Concurrence, Tangle and Entanglement Entropy of 1-Qubit Maps

 ${\sf Meik} \; {\sf Hellmund}^1 \quad {\sf Armin} \; {\sf Uhlmann}^2$

¹Uni Leipzig, Math. Inst.

²Uni Leipzig, ITP

Workshop Regensburg, 26 October 09

UNIVERSITÄT LEIPZIG

- Setting the stage: qubits, convex roofs, channels
- ► Concurrence of 1-qubit maps
- ► Examples
- Entanglement entropy of axially symmetric 1-qubit channels
- Outlook

Main results

- ▶ general expression for concurrence (and tangle) of 1-qubit maps
- includes solutions with non-flat roofs
- \blacktriangleright applicable to $2\times n$ bipartite systems provided the input state has rank 2
- ▶ numerical results for entanglement entropy: bifurcation pattern

M. Hellmund and A. Uhlmann, Phys Rev **A 79** (2009) 052319 = arXiv:0903.1340, see also arXiv:0802.2092

Decomposition of mixed states

Classical bit

Qbit

$$\begin{array}{rcl} P &=& p \left(\widehat{\mathbb{N}} + q \left(\widehat{\mathbb{N}} \right), \ p+q=1 & \rho &=& p \left| \psi_1 \right\rangle \langle \psi_1 | + q \left| \psi_2 \right\rangle \langle \psi_2 | \\ S_{\mathsf{class}}(P) &=& -p \log p - q \log q & =& p' \left| \psi_1' \right\rangle \langle \psi_1' | + q' \left| \psi_2' \right\rangle \langle \psi_2' | \\ \mathsf{v. Neumann:} \end{array}$$

 $S(\rho) = \min_{\text{decomp}} S_{\text{class}}(p,q)$

optimum: orthogonal decomposition $S(\rho) \ = \ -\operatorname{Tr}(\rho\log\rho)$

Entanglement entropy of $\Phi: \rho \mapsto \rho'$

$$\begin{split} E_{\Phi}(\rho) &= \min_{\rho = \sum p_j \pi_j} \sum p_j \ S(\Phi(\pi_j)) \\ \rho &= \sum p_j \pi_j, \quad \pi_j \text{ pure, i.e. } \pi_j = |\psi_j\rangle\langle\pi_j| \\ \sum p_j &= 1, \quad p_j > 0 \end{split}$$

Examples:

- Entanglement of formation: $\Phi = \text{partial trace } \operatorname{Tr}_A : A \otimes B \to B$
- One-shot Holevo capacity of a channel Φ :

$$\chi_{\Phi}^{*}(\rho) = S(\Phi(\rho)) - E_{\Phi}(\rho)$$
$$\chi_{\Phi} = \max_{\rho} \chi_{\Phi}^{*}(\rho)$$

► replace S by another unitary invariant non-linear function G on state space: Φ -concurrence where $G(\rho) = 2\sqrt{\det \rho}$

Optimization/extension problem

The global optimization problem

$$G(\rho) = \inf_{\rho = \sum p_j \pi_j} \sum p_j g(\pi_j).$$

can be considered as an extension problem:

Given $g(\pi)$ on the set of pure states, extend it in an unique way to a function $G(\rho)$ on all states.

Convex Roofs

Theorem (Uhlmann)

Let $g(\pi)$ be a continuous real-valued function on the set of pure states $\partial_e \Omega$. Then there exists exactly one function $G(\rho)$ on Ω which can be characterized uniquely by each one of the following four properties:

1. $G(\rho)$ is the solution of the optimization problem

$$G(\rho) = \inf_{\rho = \sum p_j \ \pi_j} \sum p_j \ g(\pi_j).$$

- 2. G is the unique convex roof extension of g.
- 3. G is the largest convex extension of g
- 4. G is the smallest roof extension of g.

Convex Roofs (cont.)

- ► Let $G(\rho) : \Omega \to \mathbb{R}$ be convex and $h(x) : \mathbb{R} \to \mathbb{R}$ convex and non-decreasing. Then the composition $F(\rho) = h(G(\rho))$ is convex.
- ▶ Let $G(\rho)$ be a flat roof. Then $F(\rho) = h(G(\rho))$ is a flat roof, too.

If the convex roof G of $g(\pi)$ is flat, then the convex roof of $f(\pi) = h(g(\pi))$ is given by h(G) and is also flat with the same optimal decompositions.

Examples:

 \implies

- ► $S(\rho) = h(2\sqrt{\det(\rho)})$ with $h(C) := \eta(\frac{1}{2}(1+\sqrt{1-C^2})) + \eta(\frac{1}{2}(1-\sqrt{1-C^2}))$ $\Rightarrow E_F(\rho) = h(C(\rho))$ for 2×2 system (Wootters)
- Tangle $\tau(\rho) = C^2(\rho)$ for flat concurrence
- Furthermore, if G is a non-flat convex roof, then $h(G(\rho))$ provides a convex extension of f and therefore a lower bound for the convex roof of f.

Qbit state space

 \mathcal{M}_2 (Hermitean 2×2 matrices) \cong Minkowski space $\mathbb{R}^{1,3}$

$$\rho = \frac{1}{2}(x_0I + \vec{x} \cdot \vec{\sigma}) = \frac{1}{2} \begin{pmatrix} x_0 + x_3 & x_1 + ix_2 \\ x_1 - ix_2 & x_0 - x_3 \end{pmatrix} \iff \mathbf{x}$$

► $\rho = \rho^{\dagger} \Rightarrow$ 4-dim real vector space det $\rho = \frac{1}{4}(x_0^2 - x_1^2 - x_2^2 - x_3^2) = \frac{1}{4}\mathbf{x} \cdot \mathbf{x}$

Minkowski scalar product

•
$$\operatorname{Tr} \rho = 1 \iff x_0 = 1$$

Bloch ball

Stochastic maps

- \blacktriangleright Linear map from one quantum system to another: $\Phi:\rho\mapsto\rho'$
- Trace-preserving: $\operatorname{Tr} \rho = \operatorname{Tr} \rho' = 1$
- Positive: $\rho \ge 0 \Rightarrow \rho' \ge 0$

 \implies Stochastic map

• Completely positive: $\Phi \otimes I_n$ positive $\forall n$

 \implies Quantum channel

Kraus representation $\Phi(\rho) = \sum_{i}^{K} A_{i}^{\dagger} \rho A_{i}, \quad \sum A_{i} A_{i}^{\dagger} = I$

1-qubit stochastic map

$$\Phi(\rho) = \Phi\left(\frac{1}{2}(x_0I + \vec{x} \cdot \vec{\sigma})\right) = \frac{1}{2}\left(x_0I + (x_0\vec{t} + \Lambda\vec{x}) \cdot \vec{\sigma}\right)$$

where Λ is a 3×3 matrix and \vec{t} a 3-vector affine map of Bloch ball

$$\vec{r} \mapsto \Lambda \vec{r} + \vec{t}$$

M. Hellmund (Leipzig)

Concurrence of 1-qubit maps

Qubit map $\Phi \to$ quadratic q form on $\mathcal{M}_2 = \mathbb{R}^{1,3}$

$$q_w^{\Phi}(\mathbf{x}) = 4(\det \Phi(\rho) - w \det \rho) = \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}) - w \, \mathbf{x} \cdot \mathbf{x} = \sum_{i,j=0}^4 (Q_w^{\Phi})_{ij} \, x_i x_j$$

where

$$Q^{\Phi}_w = Q^{\Phi}_0 - w \, \eta = \begin{pmatrix} 1 - |\vec{t}|^2 - w & -\vec{t}\mathbf{\Lambda} \\ -(\vec{t}\mathbf{\Lambda})^T & w \, \mathbf{I} - \mathbf{\Lambda}^T \mathbf{\Lambda} \end{pmatrix} \quad \text{with } \eta = \text{diag}(+1, -1, -1, -1)$$

Theorem

For every positive trace-preserving 1-qubit map Φ , let w be the second largest eigenvalue of $\eta Q_0^{\Phi} = \begin{pmatrix} 1 - |\vec{t}|^2 & -\vec{t}\Lambda \\ (\vec{t}\Lambda)^T & \Lambda^T\Lambda \end{pmatrix}$.

Then $\sqrt{q^{\Phi}_w(\rho)}$ is a convex roof and provides the concurrence for this map

$$C_{\Phi}(\rho) = \min_{decomp} \sum_{j \in C} p_j C(\Phi(\pi_j)) = \sqrt{q_w^{\Phi}(\rho)}.$$

Sketch of proof

 q^{1/2}(π) = 2√det Φ(π) = C(π) since det π = 0.

 So, q^{1/2} is an extension of C. We have to proof that, for the right choice of
 the parameter w, it is convex and a roof.

Proposition (1)

Let the quadratic form q on $\mathbb{R}^{1,3}$ and therefore the matrix Q be positive semi-definite and degenerate, i.e., $Q \ge 0$ and $\dim \operatorname{Ker} Q > 0$. If $\operatorname{Ker} Q$ contains a non-zero vector \mathbf{n} which is space-like or light-like, $\mathbf{n} \cdot \mathbf{n} \le 0$, then $q^{1/2}$ is a *convex roof*. Furthermore, this roof is *flat* if such an \mathbf{n} exists with $n_0 = 0$.

- $\blacktriangleright q$ positive semi-definite $\Longrightarrow \sqrt{q}$ provides a semi-norm and hence is convex
- \sqrt{q} is a roof if there is a foliation s.t. $q^{1/2}$ is linear on the leaves

Let $\mathbf{n} = (n_0, \vec{n}) \in \operatorname{Ker} Q$. Then $q(\mathbf{m} + \mathbf{n}) = (\mathbf{m} + \mathbf{n})Q(\mathbf{m} + \mathbf{n}) = \mathbf{m}Q\mathbf{m} = q(\mathbf{m})$

► case II: no **n** with $n_0 = 0$ exists, hence dim Ker Q = 1 $q^{1/2}$ is linear along the half-line $\mathbb{R}^+ \ni s \mapsto s\mathbf{m} + (1-s)\mathbf{n}$ since $q(s\mathbf{m} + (1-s)\mathbf{n}) = s^2q(\mathbf{m})$

Proposition (2)

For every positive trace-preserving map Φ there exists a unique value for the parameter w such that the conditions of Proposition (1) are fulfilled, i.e., $Q_w^{\Phi} \geq 0$, $\operatorname{Ker} Q_w^{\Phi} \neq 0$ and $\operatorname{Ker} Q_w^{\Phi}$ not time-like.

Idea of proof: study flow of signature of $q_w = q_0 - w\eta$ as w runs from $-\infty$ to ∞

- signature changes at roots w_i of $det(Q_0 w\eta) = 0$
- ▶ Yakubovich's S-lemma: ensures existence of w s.t. $q_w \ge 0$
- ▶ Hence, flow pattern is (up to degeneracies) unique:

 $(+,-,-,-)\xrightarrow{w_4}(+,+,-,-)\xrightarrow{w_3}(+,+,+,-)\xrightarrow{w_2}(+,+,+,+)\xrightarrow{w_1}(+,+,+,-)\xrightarrow{w_2}(+,+,+,+)\xrightarrow{w_3}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,-)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+,+,+)\xrightarrow{w_4}(+,+)\xrightarrow{w_4}(+,+)$ {w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+,+){w_4}(+){w_4}(+,+){w_4}(+){w_

- q_w is positive semi-definite (+, +, +, 0) at $w = w_1$ and $w = w_2$.
- $\operatorname{Ker} Q$ is time-like at w_1 and space-like at w_2

R. Hildebrand, J. Math. Phys 48(2007)102108

Example: Bistochastic maps or unital channels

$$\bullet \ \vec{t} = 0; \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3)$$

•
$$w = \max(\lambda_1^2, \lambda_2^2, \lambda_3^2)$$

•
$$C_{\Phi}(\rho) = q_{\Phi}^{1/2}(\rho) = \sqrt{1 - w + \sum_{i=1}^{3} (w - \lambda_i^2) x_i^2}$$
 is flat

►
$$S_{\Phi}(\rho) = h(C_{\Phi}(\rho))$$

► $\chi_{\Phi} = \log(2) - \eta(\frac{1+\sqrt{w}}{2}) - \eta(\frac{1-\sqrt{w}}{2})$ (where $\eta(x) = -x \log x$)

Example: Axially symmetric channels

modulo unitary transformations we can write

$$\begin{split} \Phi:\rho &= \begin{pmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} \alpha x_{00} + (1-\gamma)x_{11} & \beta x_{01} \\ \beta x_{10} & \gamma x_{11} + (1-\alpha)x_{00} \end{pmatrix} \\ \vec{r} &\mapsto & \Lambda \vec{r} + \vec{t} \\ \text{where } \Lambda &= & \text{diag}(\beta, \beta, \alpha + \gamma - 1), \quad \vec{t} = (0, 0, \alpha - \gamma) \end{split}$$

Positivity:

$$\begin{array}{rcl} 0 & \leq \alpha, \gamma & \leq 1, \\ \beta^2 & \leq \beta^2_{\max} & = 1 + 2\alpha\gamma - \alpha - \gamma + 2\sqrt{\alpha(1-\alpha)\gamma(1-\gamma)} \end{array}$$

Complete positivity:

$$\beta^2 \le \alpha \gamma$$

Axially symmetric channels II

		Kraus length	unital	
phase-damping	$\alpha = \gamma = 1$	2	✓	
depolarizing	$\alpha = \gamma, \beta = 2\alpha - 1$	4	✓	
amplitude-damping	$\gamma = 1, \beta^2 = \alpha$	2	×	

Axially symmetric channels III - Concurrence

$$C_{\Phi}^{2}(\rho) = 4(\det \Phi(\rho) - w \det(\rho))$$

with

$$w = \max(\beta^2, \beta_c^2)$$

where $\beta_c^2 = 1 + 2\alpha\gamma - \alpha - \gamma - 2\sqrt{\alpha(1-\alpha)\gamma(1-\gamma)}.$
case A: $\beta \ge \beta_c$: flat roof
case B: $\beta < \beta_c$:
non-flat
Ker $Q = \lambda \mathbf{n},$
 $\mathbf{n} = (1, 0, 0, z_0),$

$$z_0 = \frac{\sqrt{\gamma(1-\gamma)} + \sqrt{\alpha(1-\alpha)}}{\sqrt{\gamma(1-\gamma)} - \sqrt{\alpha(1-\alpha)}}$$

$2\times n$ bipartite system

•
$$\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B$$
, dim $\mathcal{H}^A = 2$

- \mathcal{H}_2 : a 2-dimensional subspace of \mathcal{H} , V: unitary mapping \mathcal{H}^A onto \mathcal{H}_2 .
- ▶ $\rho \mapsto \Phi(\rho) = \operatorname{Tr}_B(V \rho V^{\dagger})$ is a 1-qubit channel for all density operators ρ supported by \mathcal{H}_2
- ► Hence, $C(\rho)^2 = 4(\det \operatorname{Tr}_B \rho w \det \rho)$ where w depends on \mathcal{H}_2 .

Example: 3 qubits $\mathcal{H} = \mathcal{H}^a \otimes \mathcal{H}^b \otimes \mathcal{H}^c$, $\Phi = \operatorname{Tr}_{bc}$

- ► \mathcal{H}_2 spanned by $|W\rangle = 3^{-1/3}(|001\rangle + |010\rangle + |100\rangle)$ and $|GHZ\rangle = 2^{-1/2}(|000\rangle + |111\rangle)$
- $\Phi: \begin{pmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{pmatrix} \mapsto \begin{pmatrix} \frac{2}{3}x_{00} + \frac{1}{2}x_{11} & \frac{1}{\sqrt{6}}x_{01} \\ \frac{1}{\sqrt{6}}x_{10} & \frac{1}{3}x_{00} + \frac{1}{2}x_{11} \end{pmatrix}$
- \blacktriangleright We get w=1/6 and

 $C(\rho)^2 = \frac{8}{9} \langle GHZ | \rho | GHZ \rangle^2 + \langle W | \rho | W \rangle^2 + \frac{4}{3} \langle GHZ | \rho | GHZ \rangle \langle W | \rho | W \rangle$

Tangle of 1-qubit map

▶ We look for an convex roof extension of

$$\tau_{\Phi}(\pi) = C_{\phi}^2(\pi) = 4 \det \Phi(\pi)$$

Ansatz:

$$\begin{aligned} \tau_{\Phi}(\rho) &= 4 \det \Phi(\rho) - 4 v \det \rho \\ &= 1 - |\vec{t}|^2 - v - \vec{t} (\Lambda + \Lambda^T) \vec{r} + \vec{r} (vI - \Lambda^T \Lambda) \vec{r} \end{aligned}$$

This is a convex roof if the quadratic part $(vI - \Lambda^T \Lambda)$ is positive semi-definite and degenerate, i.e., for

$$v = \lambda_{\max}(\Lambda^T \Lambda)$$
 (max. eigenvalue)

► Therefore,

$$\chi_2^{\Phi}(\rho) := 4 \left(\det \Phi(\rho) - \min_{\mathsf{decomp}} \sum p_j \, \det \Phi(\pi_j) \right)$$
$$= 4\lambda_{\mathsf{max}}(\Lambda^T \Lambda) \det \rho$$

(Osborne, Verstraete 2006)

• The roof is flat if $\vec{t} \cdot \vec{e} = 0$ with \vec{e} eigenvector to λ_{\max} .

Entanglement entropy for axially symmetric maps

Leaves of the foliation of the entanglement entropy. The z axis points upwards.

- Phase Ia: C_{Φ} flat $\Rightarrow E_{\Phi}$ flat
- Phase Ib: E_{Φ} still flat
- Phase II: solid cone with apex at N pole appears, states in cone have optimal decompositions of length 3
- ▶ phase III: leaves form cones with apex at the z axis outside the ball, no common apex

Bifurcation parameters

compare competing decompositions: $s(\phi) := S(\Phi(\pi)), \ \pi = (\sin \phi, 0, \cos \phi)$

M. Hellmund (Leipzig)

M. Hellmund (Leipzig)

The HSW capacity as a function of the channel parameter β at $\alpha = 0.8$, $\gamma = 0.4$. The inset shows the small region where the transition between phases I, II and III takes place.

Outlook

• Channels with higher output rank: det $\Rightarrow e_2$ (Rungta et al.)

$$C_{\Phi}(\pi) = 2\sqrt{e_2(\Phi(\pi))}$$

 $e_2(A) := \prod_{i < j} \lambda_i \lambda_j$

 $2\sqrt{e_2(\Phi(\rho)) - we_2(\rho)}$ is a convex extension but not a roof \Rightarrow lower bound • e.g., Choi map of 3×3 system:

$$\rho \mapsto \Phi[\mu](\rho) = \frac{1}{1+\mu} \begin{pmatrix} x_{00} + \mu x_{22} & -x_{01} & -x_{02} \\ -x_{10} & x_{11} + \mu x_{00} & -x_{12} \\ -x_{20} & -x_{21} & x_{22} + \mu x_{11} \end{pmatrix}$$
$$C_{\Phi}(\rho)^2 \ge \frac{4\mu}{(1+\mu)^2} \left[(x_{00} + x_{11} + x_{22})^2 + (\mu - 1) \left(|x_{01}|^2 + |x_{02}|^2 + |x_{12}|^2 \right) \right]$$

Main results

- ▶ general expression for concurrence (and tangle) of 1-qubit maps
- includes solutions with non-flat roofs
- \blacktriangleright applicable to $2\times n$ bipartite systems provided the input state has rank 2
- ▶ numerical results for entanglement entropy: bifurcation pattern