V^17*d^2 - 3599412*a^5*V^16*d^3 -1524*q^5*V^16*d^2 - 138504*q^5*V^15*d^3 - 880*q^5*V^15*d^2 - 33336*q^5*V^14*d^3 + 360*q^5*V^13*d^3 - 56*q^5*V^12*d^3 + 381920091594*q^4*V^20*d^3 + 882904312*q^4*V^20*d^2 - 53105970234*q^4*V^19*d^3 - 176144660*q^4*V^19*d^2 + 7219713352*q^4*V^18*d^3 + 33581524*q^4*V^18*d^2 - 884226162*q^4*V^17*d^3 - 6026888*q^4*V^17*d^2 + 112403526*q^4*V^16*d^3 + 996896*q^4*V^16*d^2 -12004566*q^4*V^15*d^3 - 150264*q^4*V^15*d^2 + 1014426*q^4*V^14*d^3 + 19192*q^4*V^14*d^2 - 164070*q^4*V^13*d^3 -1212*g^4*V^13*d^2 - 6240*g^4*V^12*d^3 - 72*g^4*V^12*d^2 - 672*g^4*V^11*d^3 - 2985257047506*g^3*V^20*d^3 -5811546800*q^3*V^20*d^2 + 475828906620*q^3*V^19*d^3 + 1347121220*q^3*V^19*d^2 - 74406392514*q^3*V^18*d^3 -305887016*q^3*V^18*d^2 + 11347178160*q^3*V^17*d^3 + 67763284*q^3*V^17*d^2 - 1685070330*q^3*V^16*d^3 - 14593908*q^3*V^16*d^2 + 246754864*g^3*V^15*d^3 + 3048028*g^3*V^15*d^2 - 33128280*g^3*V^14*d^3 - 612404*g^3*V^14*d^2 + 4650456*g^3*V^13*d^3 + 116016*q^3*V^13*d^2 - 512634*q^3*V^12*d^3 - 20756*q^3*V^12*d^2 + 45720*q^3*V^11*d^3 + 3384*q^3*V^11*d^2 - 7200*q^3*V^10*d^3 -336*q^3*V^10*d^2 - 336*q^3*V^9*d^3 + 12030371402052*q^2*V^20*d^3 + 18358300112*q^2*V^20*d^2 - 2100969671688*q^2*V^19*d^3 -4690241864*q^2*V^19*d^2 + 363320333260*q^2*V^18*d^3 + 1186104664*q^2*V^18*d^2 - 62205280752*q^2*V^17*d^3 -296386828*q^2*V^17*d^2 + 10536240300*q^2*V^16*d^3 + 73141232*q^2*V^16*d^2 - 1768902744*q^2*V^15*d^3 - 17842272*q^2*V^15*d^2 + 10536240300*q^2*V^15*d^2 + 105362400*q^2 + 1053624040*q^2 + 291713952*q^2*V^14*d^3 + 4307276*q^2*V^14*d^2 - 47163528*q^2*V^13*d^3 - 1027340*q^2*V^13*d^2 + 7376632*q^2*V^12*d^3 + 240976*g^2*V^12*d^2 - 1039056*g^2*V^11*d^3 - 54760*g^2*V^11*d^2 + 157656*g^2*V^10*d^3 + 11652*g^2*V^10*d^2 - 17032*g^2*V^9*d^3 -2372*a^2*V^9*d^2 + 1560*a^2*V^8*d^3 + 476*a^2*V^8*d^2 - 360*a^2*V^7*d^3 - 60*a^2*V^7*d^2 - 23867573497488*a*V^20*d^3 -27918229076*a*V^20*d^2 + 4446689058192*a*V^19*d^3 + 7649974704*a*V^19*d^2 - 825214527528*a*V^18*d^3 - 2085619352*a*V^18*d^2 + 152588563584*a*V^17*d^3 + 565096960*a*V^17*d^2 - 28142760960*a*V^16*d^3 - 152239804*a*V^16*d^2 + 5176071360*a*V^15*d^3 + 40889376*a*V^15*d^2 - 948210168*a*V^14*d^3 - 10991164*a*V^14*d^2 + 172033392*a*V^13*d^3 + 2961448*a*V^13*d^2 -30725832*g*V^12*d^3 - 796880*a*V^12*d^2 + 5318208*a*V^11*d^3 + 212544*a*V^11*d^2 - 912336*g*V^10*d^3 - 55824*g*V^10*d^2 + 149664*a*V^9*d^3 + 14448*a*V^9*d^2 - 22080*a*V^8*d^3 - 3628*a*V^8*d^2 + 4320*a*V^7*d^3 + 816*a*V^7*d^2 - 480*a*V^6*d^3 -180*g*V^6*d^2 + 56*g*V^5*d^2 - 12*g*V^4*d^2 + 18153055172544*V^20*d^3 + 16434101440*V^20*d^2 + 2*V^20*d - 3538929660864*V^19*d^3 - 4749969504*V^19*d^2 - 2*V^19*d + 689190414432*V^18*d^3 + 1369608320*V^18*d^2 + 2*V^18*d - 134132531520*V^17*d^3 -393581088*V^17*d^2 = 2*V^17*d + 26118927936*V^16*d^3 + 112837280*V^16*d^2 + 2*V^16*d = 5088226944*V^15*d^3 = 32394816*V^15*d^2 = 2*V^15*d + 990596448*V^14*d^3 + 9361040*V^14*d^2 + 2*V^14*d - 192127104*V^13*d^3 - 2729472*V^13*d^2 - 2*V^13*d + 36865536*V12*d^3 + 800496*V12*d^2 + 2*V12*d - 6970368*V11*d^3 - 234720*V11*d^2 - 2*V11*d + 1299264*V10*d^3 + 68512*V10*d^2 + 2*V10*d - 237120*V19*d^3 - 19776*V19*d^2 - 2*V19*d + 41088*V18*d^3 + 5536*V18*d^2 + 2*V18*d - 7680*V17*d^3 -1472*V^7*d^2 - 2*V^7*d + 1152*V^6*d^3 + 400*V^6*d^2 + 2*V^6*d - 128*V^5*d^2 - 2*V^5*d + 32*V^4*d^2 + 2*V^3*d + 2*V^2*d - 2*V*d + 1

Large dimensionality expansion

Critical point equation $1/\chi(d,w_c)=0$ can be iteratively solved: Large-d expansion for w_c in terms of $\sigma=2d-1$

$$\begin{aligned} v &= \frac{w}{w+q} \\ v_c(q,\sigma) &= \frac{1}{\sigma} \Biggl[1 + \frac{8 - 3q}{2\sigma^2} + \frac{3(8 - 3q)}{2\sigma^3} + \frac{3\left(68 - 31q + q^2\right)}{2\sigma^4} + \frac{8664 - 3798q - 11q^2}{12\sigma^5} \\ &+ \frac{78768 - 36714q + 405q^2 - 50q^3}{12\sigma^6} + \frac{1476192 - 685680q - 2760q^2 - 551q^3}{24\sigma^7} \\ &+ \frac{7446864 - 3524352q - 11204q^2 - 6588q^3 - 9q^4}{12\sigma^8} + \cdots \Biggr] \end{aligned}$$

Critical properties of spanning forests

Table: Critical points for hypercubic lattices \mathbb{Z}^D for dimensions $D \ge 3$.

MC		HT series			
α_c	γ	α_c	γ		
0.43365(2)	2.77(10)	0.43333(5)	2.785(5)		
0.210 302(10)	1.73(3)	0.20997(3)	1.71(1)		
0.140 36(2)	1.22(6)	0.14031(3)	1.31(1)		
		0.10668(3)	1.0(1)		
		0.08674(1)	1.00(2)		
	$\begin{array}{c} {\rm MC} \\ \hline \alpha_c \\ 0.43365(2) \\ 0.210302(10) \\ 0.14036(2) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

• Upper critical dimension is d = 6 with logarithmic corrections $\chi \sim (\alpha_c - \alpha)^{-1} (\log(\alpha_c - \alpha))^{\delta}$, $\delta = 0.65(5)$

Conclusions

- Tree percolation is an interesting system with a geometric phase transition
- New universality class with upper critical dimension 6
- Geometric formulation is non-local (MC difficult) but local supersymmetric field theory exists
- Series expansion works