The purpose of this note is to give a proof of the main result of [FLM] (i.e. of Theorem 2, which directly implies Theorem 1) in the case of arrangements of rank two. The result reduces to a non-trivial but elementary calculation. In particular, the commutative algebra results of [FL1] are not necessary in this case.

Since it does not make any difference, we will not restrict to root arrangements but consider general line arrangements in a two-dimensional real vector space. It is not clear whether the validity of Theorems 1 and 2 of [FLM] does really depend on the assumption that the underlying arrangement is a root arrangement. Using the methods of [FLM], it is in fact not difficult to see that Theorems 1 and 2 are also true for every hyperplane arrangement of rank three and every simplicial arrangement of rank four. In [FL2] we formulate a conjectural generalization of Theorem 1 to arbitrary simplicial fans.

Let V be a real vector space of dimension two and V^* its dual space. Let $\beta : \bigwedge^2 V \to \mathbb{R}$ be a fixed isomorphism. The choice of β defines an oriented volume element on V. Let \mathcal{A} be a finite line arrangement in V^* given by the lines

$$\langle \lambda, \alpha_i^{\vee} \rangle = 0, \quad i = 1, \dots, N,$$

with pairwise non-collinear vectors $\alpha_i^{\vee} \in V \setminus \{0\}$. Let \mathcal{P} be the set of connected components of the complement of these lines. The elements of \mathcal{P} are called chambers. We assume in addition that the vectors α_i^{\vee} are oriented in such a way that there exists $\lambda_0 \in V^*$ with $\langle \lambda_0, \alpha_i^{\vee} \rangle > 0$ for all *i*. Fix a vector λ_0 with this property and denote the associated chamber by P_0 . We order the vectors α_i^{\vee} in the counterclockwise direction, i.e. we require that $v_{ij} = \beta(\alpha_i^{\vee} \wedge \alpha_j^{\vee}) > 0$ for $1 \leq i < j \leq N$.

For each $P \in \mathcal{P}$ let Σ_P^{\vee} be the subset of those functionals in the set $\{\pm \alpha_1^{\vee}, \ldots, \pm \alpha_N^{\vee}\}$ which are positive on P and $\Delta_P^{\vee} \subseteq \Sigma_P^{\vee}$ the two-element subset of functionals defining the walls of P. Set $\Sigma_{P_0;P}^{\vee} = \Sigma_{P_0}^{\vee} \cap \Sigma_{\bar{P}}^{\vee}$ for all $P \in \mathcal{P}$. We can order the chambers in counterclockwise direction as P_0 , $P_1, \ldots, P_{N-1}, \bar{P}_0, \bar{P}_1, \ldots, \bar{P}_{N-1}$, where the bar over a symbol denotes the opposite chamber. Then $\Delta_{P_0}^{\vee} = \{\alpha_1^{\vee}, \alpha_N^{\vee}\}$ and $\Delta_{P_i}^{\vee} = \{-\alpha_i^{\vee}, \alpha_{i+1}^{\vee}\}$ for $1 \leq i \leq N-1$. Furthermore, $\Sigma_{P_0;P_i}^{\vee} = \{\alpha_1^{\vee}, \ldots, \alpha_i^{\vee}\}$ and $\Sigma_{P_0;\bar{P}_i}^{\vee} = \{\alpha_{i+1}^{\vee}, \ldots, \alpha_N^{\vee}\}$.

There are precisely two galleries from P_0 to \overline{P}_0 in the line arrangement \mathcal{A} , namely $\mathcal{G}_1 : P_0, P_1, \ldots, P_{N-1}, \overline{P}_0$ and $\mathcal{G}_2 : P_0, \overline{P}_{N-1}, \ldots, \overline{P}_1, \overline{P}_0$ (cf. [FLM, Lemma 2]). Every $P \in \mathcal{P} \setminus \{P_0, \overline{P}_0\}$ is contained in precisely one of the galleries \mathcal{G}_i . For $P \in \mathcal{P}$ and k = 1 or 2 let $\mathcal{G}_{P,k}$ be the unique gallery

containing P if P is different from P_0 and \overline{P}_0 , and set $\mathcal{G}_{P_0,k} = \mathcal{G}_{3-k}, \mathcal{G}_{\overline{P}_0,k} = \mathcal{G}_k$.

Let \mathfrak{s}^{\vee} be the polynomial ring in the independent variables $\varpi_1, \ldots, \varpi_N$, which are in bijection with the elements of $\Sigma_{P_0}^{\vee}$, and $\mathcal{S}^{\vee} \simeq (\mathfrak{s}^{\vee})^2$ the free module of maps $\mathfrak{X} \to \mathfrak{s}^{\vee}$, where $\mathfrak{X} = \{\mathcal{G}_1, \mathcal{G}_2\}$ is the set of all galleries from P_0 to \overline{P}_0 . Let Rel^{\perp} be the subset of the vector space \mathfrak{s}_1^{\vee} consisting of all elements of the form

$$\sum_{i=1}^{N} \langle \eta, \alpha_i^{\vee} \rangle \varpi_i, \quad \eta \in V^*.$$

The relation space $\mathcal{R} \subseteq \mathcal{S}^{\vee}$ is then the set of all elements of the form $r(\mathbf{1}_{\mathcal{G}_1} - \mathbf{1}_{\mathcal{G}_2})$ with $r \in \text{Sym}(\text{Rel}^{\perp}) \subseteq \mathfrak{s}^{\vee}$.

In the space \mathcal{S}_2^{\vee} we consider the element

$$\boldsymbol{\mathfrak{d}} = \frac{1}{2} \sum_{1 \leq i < j \leq N} v_{ij} \boldsymbol{\varpi}_i \boldsymbol{\varpi}_j (\mathbf{1}_{\mathcal{G}_1} + \mathbf{1}_{\mathcal{G}_2}),$$

and for any $\eta \in V^*$ such that $\langle \eta, \alpha_i^{\vee} \rangle \neq 0$ for all *i* and any $k \in \{1, 2\}$ the element

$$\mathbf{c}_{\eta;k} = \frac{1}{2} \sum_{P \in \mathcal{P}} v(\Delta_P^{\vee}) \frac{\left(\sum_{i: \alpha_i^{\vee} \in \Sigma_{P_0;P}^{\vee}} \langle \eta, \alpha_i^{\vee} \rangle \overline{\varpi}_i\right)^2}{\prod_{\alpha^{\vee} \in \Delta_P^{\vee}} \langle \eta, \alpha^{\vee} \rangle} \mathbf{1}_{\mathcal{G}_{P,k}}.$$

Here, for a two-element subset $\Delta^{\vee} = \{v_1, v_2\} \subseteq V$ we write $v(\Delta^{\vee}) = |\beta(v_1 \land v_2)|$. Note that in the case of root arrangements considered in [FLM], the factors $v(\Delta_P^{\vee})$ can be omitted if we assign the coroot lattice covolume one. For this reason they do not appear in [FLM]. One observes that the element \mathfrak{d} is the common value of the $\mathfrak{d}_{\underline{\xi}}$ considered in [FLM] (regardless of $\underline{\xi}$), while the elements $\mathfrak{c}_{\eta;k}$ are the possible values of the expressions $\mathfrak{c}_{\eta;(\mu_P)_P}$ there for varying parameters $(\mu_P)_P$.

The assertion of [FLM, Theorem 2] is that for any η and k the difference $\mathfrak{c}_{\eta;k} - \mathfrak{d}$ is an element of \mathcal{R}_2 . We will prove this by an explicit calculation. We first use the explicit information on the set \mathcal{P} summarized above to rewrite

the formula for $\mathbf{c}_{\eta;k}$ in the form

$$\mathbf{c}_{\eta;k} = -\frac{1}{2} \sum_{i=1}^{N-1} \frac{v_{i,i+1}}{\langle \eta, \alpha_i^{\vee} \rangle \langle \eta, \alpha_{i+1}^{\vee} \rangle} \\ \left(\left(\sum_{j=1}^{i} \langle \eta, \alpha_j^{\vee} \rangle \varpi_j \right)^2 \mathbf{1}_{\mathcal{G}_1} + \left(\sum_{j=i+1}^{N} \langle \eta, \alpha_j^{\vee} \rangle \varpi_j \right)^2 \mathbf{1}_{\mathcal{G}_2} \right) \\ + \frac{1}{2} \frac{v_{1N}}{\langle \eta, \alpha_1^{\vee} \rangle \langle \eta, \alpha_N^{\vee} \rangle} \left(\sum_{j=1}^{N} \langle \eta, \alpha_j^{\vee} \rangle \varpi_j \right)^2 \mathbf{1}_{\mathcal{G}_k}.$$

One observes immediately that $\mathfrak{c}_{\eta;1} - \mathfrak{c}_{\eta;2} \in \mathcal{R}_2$, which is consistent with the main assertion. To proceed further, we need the following simple identity.

Lemma 1. For $1 \le i < j \le N$ we have

$$\sum_{k=i}^{j-1} \frac{v_{k,k+1}}{\langle \eta, \alpha_k^{\vee} \rangle \langle \eta, \alpha_{k+1}^{\vee} \rangle} = \frac{v_{ij}}{\langle \eta, \alpha_i^{\vee} \rangle \langle \eta, \alpha_j^{\vee} \rangle}.$$

Proof. Use induction on j for fixed i, the case j = i+1 being trivial. The fact that $v_{ij} = \beta(\alpha_i^{\vee} \wedge \alpha_j^{\vee})$ for i < j implies that

$$v_{ij}\alpha_k^{\vee} + v_{jk}\alpha_i^{\vee} = v_{ik}\alpha_j^{\vee}, \quad i \le j \le k.$$

$$\tag{1}$$

As a special case we have $v_{i,j-1}\alpha_j^{\vee} + v_{j-1,j}\alpha_i^{\vee} = v_{ij}\alpha_{j-1}^{\vee}$. From this we get

$$\frac{v_{i,j-1}}{\langle \eta, \alpha_i^\vee \rangle \langle \eta, \alpha_{j-1}^\vee \rangle} + \frac{v_{j-1,j}}{\langle \eta, \alpha_{j-1}^\vee \rangle \langle \eta, \alpha_j^\vee \rangle} = \frac{v_{ij}}{\langle \eta, \alpha_i^\vee \rangle \langle \eta, \alpha_j^\vee \rangle},$$

which is precisely what is needed for the induction step.

Write $\mathbf{c}_{\eta;2} = c_{\eta 1} \mathbf{1}_{\mathcal{G}_1} + c_{\eta 2} \mathbf{1}_{\mathcal{G}_2}$ with $c_{\eta 1}, c_{\eta 2} \in \mathfrak{s}_2^{\vee}$. We can now collect the monomials in the ϖ_i in $c_{\eta 1}$ and $c_{\eta 2}$. Using the Lemma, the coefficient of ϖ_i^2 in $c_{\eta 1}$ is

$$-\frac{\langle\eta,\alpha_i^\vee\rangle^2}{2}\sum_{k=i}^{N-1}\frac{v_{k,k+1}}{\langle\eta,\alpha_k^\vee\rangle\langle\eta,\alpha_{k+1}^\vee\rangle} = -\frac{v_{iN}\langle\eta,\alpha_i^\vee\rangle}{2\langle\eta,\alpha_N^\vee\rangle}$$

The coefficient of $\varpi_i \varpi_j$, $1 \le i < j \le N$, in $c_{\eta 1}$ is

$$-\langle \eta, \alpha_i^{\vee} \rangle \langle \eta, \alpha_j^{\vee} \rangle \sum_{k=j}^{N-1} \frac{v_{k,k+1}}{\langle \eta, \alpha_k^{\vee} \rangle \langle \eta, \alpha_{k+1}^{\vee} \rangle} = -\frac{v_{jN} \langle \eta, \alpha_i^{\vee} \rangle}{\langle \eta, \alpha_N^{\vee} \rangle}.$$

To sum up,

$$c_{\eta 1} = -\frac{1}{2} \sum_{i=1}^{N} v_{iN} \frac{\langle \eta, \alpha_i^{\vee} \rangle}{\langle \eta, \alpha_N^{\vee} \rangle} \varpi_i^2 - \sum_{1 \le i < j \le N} v_{jN} \frac{\langle \eta, \alpha_i^{\vee} \rangle}{\langle \eta, \alpha_N^{\vee} \rangle} \varpi_i \varpi_j.$$
(2)

Consider now the following special case of (1):

$$v_{ij}\alpha_N^{\vee} + v_{jN}\alpha_i^{\vee} = v_{iN}\alpha_j^{\vee}, \quad 1 \le i < j \le N,$$

which implies immediately

$$v_{jN}\alpha_i^{\vee} + v_{iN}\alpha_j^{\vee} = 2v_{jN}\alpha_i^{\vee} + v_{ij}\alpha_N^{\vee}.$$

Combining this identity with the formula (2) it is then easy to verify that

$$c_{\eta 1} = \frac{1}{2} \sum_{1 \le i < j \le N} v_{ij} \varpi_i \varpi_j - \frac{1}{2 \langle \eta, \alpha_N^{\vee} \rangle} \left(\sum_{i=1}^N \langle \eta, \alpha_i^{\vee} \rangle \varpi_i \right) \left(\sum_{i=1}^N v_{iN} \varpi_i \right).$$

In the same way, we obtain

$$c_{\eta 2} = \frac{1}{2} \sum_{i=1}^{N} v_{iN} \frac{\langle \eta, \alpha_{i}^{\vee} \rangle}{\langle \eta, \alpha_{N}^{\vee} \rangle} \varpi_{i}^{2} + \sum_{1 \le i < j \le N} v_{iN} \frac{\langle \eta, \alpha_{j}^{\vee} \rangle}{\langle \eta, \alpha_{N}^{\vee} \rangle} \varpi_{i} \varpi_{j}$$
$$= \frac{1}{2} \sum_{1 \le i < j \le N} v_{ij} \varpi_{i} \varpi_{j} + \frac{1}{2 \langle \eta, \alpha_{N}^{\vee} \rangle} \left(\sum_{i=1}^{N} \langle \eta, \alpha_{i}^{\vee} \rangle \varpi_{i} \right) \left(\sum_{i=1}^{N} v_{iN} \varpi_{i} \right).$$

We can now observe that

$$\mathfrak{c}_{\eta;2} - \mathfrak{d} = r_{\eta;2}(\mathbf{1}_{\mathcal{G}_1} - \mathbf{1}_{\mathcal{G}_2})$$

with

$$r_{\eta;2} = -\frac{1}{2\langle \eta, \alpha_N^{\vee} \rangle} \left(\sum_{i=1}^N \langle \eta, \alpha_i^{\vee} \rangle \varpi_i \right) \left(\sum_{i=1}^N v_{iN} \varpi_i \right).$$

Since we have $v_{iN} = \beta(\alpha_i^{\vee} \wedge \alpha_N^{\vee})$, there exists $\xi \in V^*$ with $v_{iN} = \langle \xi, \alpha_i^{\vee} \rangle$ for $1 \leq i \leq N$. Therefore $r_{\eta;2} \in \text{Sym}^2(\text{Rel}^{\perp})$, as required. If we consider $\mathfrak{c}_{\eta;1}$ instead, we get the result

$$\mathfrak{c}_{\eta;1} - \mathfrak{d} = r_{\eta;1}(\mathbf{1}_{\mathcal{G}_1} - \mathbf{1}_{\mathcal{G}_2})$$

with

$$r_{\eta;1} = \frac{1}{2\langle \eta, \alpha_1^{\vee} \rangle} \left(\sum_{i=1}^N \langle \eta, \alpha_i^{\vee} \rangle \varpi_i \right) \left(\sum_{i=1}^N v_{1i} \varpi_i \right) \in \operatorname{Sym}^2(\operatorname{Rel}^{\perp}).$$

In Section 4 of [FLM] it is explained how the polynomial identity of Theorem 2 (which we proved directly in the rank two case) implies the formula of Theorem 1 for intertwining families.

References

- [FL1] T. Finis, E. Lapid: Relation spaces of hyperplane arrangements and modules defined by graphs of fiber zonotopes, preprint
- [FL2] T. Finis, E. Lapid: A conjectural non-commutative generalization of a volume formula of McMullen-Schneider, to appear in: Proceedings of the Göttingen-Jerusalem Conference on Symmetries in Algebra and Number Theory, Göttingen, October 27-30, 2008
- [FLM] T. Finis, E. Lapid, W. Müller: On the spectral side of Arthur's trace formula II, preprint