The purpose of this note is to give a proof of the main result of [FLM] (i.e. of Theorem 2, which directly implies Theorem 1) in the case of arrangements of rank two. The result reduces to a non-trivial but elementary calculation. In particular, the commutative algebra results of [FL1] are not necessary in this case.

Since it does not make any difference, we will not restrict to root arrangements but consider general line arrangements in a two-dimensional real vector space. It is not clear whether the validity of Theorems 1 and 2 of [FLM] does really depend on the assumption that the underlying arrangement is a root arrangement. Using the methods of [FLM], it is in fact not difficult to see that Theorems 1 and 2 are also true for every hyperplane arrangement of rank three and every simplicial arrangement of rank four. In [FL2] we formulate a conjectural generalization of Theorem 1 to arbitrary simplicial fans.

Let V be a real vector space of dimension two and V^{*} its dual space. Let $\beta: \Lambda^{2} V \rightarrow \mathbb{R}$ be a fixed isomorphism. The choice of β defines an oriented volume element on V. Let \mathcal{A} be a finite line arrangement in V^{*} given by the lines

$$
\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0, \quad i=1, \ldots, N,
$$

with pairwise non-collinear vectors $\alpha_{i}^{\vee} \in V \backslash\{0\}$. Let \mathcal{P} be the set of connected components of the complement of these lines. The elements of \mathcal{P} are called chambers. We assume in addition that the vectors α_{i}^{\vee} are oriented in such a way that there exists $\lambda_{0} \in V^{*}$ with $\left\langle\lambda_{0}, \alpha_{i}^{V}\right\rangle>0$ for all i. Fix a vector λ_{0} with this property and denote the associated chamber by P_{0}. We order the vectors α_{i}^{\vee} in the counterclockwise direction, i.e. we require that $v_{i j}=\beta\left(\alpha_{i}^{\vee} \wedge \alpha_{j}^{\vee}\right)>0$ for $1 \leq i<j \leq N$.

For each $P \in \mathcal{P}$ let Σ_{P}^{\vee} be the subset of those functionals in the set $\left\{ \pm \alpha_{1}^{\vee}, \ldots, \pm \alpha_{N}^{\vee}\right\}$ which are positive on P and $\Delta_{P}^{\vee} \subseteq \Sigma_{P}^{\vee}$ the two-element subset of functionals defining the walls of P. Set $\Sigma_{P_{0} ; P}^{\vee}=\Sigma_{P_{0}}^{\vee} \cap \Sigma_{\bar{P}}^{\vee}$ for all $P \in \mathcal{P}$. We can order the chambers in counterclockwise direction as P_{0}, $P_{1}, \ldots, P_{N-1}, \bar{P}_{0}, \bar{P}_{1}, \ldots, \bar{P}_{N-1}$, where the bar over a symbol denotes the opposite chamber. Then $\Delta_{P_{0}}^{\vee}=\left\{\alpha_{1}^{\vee}, \alpha_{N}^{\vee}\right\}$ and $\Delta_{P_{i}}^{\vee}=\left\{-\alpha_{i}^{\vee}, \alpha_{i+1}^{\vee}\right\}$ for $1 \leq$ $i \leq N-1$. Furthermore, $\Sigma_{P_{0} ; P_{i}}^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{i}^{\vee}\right\}$ and $\Sigma_{P_{0} ; \bar{P}_{i}}^{\vee}=\left\{\alpha_{i+1}^{\vee}, \ldots, \alpha_{N}^{\vee}\right\}$.

There are precisely two galleries from P_{0} to \bar{P}_{0} in the line arrangement \mathcal{A}, namely $\mathcal{G}_{1}: P_{0}, P_{1}, \ldots, P_{N-1}, \bar{P}_{0}$ and $\mathcal{G}_{2}: P_{0}, \bar{P}_{N-1}, \ldots, \bar{P}_{1}, \bar{P}_{0}$ (cf. [FLM, Lemma 2]). Every $P \in \mathcal{P} \backslash\left\{P_{0}, \bar{P}_{0}\right\}$ is contained in precisely one of the galleries \mathcal{G}_{i}. For $P \in \mathcal{P}$ and $k=1$ or 2 let $\mathcal{G}_{P, k}$ be the unique gallery
containing P if P is different from P_{0} and \bar{P}_{0}, and set $\mathcal{G}_{P_{0}, k}=\mathcal{G}_{3-k}, \mathcal{G}_{\bar{P}_{0}, k}=\mathcal{G}_{k}$.
Let \mathfrak{s}^{\vee} be the polynomial ring in the independent variables $\varpi_{1}, \ldots, \varpi_{N}$, which are in bijection with the elements of $\Sigma_{P_{0}}^{\vee}$, and $\mathcal{S}^{\vee} \simeq\left(\mathfrak{s}^{\vee}\right)^{2}$ the free module of maps $\mathfrak{X} \rightarrow \mathfrak{s}^{\vee}$, where $\mathfrak{X}=\left\{\mathcal{G}_{1}, \mathcal{G}_{2}\right\}$ is the set of all galleries from P_{0} to \bar{P}_{0}. Let Rel ${ }^{\perp}$ be the subset of the vector space \mathfrak{s}_{1}^{\vee} consisting of all elements of the form

$$
\sum_{i=1}^{N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}, \quad \eta \in V^{*}
$$

The relation space $\mathcal{R} \subseteq \mathcal{S}^{\vee}$ is then the set of all elements of the form $r\left(\mathbf{1}_{\mathcal{G}_{1}}-\right.$ $\mathbf{1}_{\mathcal{G}_{2}}$) with $r \in \operatorname{Sym}\left(\operatorname{Rel}^{\perp}\right) \subseteq \mathfrak{s}^{\vee}$.

In the space \mathcal{S}_{2}^{\vee} we consider the element

$$
\mathfrak{d}=\frac{1}{2} \sum_{1 \leq i<j \leq N} v_{i j} \varpi_{i} \varpi_{j}\left(\mathbf{1}_{\mathcal{G}_{1}}+\mathbf{1}_{\mathcal{G}_{2}}\right),
$$

and for any $\eta \in V^{*}$ such that $\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \neq 0$ for all i and any $k \in\{1,2\}$ the element

$$
\mathfrak{c}_{\eta ; k}=\frac{1}{2} \sum_{P \in \mathcal{P}} v\left(\Delta_{P}^{\vee}\right) \frac{\left(\sum_{i: \alpha_{i}^{\vee} \in \Sigma_{P_{0} ; P}^{\vee}}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}\right)^{2}}{\prod_{\alpha^{\vee} \in \Delta_{P}^{\vee}}\left\langle\eta, \alpha^{\vee}\right\rangle} \mathbf{1}_{\mathcal{G}_{P, k}} .
$$

Here, for a two-element subset $\Delta^{\vee}=\left\{v_{1}, v_{2}\right\} \subseteq V$ we write $v\left(\Delta^{\vee}\right)=\mid \beta\left(v_{1} \wedge\right.$ $\left.v_{2}\right) \mid$. Note that in the case of root arrangements considered in [FLM], the factors $v\left(\Delta_{P}^{\vee}\right)$ can be omitted if we assign the coroot lattice covolume one. For this reason they do not appear in [FLM]. One observes that the element \mathfrak{d} is the common value of the \mathfrak{d}_{ξ} considered in [FLM] (regardless of $\underline{\xi}$), while the elements $\mathfrak{c}_{\eta ; k}$ are the possible values of the expressions $\mathfrak{c}_{\eta ;\left(\mu_{P}\right)_{P}}$ there for varying parameters $\left(\mu_{P}\right)_{P}$.

The assertion of [FLM, Theorem 2] is that for any η and k the difference $\mathfrak{c}_{\eta ; k}-\mathfrak{d}$ is an element of \mathcal{R}_{2}. We will prove this by an explicit calculation. We first use the explicit information on the set \mathcal{P} summarized above to rewrite
the formula for $\mathfrak{c}_{\eta ; k}$ in the form

$$
\begin{aligned}
\mathfrak{c}_{\eta ; k}= & -\frac{1}{2} \sum_{i=1}^{N-1} \frac{v_{i, i+1}}{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle\left\langle\eta, \alpha_{i+1}^{\vee}\right\rangle} \\
& \left(\left(\sum_{j=1}^{i}\left\langle\eta, \alpha_{j}^{\vee}\right\rangle \varpi_{j}\right)^{2} \mathbf{1}_{\mathcal{G}_{1}}+\left(\sum_{j=i+1}^{N}\left\langle\eta, \alpha_{j}^{\vee}\right\rangle \varpi_{j}\right)^{2} \mathbf{1}_{\mathcal{G}_{2}}\right) \\
& +\frac{1}{2} \frac{v_{1 N}}{\left\langle\eta, \alpha_{1}^{\vee}\right\rangle\left\langle\eta, \alpha_{N}^{\vee}\right\rangle}\left(\sum_{j=1}^{N}\left\langle\eta, \alpha_{j}^{\vee}\right\rangle \varpi_{j}\right)^{2} \mathbf{1}_{\mathcal{G}_{k}} .
\end{aligned}
$$

One observes immediately that $\mathfrak{c}_{\eta ; 1}-\mathfrak{c}_{\eta ; 2} \in \mathcal{R}_{2}$, which is consistent with the main assertion. To proceed further, we need the following simple identity.

Lemma 1. For $1 \leq i<j \leq N$ we have

$$
\sum_{k=i}^{j-1} \frac{v_{k, k+1}}{\left\langle\eta, \alpha_{k}^{\vee}\right\rangle\left\langle\eta, \alpha_{k+1}^{\vee}\right\rangle}=\frac{v_{i j}}{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle\left\langle\eta, \alpha_{j}^{\vee}\right\rangle}
$$

Proof. Use induction on j for fixed i, the case $j=i+1$ being trivial. The fact that $v_{i j}=\beta\left(\alpha_{i}^{\vee} \wedge \alpha_{j}^{\vee}\right)$ for $i<j$ implies that

$$
\begin{equation*}
v_{i j} \alpha_{k}^{\vee}+v_{j k} \alpha_{i}^{\vee}=v_{i k} \alpha_{j}^{\vee}, \quad i \leq j \leq k \tag{1}
\end{equation*}
$$

As a special case we have $v_{i, j-1} \alpha_{j}^{\vee}+v_{j-1, j} \alpha_{i}^{\vee}=v_{i j} \alpha_{j-1}^{\vee}$. From this we get

$$
\frac{v_{i, j-1}}{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle\left\langle\eta, \alpha_{j-1}^{\vee}\right\rangle}+\frac{v_{j-1, j}}{\left\langle\eta, \alpha_{j-1}^{\vee}\right\rangle\left\langle\eta, \alpha_{j}^{\vee}\right\rangle}=\frac{v_{i j}}{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle\left\langle\eta, \alpha_{j}^{\vee}\right\rangle},
$$

which is precisely what is needed for the induction step.
Write $\mathfrak{c}_{\eta ; 2}=c_{\eta 1} \mathbf{1}_{\mathcal{G}_{1}}+c_{\eta 2} \mathbf{1}_{\mathcal{G}_{2}}$ with $c_{\eta 1}, c_{\eta 2} \in \mathfrak{s}_{2}^{\vee}$. We can now collect the monomials in the ϖ_{i} in $c_{\eta 1}$ and $c_{\eta 2}$. Using the Lemma, the coefficient of ϖ_{i}^{2} in $c_{\eta 1}$ is

$$
-\frac{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle^{2}}{2} \sum_{k=i}^{N-1} \frac{v_{k, k+1}}{\left\langle\eta, \alpha_{k}^{\vee}\right\rangle\left\langle\eta, \alpha_{k+1}^{\vee}\right\rangle}=-\frac{v_{i N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle}{2\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} .
$$

The coefficient of $\varpi_{i} \varpi_{j}, 1 \leq i<j \leq N$, in $c_{\eta 1}$ is

$$
-\left\langle\eta, \alpha_{i}^{\vee}\right\rangle\left\langle\eta, \alpha_{j}^{\vee}\right\rangle \sum_{k=j}^{N-1} \frac{v_{k, k+1}}{\left\langle\eta, \alpha_{k}^{\vee}\right\rangle\left\langle\eta, \alpha_{k+1}^{\vee}\right\rangle}=-\frac{v_{j N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle}{\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} .
$$

To sum up,

$$
\begin{equation*}
c_{\eta 1}=-\frac{1}{2} \sum_{i=1}^{N} v_{i N} \frac{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle}{\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} \varpi_{i}^{2}-\sum_{1 \leq i<j \leq N} v_{j N} \frac{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle}{\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} \varpi_{i} \varpi_{j} . \tag{2}
\end{equation*}
$$

Consider now the following special case of (1):

$$
v_{i j} \alpha_{N}^{\vee}+v_{j N} \alpha_{i}^{\vee}=v_{i N} \alpha_{j}^{\vee}, \quad 1 \leq i<j \leq N,
$$

which implies immediately

$$
v_{j N} \alpha_{i}^{\vee}+v_{i N} \alpha_{j}^{\vee}=2 v_{j N} \alpha_{i}^{\vee}+v_{i j} \alpha_{N}^{\vee}
$$

Combining this identity with the formula (2) it is then easy to verify that

$$
c_{\eta 1}=\frac{1}{2} \sum_{1 \leq i<j \leq N} v_{i j} \varpi_{i} \varpi_{j}-\frac{1}{2\left\langle\eta, \alpha_{N}^{\vee}\right\rangle}\left(\sum_{i=1}^{N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}\right)\left(\sum_{i=1}^{N} v_{i N} \varpi_{i}\right) .
$$

In the same way, we obtain

$$
\begin{aligned}
c_{\eta 2} & =\frac{1}{2} \sum_{i=1}^{N} v_{i N} \frac{\left\langle\eta, \alpha_{i}^{\vee}\right\rangle}{\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} \varpi_{i}^{2}+\sum_{1 \leq i<j \leq N} v_{i N} \frac{\left\langle\eta, \alpha_{j}^{\vee}\right\rangle}{\left\langle\eta, \alpha_{N}^{\vee}\right\rangle} \varpi_{i} \varpi_{j} \\
& =\frac{1}{2} \sum_{1 \leq i<j \leq N} v_{i j} \varpi_{i} \varpi_{j}+\frac{1}{2\left\langle\eta, \alpha_{N}^{\vee}\right\rangle}\left(\sum_{i=1}^{N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}\right)\left(\sum_{i=1}^{N} v_{i N} \varpi_{i}\right) .
\end{aligned}
$$

We can now observe that

$$
\mathfrak{c}_{\eta ; 2}-\mathfrak{d}=r_{\eta ; 2}\left(\mathbf{1}_{\mathcal{G}_{1}}-\mathbf{1}_{\mathcal{G}_{2}}\right)
$$

with

$$
r_{\eta ; 2}=-\frac{1}{2\left\langle\eta, \alpha_{N}^{\vee}\right\rangle}\left(\sum_{i=1}^{N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}\right)\left(\sum_{i=1}^{N} v_{i N} \varpi_{i}\right) .
$$

Since we have $v_{i N}=\beta\left(\alpha_{i}^{\vee} \wedge \alpha_{N}^{\vee}\right)$, there exists $\xi \in V^{*}$ with $v_{i N}=\left\langle\xi, \alpha_{i}^{\vee}\right\rangle$ for $1 \leq i \leq N$. Therefore $r_{\eta ; 2} \in \operatorname{Sym}^{2}\left(\operatorname{Rel}^{\perp}\right)$, as required.

If we consider $\mathfrak{c}_{\eta ; 1}$ instead, we get the result

$$
\mathfrak{c}_{\eta ; 1}-\mathfrak{d}=r_{\eta ; 1}\left(\mathbf{1}_{\mathcal{G}_{1}}-\mathbf{1}_{\mathcal{G}_{2}}\right)
$$

with

$$
r_{\eta ; 1}=\frac{1}{2\left\langle\eta, \alpha_{1}^{\vee}\right\rangle}\left(\sum_{i=1}^{N}\left\langle\eta, \alpha_{i}^{\vee}\right\rangle \varpi_{i}\right)\left(\sum_{i=1}^{N} v_{1 i} \varpi_{i}\right) \in \operatorname{Sym}^{2}\left(\operatorname{Rel}^{\perp}\right) .
$$

In Section 4 of [FLM] it is explained how the polynomial identity of Theorem 2 (which we proved directly in the rank two case) implies the formula of Theorem 1 for intertwining families.

References

[FL1] T. Finis, E. Lapid: Relation spaces of hyperplane arrangements and modules defined by graphs of fiber zonotopes, preprint
[FL2] T. Finis, E. Lapid: A conjectural non-commutative generalization of a volume formula of McMullen-Schneider, to appear in: Proceedings of the Göttingen-Jerusalem Conference on Symmetries in Algebra and Number Theory, Göttingen, October 27-30, 2008
[FLM] T. Finis, E. Lapid, W. Müller: On the spectral side of Arthur's trace formula II, preprint

