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The breaking of supersymmetry at T#  0 leads to non-vanishing massless particle tadpoles and therefore to BRST anomalies in 
the degeneration limit of  one-loop amplitudes. Cancellation of  those anomalies gives the loop-corrected background field equa- 
tions where the thermal energy-momentum tensor appears as source term for the graviton and dilaton field equations. 

The behaviour of string theories at finite temperature has attracted much attention, especially the singular 
behaviour of  the free energy of a gas of free strings at the Hagedorn temperature. The partition function is 
calculated using an imaginary periodic time with period/? [ 1 ]. Therefore, soliton states have to be included. 
The condition of antiperiodicity for space-time fermions leads to a mixing of the sum over soliton winding 
numbers with the sum over spin structures, breaking the space-time supersymmetry [ 2-4 ]. We are interested 
in the question of how this changes the background field equations. At tree level, these field equations are most 
easily derived from the absence of conformal anomalies, which depend on the short-distance behaviour only. 
Non-zero temperature effects first arise at the one-string-loop level, however. As first observed by Fischler and 
Susskind [ 5 ], integration over the moduli of  the world sheet produces additional singularities, arising from the 
boundaries of modular space. The most appropriate way to study string loop contributions to the equations of 
motion seems to be to consider BRST invariance. For the bosonic string at zero temperature this has been 
carried out by Polchinski [ 6 ] and Rey [ 7 ], and in a somewhat different approach [ 8 ] for the open superstring. 
In this paper we essentially follow refs. [6,7 ] and apply these methods to the case of the heterotic string, taking 
into account the one-loop non-zero temperature contribution. 

For definiteness, we consider a one-loop heterotic string amplitude with N external Neveu-Schwarz (bo- 
sonic) states. Only the three even spin structures can give non-zero tadpole, two- or three-point functions. Co- 
ordinates appropriate for the degeneration limit on the heterotic world sheet are given by glueing a punctured 
(heterotic) sphere with global coordinates (z ' ,  0', z ' )  with punctured (even heterotic) torus with coordinates 
( z", 0", ~" ), z" = z" +t .  The glueing prescription is [9] 

z ' z " = - t  2, O"z'=tO', O ' z " = - t O " .  (1) 

The factorization relation with the appropriate ghost insertions (to get non-zero expectation values despite of  
zero modes) then reads 
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I M ~ N  M+N M+N I 
<(z,, o,) I-I b(zA I] ~(/~(zk)) 

x i j k *£ 

= ~ (--t2)ha(--{2) E° @a(Z'o,O'o) Vi(z~,O~) [[ b(zS) I-I 8(fl(z'~)) 
a i j k ZI 

- -  tt t t  x ~a(zo ,0~)  V~(z~,OT) I-I b(zD [I ~(/~(z~)) . (2) 
i j k Z2 

Here, the q~a are a complete set of  orthonormal states 

4~ 3 
( (~a(O)(~b((X)) ) sphe r e  = - -  (~ab, ( 3 )  

87¢GN 

where the coordinate frame on the glueing sphere is given by 

z = - t / z ' = z " / t ,  O=tl /ZO' /z '=-- t - l /20 " . ( 4 )  

As usual, b and c are the reparametrization ghosts, fl and y the superghosts and ~ is the scalarized superghost 
[ 9-12 ]. The ghost parts of  the q~ fields are given by 

(:cOc ebee - ° ( 0 ) :  :cee -o (oo) :  ) sphere  = 1 . (5)  

The V represent BRST-invariant vertex operators o f  the NS sector 

V(z, 0) = c ( e  - o X polynomial of  matter superfields. ( 6 ) 

Now we have to integrate over the (super)modul i  of  the punctured surface. The (super)Beltrami differentials 
/t~,/~k provide (together with the ghost zero modes)  the correct measure for the chosen parametrization (% Ok) 
of  the (super)moduli  space. We choose as even moduli 

on ZI: the positions o f  ( N +  1 ) - 3 insertions, 

on E2: the positions of  ( M +  1 ) - 1 insertions, the modulus r o f  the torus, 

and q=  - t 2, 

and as odd moduli 

on Z t: the supercoordinates of  ( N +  1 ) - 2  insertions, 

on Z2: the supercoordinates o f  M +  1 insertions. 

Polchinski [ 6 ] emphasizes that a change of  the moduli generally leads to a change of  the local coordinate frame 
which describes the factorization. In our case, however, the (super)Beltrami differentials of  the punctures are 
localized in the vicinity of  those punctures. The z integration also does not introduce additional terms, because 
the torus is flat. The 0~ integration (i ~ 0) eliminates the ghost term e -0 for the corresponding vertex generating 
the Fl-picture for that vertex operator. The q integration yields 

dqd#[(#q ,b)[Z=(q#)  - '  ~ z b ( z )  ~ - ~ 6 ( z ) = ( q # ) - t b o / 7 o .  (7) 

The contribution from the supermodular parameter 0~ is 
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f .... f d0o0o(2Z0 - l  dZzO(fl(z))~(z)e-O(°)=(2zO - '  d z 2 ~ ( f l ( z ) ) O ( [ z l - r o ) e - °  

= (2~i)-1 ~ dz O(fl(z) ) ~(?(0)  ) = 1. (8) 

The three remaining positions of vertex operators on the sphere are fixed at 0, 1 and oo, and the two free odd 
coordinates are put equal to 0. In this way we get two vertex operators in the Fz-picture. 

The vertex VN is supposed to represent a spurious state, i.e. it is given as a pure BRST commutator. Such states 
decouple due to BRST invariance. In the antiholomorphic sector we have only bosonic fields and 

ce e -~Vspurious = [ Q., c e -~V~ ] • (9) 

I f  the BRST current of the holomorphic sector 

JaRST =cTR + TTv (10) 

would act on an operator including the ~-field it would change not only the ghost charge but also the superghost 
charge. This is not the case, however. Therefore, we also have 

cee-°Vsouriou S = [Q, ee -OV ~] . (11 ) 

In the following, we will consider only the holomorphic part of QBRST, since the anomaly and the counterterms 
are left-right symmetric. 

Now, by the usual arguments [6,7,9] we can deform the contour, which defines the commutator, and get 
surface terms in the moduli space due to 

0 ( 0 ) ,  (12) < [Q, b o ] O ) =  Ologq 

where 0 is an arbitrary operator. For a tachyon-free theory the boundary z ~  0 gives no contribution. 
We now study the tadpole configuration M =  O, q~O: 

- 0 ( q ( l ) k 2 + m 2 _ l  
A T -- 8~GN47t. 3 f dq dq 0 l~0~g q 

× d z d f <  I 2 - (/&,b)[ ~)FI(ZO)> eV~N(O)ceV~(1)CeOCq~F~(OO) 1-I V,(z,) (13) 
i=2 i=2 7~ 

This amplitude is non-zero for massless intermediate states 

_ 0 (qt])k2+m2_ 1 ~ dqdq ~og  q =4r~ i f k 2 + m 2 = 0 ,  

= 0  i f k 2 + m 2 > 0 .  (14) 

The construction of a string tree level counterterm, i.e. a BRST anomalous local operator insertion closely fol- 
lows the analysis in ref. [ 7 ]. The bosonic part of  the action 

f 2 d 2 z  2d2z 
Sb= J ---7-- ~ ( z ) =  f ---7- [½0X~OXbG~e(X)+ 80( ~(X)bc)+c'c ']  (15) 

leads, in a weak field expansion, to the insertion of local operators 85e(z). After BRST contour deformation, 
the corresponding change ~Ag= o is 
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~Ag=o=e -2q~ (Pu(O)ceV,(1)[Q, ceSLt(oo)] ]-I V,(z~) 
i = 2  i = 2  7[ 

=e-2~ eV~N(O)ceV'(1)COCe2 {--.~bOXaOXb+p'~[.O(bc)+c'c']} [I Ve(z,) - - ,  (16) 
~'C i = 2  i = 2  7~ 

with 

G fl.b = R.b + 2Vagb q), ( 17 ) 

and 

fl'~= - ( V ¢  ) 2 -  ¼R . (18)  

We find as loop-corrected equations of motion 

1 G fl.b= - - (  (OXaOXb ) ) , (19) 

t im=0,  (20) 

where the double bracket means that modular integration as well as integration over the X ° zero mode is included. 
In order to evaluate the tadpole expectation value we now continue to imaginary periodic time. The sum over 

the right-handed spin structures contains a phase factor depending on the imaginary-time winding numbers n, 
m corresponding to the cycles of the torus [ 2-4, 13 ]. As pointed out in ref. [ 1 ], the string partition function is 
the logarithm of the thermodynamic partition function (i.e. it generates only connected string diagrams) 

dZz 
n+mzl  2) K(n, m) , logZ(fl)=flF=f ( imz)2 , ~ m ' f l e x p ( ~ ]  

K(n, m) = ~ z(n, m, s) k (s ) ,  (21) 
right spin structuress 

where Z is a phase factor and k includes the usual zero temperature contributions of the bosonic, fermionic and 
left-moving internal degrees of freedom. The tadpole is 

1 - 1  - 1  0 
- -  ( ( O X ~ O X ~ ) ) -  - -  f l F =  - - - -  ( f l F ) = p  ( i ~ O )  , 
~Vd_ 1 ~Vd_ 1 ~ O~ 

1 l (((OXOuOXOu))+((O£OlOXOl)))=-F fl O 
~Vd----~ < < O X ° O X ° > ) -  ~Vd-I _ _  ~d-7 Vd-I Off F= -P" 

(22) 

As expected, it agrees with the thermal energy-momentum tensor of an ideal string gas. In this way we find the 
equations of motion for the heterotic string at finite temperature 

Rab+2VaVbfI)=8nGNeXp(2 cI)) Tab, I " q c i b = - - ( V q b ) 2 + ¼ R = 0 -  

It can be obtained from the effective lagrangian 

L~= (16nGN) -~ exp(--2qb) [R + 4 (Vqb) 2 ] +F(g~/o2fl). 

After the field redefinition 

gab ~exp[ 4/ (d--2 )~]gab 

we obtain the field equations 
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(24) 
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9 
[ ]q~= -4z~GN exp(2q~) t r  T, Rab--½gabR+ d ~  [gaa(VCI))Z--2VaVb(I)] =8 / rGh  exp(2q~) Tab, (26)  

a n d  the new effective lagrangian  

5f = (16Z~GN)- '( R -  d -~  (Vq) )2) + exp( 2q~ ) F(g~/o2[3 ) . (27)  

The  results f o u n d  so far are those which  one  could  have guessed immedia te ly .  Once  it is unders tood ,  however ,  
how to o b t a i n  these backg round  field equa t ions  in  a cons is ten t  and  systemat ic  m a n n e r ,  it becomes  possible  to 
invest igate  less t r ivia l  ques t ions ,  in  par t icu la r  t he rma l  correct ions  to two- and  three-poin t  funct ions .  Also o f  
in teres t  wou ld  be the inc lus ion  of  h igher  order  te rms  in  the backg round  field. Work  on  these p rob lems  is in  
progress. 
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