High-Temperature Series Expansions for Disordered Systems

Meik Hellmund

Mathematisches Institut, Universität Leipzig

- The q-state Potts model: Phase transitions, Quenched disorder
- Series expansions
 - General remarks
 - Extrapolation techniques
 - Star graph expansion
 - Embedding numbers
- Examples
 - Bond-diluted Ising model in 3,4,5 dimensions
 - Percolation: $q \rightarrow 1$ Potts model
 - Tree percolation: $q \rightarrow 0$ Potts model

The *q*-state Potts model

• Potts 1952

• Graph
$$G = (V, E), E \subseteq V \times V$$
: vertices and edges

Edges define "nearest neighbours"

- Parameter q = 2, 3, ...; Ising model: q = 2
- discrete local degrees of freedom (spins) $s_i \in \{1, \dots, q\}$ on vertices

$$Z = \sum_{\{s_i\}} e^{-\beta H}, \quad H = -\sum_{e \in E} \delta(s_{e_1}, s_{e_2})$$

q = 4 Potts configuration

Phase transitions

Infinite volume limit $G \to \mathbb{Z}^d$

Sharp phase transition between an ordered low-T and a disordered high-T phase at some critical value β_c

This phase transition is

- First order for large q
- \bullet Second order for $q \leq 4$ in d=2 and $q \leq 2$ in d>2
 - diverging correlation length, universal critical exponents
 - self-similarity, fixed point of the renormalization group
 - correlation length $\xi \sim |\beta \beta_c|^{-\nu}$
 - susceptibility $\chi \sim |\beta \beta_c|^{-\gamma}$
 - continuum limit can be described by an euclidean quantum field theory

Quenched disorder

$$\mathcal{Z}(\{J_{ij}\}) = \operatorname{Tr} \exp\left(-\beta \sum_{\langle ij \rangle} J_{ij}\delta(S_i, S_j)\right)$$
$$-\beta F = [\log \mathcal{Z}(\{J_{ij}\})]_{P(J)}$$

- random couplings: J_{ij} chosen according to some probability distribution P(J)
 - spin glasses: $J = \pm 1$
 - random bond models:

$$J = +1/+5$$

- correlated disorder
- geometric disorder: random graphs, site dilution, we look at bond dilution:

 $P(J_{ij}) = (1-p)\,\delta(J_{ij}-J_0) + p\,\delta(J_{ij})$

in a ferromagnet $J_0 > 0$

Effect of quenched disorder on critical behaviour: Bond-diluted Ising model

q > 2: effect on first order phase transition: softening to second order

Renormalization group fixed points and expansions

High-temperature Series Expansions

I. Calculate quantities on subgraphs of the lattice and put them together in a systematic way ... series in β

for physical quantities like free energy, susceptibility,...

• Linked cluster expansion: pure 3D Ising model:

Sykes et al.	1973	13. order
Nickel, Rehr	1990	21. order
Butera, Comi	2000	23. order
Campostrini et al.	2000	25. order

- Finite lattice methods: pure 3D Ising model: Arisue et al.
 - 2004 32. order
- Star graph expansion: disordered models:

Singh, Chakravarty	1987	15	3D Ising glass
Schreider, Reger	1993	10	q-Potts glass
Roder, Adler, Janke	1998	11	2D RB Ising
Hellmund, Janke	2001	17	bond-diluted Potts, all D
Hellmund, Janke	2004	19	bond-diluted Potts, $D < 6$
Hellmund, Janke	2005	21	bond-diluted Ising, $D = 3$
Hellmund, Janke	2005	20	pure Potts,all q , $D = 3$

Star graph expansion

I. F(G) function on set of graphs $\{G_i\} \Longrightarrow \exists$ function $W_F(G)$:

$$F(G) = \sum_{g \subseteq G} W_F(g)$$

$$W_F(G) = F(G) - \sum_{g \in G} W_F(g)$$

$$\Rightarrow F(\mathbb{Z}^d)/V = \sum_G E(G : \mathbb{Z}^d) W_F(G) \text{ (with weak embedding number } E(G : \mathbb{Z}^d))$$

II. Consider operation # on $\{G\}$:

$$G = G_1 \# G_2$$

such that $g \subseteq G$ implies either $g \subseteq G_1$ or $g \subseteq G_2$ or $g = g_1 \# g_2$ with $g_1 \subseteq G_1, g_2 \subseteq G_2$. **Theorem:** If F(G) has the property

$$G = G_1 \# G_2 \implies F(G) = F(G_1) + F(G_2)$$

then $W_F(G)$ vanishes on every graph G reducible under #.

Applications:

- # =disjoint union of graphs \implies reduction to connected graphs.
- # = glueing of graphs at one node \implies reduction to star graphs

$$F\left(\swarrow \right) = F\left(\bigtriangleup \right) + F\left(\checkmark \right) \Longrightarrow W_F\left(\checkmark \right) = 0$$

We need to consider only graphs without articulation points, i.e.,

"star graphs" \equiv biconnected graphs.

For the *q*-state Potts model with uncorrelated disorder,

 $[\log Z]$ and $1/[\chi]$ have star graph expansions.

Embedding numbers

Definition

Embedding: map of the graph G into the lattice (e.g., \mathbb{Z}^d), which maps vertices to vertices and edges to edges.

Embedding number: count possible embeddings modulo translations

• free embeddings: the map needs not to be injective

is allowed

- used in linked cluster expansion, fast counting algorithms exist,
- but not suitable for disorder averaging
- weak embeddings: only injective maps allowed \Rightarrow collision tests,
 - difficult to count
 - used in star graph expansion

Examples for weak embedding numbers in \mathbb{Z}^d

Series generation techniques - Star graph expansion

• Construct all star graphs embeddable in \mathbb{Z}^D up to a given order (number of edges E): order E 10 13 14 15 16 17 18 19 9 20 21 2 3 9 29 51 142 330 8 951 2561 7688 23078 55302 165730 #graphs

- number of graphs $\sim \exp(E)$

- for each generated graph: isomorphism test (P or NP?)

• Count the (weak) embedding numbers $E(G; \mathbb{Z}^D)$

- for each graph: backtracking algorithm $\sim \exp(E)$

• Calculate Z and correlations $G_{ij} = \langle \delta_{s_i, s_j} \rangle$ for every graph with symbolic couplings $J_1, ..., J_B$ (using a cluster representation) - NP hard

- Calculate disorder averages $[\log Z]$, $C_{ij} = [G_{ij}/Z]$ up to $O(J^N)$
- Inversion of correlation matrix and subgraph subtraction $W_{\chi}(G) = \sum_{i,j} (C^{-1})_{ij} - \sum_{g \in G} W_{\chi}(g)$
- Collect the results from all graphs $1/\chi = \sum_G E(G; \mathbb{Z}^d) W_{\chi}(G)$

Example: susceptibility of the bond-diluted 3D Ising model

 $\chi(p,v) = 1 + 6pv + 30p^2v^2 + 150p^3v^3 + 726p^4v^4 - 24p^4v^5 + 3534p^5v^5 - 24p^4v^6 - 192p^5v^6 + 16926p^6v^6 - 24p^4v^7 - 192p^5v^6 + 16926p^6v^6 - 192p^5v^6 + 16926p^6v^6 - 192p^5v^6 + 192p^6v^6 - 192p^6v^6 - 192p^6v^6 + 192p^6$ $192p^5v^7 - 1608p^6v^7 + 81318p^7v^7 - 192p^5v^8 - 1608p^6v^8 - 10464p^7v^8 + 387438p^8v^8 + 24p^4v^9 - 1608p^6v^9 - 1008p^6v^9 - 100$ $1053667v^9 - 67320p^8v^9 + 184912669v^9 + 22p^4v^{10} + 192p^5v^{10} - 264p^6v^{10} - 9744p^7v^{10} - 67632p^8v^{10} - 395328p^9v^{10} + 1000p^2v^{10} + 100$ $8779614p^{10}v^{10} + 24p^4v^{11} + 192p^5v^{11} + 1080p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 2299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 2299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 2299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 240p^7v^{11} - 60912p^8v^{11} - 397704p^9v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 299560p^{10}v^{11} + 1980p^6v^{11} - 299560p^{10}v^{11} + 1980p^{10}v^{11} + 1980p^{10}$ $41732406p^{11}v^{11} + 192p^5v^{12} + 1344p^6v^{12} + 8400p^7v^{12} - 1440p^8v^{12} - 339936p^9v^{12} - 2295744p^{10}v^{12} - 2295$ $12766944p^{11}v^{12} + 197659950p^{12}v^{12} - 24p^4v^{13} + 1608p^6v^{13} + 10296p^7v^{13} + 51480p^8v^{13} + 26544p^9v^{13} - 26544p^{13} - 26544p^{13}$ $1886928p^{10}v^{13} - 12680496p^{11}v^{13} - 70404720p^{12}v^{13} + 936945798p^{13}v^{13} - 24p^4v^{14} - 192p^5v^{14} + 264p^6v^{14} + 264$ $10032p^{7}v^{14} + 64560p^{8}v^{14} + 341568p^{9}v^{14} + 259556p^{10}v^{14} - 9915696p^{11}v^{14} - 99162048p^{12}v^{14} - 377522064p^{13}v^{14} + 991696p^{11}v^{14} - 991696p^{11}v^{14} - 99169048p^{12}v^{14} - 37752064p^{13}v^{14} + 99169048p^{12}v^{14} - 99169048p^{12}$ $\frac{4429708830p^{14}v^{14}-24p^{4}v^{15}-192p^{5}v^{15}-1080p^{6}v^{15}-1704p^{7}v^{15}+60024p^{8}v^{15}+427920p^{9}v^{15}+2062368p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12062668p^{10}v^{15}+12066668p^{10}+1206668p^{10}+120668p$ $2482464p^{11}v^{15} - 51644200p^{12}v^{15} - 367148472p^{13}v^{15} - 2014331904p^{14}v^{15} + 20955627110p^{15}v^{15} - 192p^5v^{16} - 192p$ $\frac{1}{1080p^6}v^{16} - \frac{1}{12144p^7}v^{16} - \frac{14448p^8}{1448p^8}v^{16} + \frac{360192p^9}{16}v^{16} + \frac{2493600p^{10}v^{16}}{12550416}v^{11}v^{16} + \frac{1}{12550416}v^{11}v^{16} + \frac{1}{12926128p^{12}}v^{16} - \frac{1}{1214p^7}v^{16} + \frac{1}{1216}v^{16} + \frac{1}{1216}v^{$ $259622976p^{13}v^{16} - 1931961792p^{14}v^{16} - 10550435184p^{15}v^{16} + 98937385374p^{16}v^{16} + 24p^4v^{17} - 1080p^6v^{17} - 1080p^6v^$ $13440 p^{-1} t^{-1} - 80928^9 v^{17} - 132024 p^9 v^{17} + 1840776 p^{10} v^{17} + 14790144 p^{11} v^{17} + 73051512 p^{12} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 126567264 p^{13} v^{17} - 1293631728 p^{-14} v^{17} - 9980137536 p^{15} v^{17} - 55050628008 p^{16} v^{17} + 46733374310 p^{17} v^{17} + 12676726 p^{17} v^{17} v^{17} v^{17} + 12676726 p^{17} v^{17} v^{17} v^{17} + 12676726 p^{17} v^{17} v^{17} v^{17} v^{17} + 12676726 p^{17} v^{17} v^{17}$ $24p^4v^{18} + 192p^5v^{18} - 8544p^7v^{18} - 95040p^8v^{18} - 569760p^9v^{18} - 1214880p^{10}v^{18} + 9797904p^{11}v^{18} + 979790$ $283516855968p^{17}v^{18} + 2204001965006p^{18}v^{18} + 24p^4v^{19} + 192p^5v^{19} + 1080p^6v^{19} + 5832p^7v^{19} - 60888p^8v^{19} - 60888p^8v^{19} + 192p^5v^{19} + 1080p^6v^{19} + 1080p^6$ $705216p^9v^{19} - 3910368p^{10}v^{19} - 8858136p^{11}v^{19} + 46862760p^{12}v^{19} + 457439184p^{13}v^{19} + 2361075624p^{14}v^{19} + 2361075624p$ $192p^5v^{20} + 1080p^6v^{20} + 18912p^7v^{20} + 36720p^8v^{20} - 437952p^9v^{20} - 4512600p^{10}v^{20} - 25012512p^{11}v^{20} - 2501251$ $63580104p^{12}v^{20} + 220823568p^{13}v^{20} + 2449336680p^{14}v^{20} + 13097561328p^{15}v^{20} + 30177202248p^{16}v^{20} + 3017720248p^{16}v^{20} + 3017720000 + 3017720000 + 3017720000 + 3017720000 + 3017720000 + 30177200$ $141380350848p^{17}v^{20} - 1306684851840p^{18}v^{20} - 7403140259952p^{19}v^{20} + 48996301350750p^{20}v^{20} - 24p^4v^{21} + 24p^4v^{21} +$ $1080p^{6}v^{21} + 24744p^{7}v^{21} + 129816p^{8}v^{21} + 283752p^{9}v^{21} - 2272584p^{10}v^{21} - 28419456p^{11}v^{21} - 158605280p^{12}v^{21} - 28419456p^{11}v^{21} - 2841946p^{11}v^{21} - 2841946p^{11}v^{21} - 284196p^{11}v^{21} - 28419$ $422656608p^{\bar{1}3}v^{\bar{2}1} + 936811968p^{\bar{1}4}v^{\bar{2}1} + 12971851368p^{\bar{1}5}v^{\bar{2}1} + 71258617752p^{\bar{1}6}v^{\bar{2}1} + 177314558064p^{\bar{1}7}v^{\bar{2}1} - 98617652p^{\bar{1}6}v^{\bar{2}1} + 177314558064p^{\bar{1}7}v^{\bar{2}1} - 98617652p^{\bar{1}6}v^{\bar{2}1} + 177314558064p^{\bar{1}7}v^{\bar{2}1} - 98617652p^{\bar{1}6}v^{\bar{2}1} + 177314558064p^{\bar{1}7}v^{\bar{2}1} - 98617652p^{\bar{1}6}v^{\bar{2}1} + 177314558064p^{\bar{1}7}v^{\bar{2}1} - 98617652p^{\bar{1}6}v^{\bar{1}7} + 98617652p^{\bar{1}6}v^{\bar{1}7} + 198617652p^{\bar{1}6}v^{\bar{1}7} + 19861762p^{\bar{1}7} + 1$ $655481735280p^{18}v^{21} - 6514909866600p^{19}v^{21} - 37556614417032p^{20}v^{21} + 230940534213046p^{21}v^{21} + O(v^{22}) + O(v^{22})$

- 21th order in 3D
- 19th order in $\geq 4D$ This extends known series for Ising model without disorder.

II. Extrapolate critical behaviour

Series $\chi(\beta) = 1 + 6v + 30v^2 + 150v^3 + 726v^4 + 3510v^5 + \cdots, \quad v = \tanh(\beta)$

- We expect finite radius β_c of convergence
- Smallest singularity at real axis corresponds to critical behaviour $\chi(\beta) \sim (\beta_c \beta)^{-\gamma}$
- DLog Padé approximants:

If $F(z) = \sum a_n z^n \sim A(z_c - z)^{-\gamma} + \dots$ then $\frac{d}{dz} \log F(z) \sim \frac{\gamma}{z_c - z} + \dots$ Compute [M|N] Padé approximant $\mathcal{P}(z|M, N) = \frac{P_M(z)}{Q_N(z)} = \frac{p_0 + p_1 z + \dots p_M z^M}{1 + q_1 z + \dots q_N z^N}$

and analyse poles and their residues

• Inhomogeneous differential approximants

 $P_1(z)\frac{\partial^2 F}{\partial z^2} + P_2(z)\frac{\partial F}{\partial z} + P_3(z)F(z) + P_4(z) = 0$

allows for correction terms

$$\chi \sim \frac{A_0}{(\beta_c - \beta)^{\gamma}} \left[1 + A_1 (\beta_c - \beta)^{\Delta} + A_2 (\beta_c - \beta) + \cdots \right]$$

Critical coupling v_c as function of p for D = 3, 4, 5. The arrows indicate the percolation thresholds in D = 3, 4 and 5, resp.

Bond-diluted Ising model in 5 Dimensions

- ${\circ}\,$ Critical point is a Gaussian fixed point: $\gamma{=}1$
- Disorder irrelevant
- Corrections to scaling: $\chi \sim (t-t_c)^{-\gamma} (A_0 + A_1 (t-t_c)^{\Delta_1} + \dots$

Results from 19th order high-temperature series for the susceptibility χ : • without disorder:

> $\gamma = 1$ $v_c = .113425(3)$ $\Delta_1 = 0.50(2)$

(compare MC data (*Binder et al.* 99): $v_c = 0.1134250(4)$) • with disorder:

 $\begin{array}{rcl} \gamma & = & 1 \\ \Delta_1 & = & 0.50(5) \end{array}$

for large range of dilutions $p = 0 \dots 0.7$ $(p_c = 0.8818)$

M2 analysis

 γ as function of Δ_1 for the p=0.5 diluted 5D Ising model at $v_c=.227498$

Bond-diluted Ising model in 4 Dimensions

Aharony 1976:

$$\chi \sim t^{-1} |\log t|^{\frac{1}{3}} \quad \xrightarrow{\text{disorder}} \quad \chi \sim t^{-1} \exp\left(\zeta \sqrt{|\log t|}\right), \ \zeta = \sqrt{\frac{6}{53}} \approx 0.3364$$

• pure case: We determine log correction (difficult to determine in MC simulations):

 $\delta = 0.34(1)$ $v_c = 0.148583(3)$

MC simulations (*Bittner* et al.): $v_c = 0.148589(2)$

• disordered case:

successful fit with $t^{-1} \exp\left(\zeta \sqrt{|\log t|}\right)$ with *p*-dependent $\zeta = 0.2 \dots 0.6$

$$\chi \sim t^{-\gamma} |\log t|^{\delta}$$

 δ as function of γ for the pure 4D Ising model via M3 approximants at $v_c=0.148607$

Bond-diluted Ising model in 3 Dimensions

$q\mbox{-state}$ Potts model without disorder

Fortuin-Kasteleyn cluster representation

$$\mathcal{E} = \operatorname{Tr} \exp\left(-\beta J \sum_{\langle ij \rangle} \delta(S_i, S_j)\right)$$
$$= \sum_{\text{cluster } C} q^{\#\text{conn. comp.}(C)} (e^{\beta J} - 1)^{\#\text{edges}(C)}$$

 $q \rightarrow 1$ limit describes bond percolation with $p = 1 - e^{-\beta J}.$ Scaling near $p_c:$

Cluster size distribution

$$n(s,p) \sim s^{-\tau} f((p_c - p)s^{\sigma})$$

mean cluster size

$$\left\langle \sum_{s} s^2 n(s, p) \right\rangle \sim (p_c - p)^{-\gamma}, \qquad \gamma = \frac{3 - \tau}{\sigma}$$

Percolation thresholds (bond percolation on \mathbb{Z}^d) and critical exponents

Dim.	Methods	p_c	σ	τ	$\gamma = \frac{3-\tau}{\sigma}$
2	exact, CFT	$\frac{1}{2}$	$\frac{36}{91}$	$\frac{187}{91}$	$\frac{43}{18}$
	MC (Lorenz and Ziff 1998)	$0.248\overline{812}(2)$	0.453(1)	2.189(1)	1.795(5)
	HTS (Adler <i>et al.</i> 1990)	0.2488(2)			1.805(20)
3	MCS (Ballesteros <i>et al.</i> 1999)		0.4522(8)	2.18906(6)	1.7933(85)
	MCS (Deng and Blöte 2005)		0.4539(3)	2.18925(5)	1.7862(30)
	present work	0.24891(10)			1.804(5)
	HTS (Adler <i>et al.</i> 1990)	0.16005(15)			1.435(15)
	MCS (Ballesteros <i>et al.</i> 1997)				1.44(2)
4	MC (Paul <i>et al.</i> 2001)	0.160130(3)		2.313(3)	
	MC (Grassberger 2003)	0.1601314(13)			
	present work	0.16008(10)			1.435(5)
	HTS (Adler <i>et al.</i> 1990)	0.11819(4)			1.185(5)
5	MC (Paul <i>et al.</i> 2001)	0.118174(4)		2.412(4)	
	MC (Grassberger 2003)	0.118172(1)			
	present work	0.118170(5)			1.178(2)
	RG (Essam <i>et al.</i> 1978)		$\frac{1}{2}$	5/2	$\chi \sim t^{-1} \ln t ^{\delta}$
			-	_	$\delta = \frac{2}{7}$
6	HTS (Adler <i>et al.</i> 1990)	0.09420(10)			
	MC (Grassberger 2003)	0.0942019(6)			
	present work	0.0942020(10)			$\delta = 0.40(2)$
> 6	RG		$\frac{1}{2}$	5/2	1
			-		

MC=Monte Carlo, MCs = Monte Carlo, site percolation, HTS= High-temperature series

Large dimension expansion for q-state Potts model

Critical point equation $1/\chi(D,v_c)=0$ can be iteratively solved: Large-D expansion for v_c in terms of $\sigma=2D-1$

$$\begin{aligned} v_c(q,\sigma) &= \frac{1}{\sigma} \left[1 + \frac{8 - 3q}{2\sigma^2} + \frac{3(8 - 3q)}{2\sigma^3} + \frac{3\left(68 - 31q + q^2\right)}{2\sigma^4} + \frac{8664 - 3798q - 11q^2}{12\sigma^5} \right. \\ &+ \frac{78768 - 36714q + 405q^2 - 50q^3}{12\sigma^6} \\ &+ \frac{1476192 - 685680q - 2760q^2 - 551q^3}{24\sigma^7} \\ &+ \frac{7446864 - 3524352q - 11204q^2 - 6588q^3 - 9q^4}{12\sigma^8} + \cdots \right] \end{aligned}$$

Percolation thresholds $p_{c}% ^{2}\left(r^{2}\right) =0$ for hypercubic lattices

Dim.	Series exp.	MC data (Grassberger 2002)	1/D-expansion
5	0.118165(10)	0.118172(1)	0.118149
6	0.0942020(10)	0.0942019(6)	0.0943543
7	0.078682(2)	0.0786752(3)	0.0786881
8	0.067712(1)	0.06770839(7)	0.0677080
9	0.059497(1)	0.05949601(5)	0.0594951
10	0.0530935(5)	0.05309258(4)	0.05309213
11	0.0479503(1)	0.04794969(1)	0.04794947
12	0.0437241(1)	0.04372386(1)	0.04372376
13	0.0401877(1)	0.04018762(1)	0.04018757
14	0.0371838(1)		0.03718368

Spanning forests

The limit $q \rightarrow 0$ of the *q*-state Potts model describes an ensemble of spanning forests, i.e., tree-like clusters covering the lattice.

- Equivalent to bond percolation with the nonlocal constraint that clusters are free of loops: tree percolation
- d > 2: phase transition at some v_c :

• $v < v_c$: forests consist of small trees

- $\, \circ \,$ at $v_c :$ one component of the forest percolates
- $v > v_c$: ensemble is dominated by configurations where a single infinite tree covers a finite fraction of the lattice
- $v \rightarrow 1$: this fraction approaches 1: spanning trees
- d = 2: phase transition only in the antiferromagnetic regime v_c < 0.
 Fermionic field theory with OSp(1|2) supersymmetry:

$$\mathcal{L} = \int \mathcal{D}(\psi, \bar{\psi}) \, \exp\left[\bar{\psi} \Delta \psi + t \sum_{i} \bar{\psi}_{i} \psi_{i} - t \sum_{\langle i,j \rangle} \bar{\psi}_{i} \psi_{i} \bar{\psi}_{j} \psi_{j}
ight]$$

Critical properties of spanning forests

	MC (Deng, Garoni, Sokal 2007)		HT series	
D	v_c	γ	v_c	γ
3	0.43365(2)	2.77(10)	0.43333(5)	2.785(5)
4	0.210 302(10)	1.73(3)	0.20997(3)	1.71(1)
5	0.140 36(2)	1.22(6)	0.14031(3)	1.31(1)
6			0.10668(3)	1.0(1)
7			0.08674(1)	1.00(2)

Table: Critical points for hypercubic lattices \mathbb{Z}^D for dimensions $D \geq 3$.

• Upper critical dimension is d=6 with logarithmic corrections $\chi\sim (v_c-v)^{-1}(\log(v_c-v))^{\delta},\,\delta=0.65(5)$

Conclusions

- Series expansion techniques are an interesting mixture of combinatorics, graph theory, computer algebra ...
- Quenched disorder average can be treated exactly
- Easily extendable to different dimensions
- ${\ensuremath{\, \bullet \,}}$ Large parameter spaces (d,q,p,\ldots) can be scanned
- But need sophisticated extrapolation techniques to get critical behaviour
- ...and higher-order expansions are not really straightforward to generate