The purpose of this note is to give a proof of the main result of [FLM] (i.e.
of Theorem 2, which directly implies Theorem 1) in the case of arrangements
of rank two. The result reduces to a non-trivial but elementary calculation.
In particular, the commutative algebra results of [FL1] are not necessary in
this case.

Since it does not make any difference, we will not restrict to root ar-
rangements but consider general line arrangements in a two-dimensional real
vector space. It is not clear whether the validity of Theorems 1 and 2 of
[FLM] does really depend on the assumption that the underlying arrange-
ment is a root arrangement. Using the methods of [FLM], it is in fact not
difficult to see that Theorems 1 and 2 are also true for every hyperplane
arrangement of rank three and every simplicial arrangement of rank four. In
[FL2| we formulate a conjectural generalization of Theorem 1 to arbitrary
simplicial fans.

Let V' be a real vector space of dimension two and V* its dual space. Let
0 /\2 V — R be a fixed isomorphism. The choice of  defines an oriented
volume element on V. Let A be a finite line arrangement in V* given by the

lines
\aly=0, i=1,...,N,

with pairwise non-collinear vectors oy € V'\ {0}. Let P be the set of con-
nected components of the complement of these lines. The elements of P are
called chambers. We assume in addition that the vectors o, are oriented
in such a way that there exists A\g € V* with (g, ) > 0 for all i. Fix a
vector \g with this property and denote the associated chamber by F,. We
order the vectors « in the counterclockwise direction, i.e. we require that
v = Bl Na) >0 for 1 <i<j<N.

For each P € P let ¥} be the subset of those functionals in the set
{xaf,...,£a)X} which are positive on P and A}, C X} the two-element
subset of functionals defining the walls of P. Set ¥}, », = ¥} N ¥} for all
P € P. We can order the chambers in counterclockwise direction as Py,
P, ..., Py_1, Py, Py, ..., Py_1, where the bar over a symbol denotes the
opposite chamber. Then A} = {af,ay} and A}, = {—a), o)} for 1 <
i < N —1. Furthermore, Xy p = {of, ..., ¢/} and X}, 5 = {ajy, ..., oy}

There are precisely two galleries from Fy to Py in the line arrangement
A, namely G, : Py, P, ..., Py_1, Py and G, : Py, Py_1, ..., P, Py (cf.
[FLM, Lemma 2]). Every P € P\ {P, Py} is contained in precisely one of
the galleries G;. For P € P and k = 1 or 2 let Gpj, be the unique gallery



containing P if P is different from P, and Py, and set Gpok = 93—k, Gy 1 = Gi-

Let sV be the polynomial ring in the independent variables @y, ..., @y,
which are in bijection with the elements of XY, , and S ~ (sv)? the free
module of maps X — s¥, where X = {G;, G} is the set of all galleries from
Py to Py. Let Relt be the subset of the vector space s, consisting of all
elements of the form

N
> ma))mi, nevV.
i=1
The relation space R C SV is then the set of all elements of the form r(1g, —
1g,) with 7 € Sym(Rel") C s".
In the space Sy’ we consider the element

o=5 Y wwmwi(lg +1g,),
1<i<j<N

and for any n € V* such that (n,«) # 0 for all i and any k € {1,2} the
element

2
\
1 (Zz ayexy . <7]’ Q; >wz)
ik = 5 § v(Ap) e

g .
PEP HOCVEA% <777 a\/> ok

Here, for a two-element subset AY = {vy,v2} €V we write v(AY) = [G(v; A
v9)|. Note that in the case of root arrangements considered in [FLM], the
factors v(AY) can be omitted if we assign the coroot lattice covolume one.
For this reason they do not appear in [FLM]|. One observes that the element
0 is the common value of the d¢ considered in [FLM] (regardless of ¢), while
the elements c,, are the possible values of the expressions ¢,.(,,), there for
varying parameters (up)p.

The assertion of [FLM, Theorem 2] is that for any 7 and & the difference
¢p:k — 0 s an element of Ry. We will prove this by an explicit calculation. We
first use the explicit information on the set P summarized above to rewrite



the formula for ¢, in the form

1= v
2,5+1
C k= Tz
! 2 z:: <777 ><777 z+1>
i 2 N 2
< <naa;'/>wj> 191 + ( Z <77,CK;-/>WJ'> 192
j=1 j=it1

N 2
1 V1IN v
+ - (n,ow)w- 1g.
2 (. ) (1, o) (Z / > k

J=1

One observes immediately that ¢,.; — ¢,.2 € Ro, which is consistent with the
main assertion. To proceed further, we need the following simple identity.

Lemma 1. For1 <i < j < N we have

J—1

Z (%3 k+1 (%]
=1

7]7 ak 777 ak+1> <7]7 ><n7 >

Proof. Use induction on j for fixed ¢, the case j = ¢+ 1 being trivial. The
fact that v;; = B(a; A @) for i < j implies that

4 Vv \ : :
vy +vpe = vigay, 1< j <k (1)
: Vv \— i\ ;
As a special case we have v; ;1o + v;j_1 ;0 = viya]_;. From this we get

Vij—1 Uj—1,5 Uij

oy mal ) | malgimay)  (may)may)’

which is precisely what is needed for the induction step.

Write ¢, = ¢;1lg, + ¢plg, with ¢, ¢ € s5. We can now collect the
monomials in the @; in ¢,; and ¢,2. Using the Lemma, the coefficient of w?
in ¢y is

2N1

Z Uk, k+1 . _UiN<77> )

(n, ay) 77,ak+1> a 2(n, axy)
The coefficient of w;w;, 1 <i < j < N, in ¢ is

k=1

N-1

Z Uk, k+1 _ _UJ'N<77> o)

(malY(maf,) (o))

—(n, ) )(n, &
=j



To sum up,

1 (n,ai') 5 (n, o)
Chpl = — % ViN L w; — VUiN L ;T (2)

Consider now the following special case of (1):
vay +viney =viva), 1<i<j <N,
which implies immediately
viNey + vineg = 2u5vay + vgon.

Combining this identity with the formula (2) it is then easy to verify that

N N
1 1
eyl = = Z Vi Wi — =t Z(n, o) ) vawi :
2 ‘o 2<777QN> i ;
1<i<j<N =1 =1
In the same way, we obtain
lew (1,
G2 = 5 Z < f/ 7+ Z \]/ W;W;
= 1, 0%) 1<i<j<N a)
1 N N
= Z VWi + Z<77> o) )i Zvini .
2(n. %) \4 .
1<z<]<N 1=1 =1

We can now observe that

2 — 0 = 1ya(1g, — 1g,)

1 N y N
Tp2 = —m <;<77, (&) >wl> (; Uinl-) .

Since we have v,y = B(a) A a);), there exists £ € V* with v;y = (£, ) for
1 <i < N. Therefore 1,5 € Sym?(Rel"), as required.
If we consider ¢,,; instead, we get the result

with

¢ — 0 =1y (1g, — 1g,)

4



with

N

1 S v 2 1
Tps1 = W (;m,ai )wl> (Z Ulz‘wi) € Sym*(Rel™).

i=1

In Section 4 of [FLM] it is explained how the polynomial identity of The-
orem 2 (which we proved directly in the rank two case) implies the formula
of Theorem 1 for intertwining families.
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