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Abstract. We discuss a Hamiltonian variational procedure for lattice gauge theories, suitable 
for 3 + 1 dimensions, based on a trial state vector in terms of link variables. This method has 
been applied to the calculation of link and plaquette expectation values for the pure SU(3) 
lattice gauge theory. We find agreement with the Monte-Carlo data only in part of the weak- 
coupling and cross-over regions. Taking some two-link correlations in the trial state vector 
into account we improve the results in the cross-over region and smear out an unwanted 
phase transition. 

1. Introduction 

In recent times lattice quantisation has become a powerful tool for the non-perturbative 
study of gauge theories. Variational methods are one of several approaches to this. In the 
Hamiltonian formulation of the variational method (e.g., PatkoB and Deak 1981, PatkoH 
1982, Horn and Weinstein 1982, Hofsass and Horsley 1983, Hari Dass et a1 1983) the aim 
is to find a state vector @ for the lattice such that the expectation value of the Hamiltonian 

becomes minimal. Usually a trial wavefunction constructed out of plaquette state vectors 

is used (PatkoH and Deak 1981, PatkoS 1982, Hofsass and Horsley 1983, Hari Dass el a1 
1983); for this the expression (@IHI@) can be calculated relatively easily in 2 + 1 
dimensions. However, due to Bianchi identities, this becomes more difficult in 3 + 1 
dimensions even for Abelian groups (Hari Dass et a1 1983). On the other hand, Horn and 
Weinstein (1982) used a link-dependent trial state vector to study some properties of the 
Abelian U(1) gauge theory. In the present paper we adopt a similar ansatz for the state 
vector to investigate the phase structure of the non-Abelian SU(3) gauge theory in 3 + 1 
dimensions. 

In 8 2 we collect some necessary formulae for the variational Hamiltonian method. In 
§ 3 a link-factorised trial state vector is considered. By inspecting the ground-state energy 
and link and plaquette expectation values we find that this very rough approximation 
produces an unwanted phase transition. In 0 4 we discuss a possible way of improving the 
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ansatz by using a trial state vector including link correlations. This correction smears out 
the phase transition. Finally, in 0 5 we summarise our results. 

2. Some necessary ingredients for our Hamiltonian variational method 

In general, the state vector @ of the lattice is constructed from functionsf(V), V E  SU(3), 
where Vis a product of link variables along a closed or open contour, i.e. a loop or a string. 
Since the state vector has to be invariant under global gauge transformations, 

it is a class function on the group and therefore can be expanded in characters: 

Here, as usual, the irreducible representations of the SU(3) group, Dp*q( V ) ,  are numbered 
by two non-negative integers p and q so that, for example, D 1 p o ( V )  is the fundamental 
representation. xp,q  is the trace (character) of the representation Dp'q.  The dimension of the 
representations is given by 

To avoid difficulties with the local gauge invariance of the state vector e, which is also 
necessary, the gauge on the three-dimensional lattice at a time to is completely fixed so that 
no local gauge freedom is left (Batrouni 1982, Sharatchandra 1982). All links in the z 
direction carry link variables equal to unity; furthermore, the links in the x direction on the 
z = 0 surface and the links in the y direction on the x = z = 0 edge also have link variables 
equal to unity. 

We use the Hamiltonian appropriate to the Wilson action (Kogut and Susskind 1975, 
Kogut et a1 1979): 

Here the lattice spacing is set equal to one. 

Acting with E' on the representation DPsq ,  one obtains 
The eigenvalues of E2 are those of the quadratic Casimir operator of the gauge group. 

E2Dp,q( U )  = f [ ( p  + q)(p  + q + 3) -pq]  DPsQ( U ) .  (7) 

On the gauge-fixed lattice the single-plaquette Hamiltonian has to be averaged over 
different kinds of plaquettes: for every plaquette without gauge-fixed links one has to 
consider two plaquettes with two frozen links. As in every variational calculation, we 
consider a trial state vector depending on several variational parameters which are chosen 
to minimise the expectation value of the Hamiltonian. 
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3. First choice of the trial wavefunction 

The simplest, mean-field-like ansatz for the ground state is 

links p , q = o  
i 

This extremely simple choice serves to illustrate the method and will be used as the starting 
point for corrections. Since the character expansion also contains the conjugate for every 
character in addition to the character itself, and the state vector has to be invariant under 
reversal of the orientation of the links, the coefficients can be chosen to be real and 
symmetric: 

UP, 4 = a4.p  * ( 9 )  

The calculation of the expectation value ( H )  is possible without difficulties. The norm per 
link is given by 

(v Id=J d U w ) P * ( U ) = C  a;,,. 
S U 3 )  

Then we immediately find the electric energy per link: 

tgZ(PlmV))=fg?C 3 a p , , l - ( P + 4 ) ( P + 4 +  3) -P4l .  
P3 4 

Because 

x1?O( fi U i )  = T r  D 1 ~ o ( U l ) D ’ i o ( U z ) .  . . D1yo(Un), 

and since the state vector is factorised, we have to know the expectation value 

i =  I 

(d(D1~o(UN@lP) a, p= 1 , 2 , 3  

to calculate the magnetic energy. The rules for group integrations and the orthonormality 
relations of the Clebsch-Gordan coefficients (de Swart 1964) give 

= fJapA(P,  4, P’, 4’) 
where 

if the @’, 4’) representation is part of the 
Clebsch-Gordan decomposition 
( P ,  d@U, O > = ( p +  1 ,  4 ) @ ( P -  1 , 4 +  l ) @ ( P ,  4 -  1 )  N P ,  q ,p’ ,  4’) = jl otherwise. 

As a result, we get 

The minimum of the expectation value ( H )  is searched for numerically using a standard 
minimisation procedure. The coefficients up, with the symmetry property of equation (9) 
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are parametrised as 

where P(p ,  q) is a polynomial of third degree in (pq)-’ and ( p + q ) - ’ .  With this 
parametrisation we determined the optimal state vector at different values of /3 (p= 2NgP2 
= 6g-2). Other parametrisations have also been tested; they gave similar or worse results 
(higher ground-state energies). Figure 1 shows the calculated minimal ground-state energy. 
As in the mean-field calculations, a first-order phase transition is found at p, = 4.0 f 0.05 
(straight lines). 

For ,8 <p, no state vector with energy ( H )  < 0 (lower than the perturbative vacuum) is 
found. Since we have used a link-factorised state vector, the amount of magnetic energy is 
smaller than the corresponding one with link correlations included. For strong coupling 
some correlations are necessary to obtain an amount of magnetic energy larger than the 
electric one so that a non-perturbative ground state exists. 

The link state vector a, is, according to equation (8), a sum of pmax x qmax terms. We 
give here some of these (as yet unnormalised) terms to discuss their behaviour. 

For p= 4.5 a, contains 

1 + 0.669[3] + 0.408[6] + . . . + 0.066[24] + . . . + 0.00263[ 1201 +. , , , 
for p= 6.0 (D contains 

1 + 1.036[3] +0.734[6] +. . . +0.209[24] +. .-0.00930[120] +. . . 
and for p= 7.5 we obtain for a, 

1+1.170[3]+0.999[6]+ . . . +  0.373[24]+ . . . +  0.02843[120]+ . . . ,  

Figure 1. The electric (A), magnetic (B) and total (C) energy per plaquette as function of 
p= 6g-’ (averaged over the two types of plaquettes) for the link-factorised (-) and the 
two-link (- - -) trial state vectors. 
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Here [NI = (dim(p, q ) ) 1 / 2 ( x P , q  + f ’ p )  with dim@, q) = N .  The first term is the coefficient of 
, y o s o  = 1 and corresponds to a freely fluctuating link variable. Therefore the electric energy 
vanishes. The influence of this term relative to the others decreases with increasing p. The 
link variables are straightened out more and more. So with increasing p the convergence 
of the character expansion gets worse. We proved that p,, = qm, = 5 for p < 6 and 
pm,  = qm, = 7 for 6 < < 9 are sufficient for the convergence of our calculations. 

The link expectation value is defined as 

( L )  = ( ~ l x ‘ ~ o ( ~ ) l r p ) / ( ~ l P )  (16) 

(P) = (PW, )du2)lx1’0(u1 u,-*)ldul )du2))/(vIdZ* (17) 

and the plaquette expectation value of a plaquette with two gauge-fixed links is 

Results for ( L )  and (P) with the ansatz of equation (8) are presented in figures 2 and 3, 
respectively (straight lines). 

4. Improved trial state vector including some link correlations 

In order to take correlations into account we propose to choose a more complicated state 
vector on part of the lattice (a local domain r), whereas all other links not shared by r 
carry the ‘mean-field’ state vector 9: 

This changes the energy of all plaquettes which share links with r. Therefore the following 
variational problem has to be solved: 

( Hr + Hplaquettes with /E r ) + minimum. (19) 

For a large r the calculations would be very extensive because many different terms could 
contribute to Qr.  As a first attempt we choose the domain r to consist of only one 
plaquette with two gauge-fixed links. Then the most general trial function of this domain 
would be 

mr = c ~ , ~ , ~ ~ , ~ ~ , ~ ~ ~ , ~ ~ ~ ~ P ’ ~ ( u ~  > x p ‘ , q ’ ( ~ 2  ) x p ’ ” q ’ ’ ( ~ 1  U,- ‘1. (20) 
P, 4, PI, 4’9 Y, 4“ 

Since this trial state vector already gives a rather extensive minimisation calculation, for 
simplicity we choose 

Pmax.. . . I  Qmax 

P. 49P’. 4‘ 
Qr = C c ~ , ~ , ~ : ~ ~ x ~ , ~ ( ~ ~ I x P ‘ . ~ ‘ ( ~ ~ ) .  (21) 

The expectation value ( H )  can be calculated as described before. For the electric energy 
of one link of we obtain 

1 2  He,,, = t g 2  C J c p ,  q ,p! ,  g’ [(P + q)(p + 4 + 3) -MI 
P. a P’9 4‘ 

and for the magnetic energy of r we obtain 
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Figure 2. The link expectation value for the link-factorised (-) and the two-link (- - -) 
trial state vectors. 

Different parametrisations of the cp, q,p, ,  qr have been tested. We present here results for the 
parametrisation in the form of a polynomial of third degree in (pq)-',  ( p  + 4)- ' , (p'q')- ', 
(p' + q')- ' ,  (pp')-' ,  (qq')-', ( p  +p ' ) - ' ,  (q + q')-'. Since the expressions for the energy are 
rather complicated it was necessary to set pmax = qmax =p&, = = 4. Therefore for 
weak coupling (large p) we do not expect an improvement in our results. However, as can 
be seen from the broken curve in figure 1, for p=4.2 an energy 10% lower than that of the 
link-factorised trial state vector is obtained. For /3= 6 the energy is still 2% lower. 

At about p = 4  energy and link expectation values again decrease rapidly but tend to 
zero only slowly for lower p (figures 1 and 2). We have compared the plaquette expectation 
value for the domain r with the Monte-Carlo data of Creutz and Moriarty (1982) obtained 
on a four-dimensional Euclidean lattice (figure 3). In the cross-over region the agreement is 
better than for the link-factorised trial state vector. 

P 

Figure 3. The expectation value of a plaquette with two gauge-fixed links for the link- 
factorised (-) and the two-link (- - -) trial state vectors compared with the Monte-Carlo 
data of Creutz and Moriarty (1982) (. . .). 
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5. Summary 

In this paper we have tested an ansatz for a Hamiltonian variational calculation of pure 
SU(3) lattice gauge theory. Contrary to a plaquette ansatz, our trial wavefunction allows 
us to calculate the expectation value of the Hamiltonian in 3 + 1 dimensions. Link and 
plaquette expectation values have been calculated for the state vectors obtained by 
minimising the ground-state energy. It turns out, as expected, that a link-factorised trial 
state vector does not reproduce the correct phase structure of SU(3) lattice gauge theory. 
A phase tranvition at  p= 4.0 is found between weak and strong coupling, similar to that of 
mean-field calculations. Satisfactory agreement with the Monte-Carlo data exists only in 
part of the weak-coupling and cross-over regions. However, a simple correction, taking 
correlations of two links in the trial state vector into account, provides a better result. We 
find that the phase transition is smeared out; however, a very rapid cross-over is left. So 
further improvements are necessary and in principle feasible, but at the cost of very 
extensive variational calculations. 

After completing our work we received a preprint from Horn and Karlinger (1983), 
who studied a similar mean link ansatz for the trial wavefunction in SU(2). However, 
unlike us they used a Monte-Carlo program to calculate the expectation value of the 
Hamiltonian. 
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