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Abstract. We derive a refinement of the spectral expansion of Arthur’s trace
formula. The expression is absolutely convergent with respect to the trace
norm.
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1. Introduction

The trace formula is an important tool in studying automorphic forms on
arithmetic quotients. It was introduced by Selberg for the case of quotients of
the upper half-plane in [Sel56] and subsequently extensively developed by Arthur
in his large scale work on the subject. (See [Art05] for a recent survey on the
theory.) In essence, the trace formula is an equality between a sum of geometric
distributions, such as (possibly weighted) orbital integrals, and a sum of spectral
distributions such as traces of representations. In order to apply the trace for-
mula, it is important to have an explicit description of the distributions appearing
in it. In [Art82b] Arthur derived an expression for the spectral side of the non-
invariant trace formula in terms of certain limits of intertwining operators. In this
paper we explicate these terms further and write them as a linear combination
of products of first-order derivatives of co-rank one intertwining operators. The
exact formula is described in Theorem 1 below. It is used to explicate the spectral
expansion of the trace formula in Corollary 2. A key feature of this expansion
is its absolute convergence with respect to the trace norm. This relies on earlier
work by the third named author and generalizes earlier results in this direction
([Lan90, Mül89, Mül98, Mül00, Mül02, MS04]). Remarkably, Arthur was able
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to finesse this difficulty in his work. This is partly because his emphasis is on
comparing trace formulas on different groups. However, for other applications of
the trace formula the absolute convergence may be indispensable. An example is
the work of the second and third named authors on Weyl’s law with remainder
for the groups GL(n) [LM]. (Note that in this case the absolute convergence was
already obtained in [MS04] by a different argument, which is special to GL(n).)

In the scalar case, our formula reduces to a result of Arthur [Art82b, §7].
However, the operator case is more involved and it is not clear how to see directly
that Arthur’s expression equals ours. Instead we show that the two expressions
satisfy identical structural properties. The main difficulty is to show that these
properties are sufficiently strong to guarantee uniqueness.

Given a root system of rank n there is an n-dimensional zonotope Z which
is dual to the corresponding hyperplane arrangement. For example, for a root
system of type An, Z is the associated permutahedron. The combinatorics of Z
plays a ubiquitous role in the trace formula. The new ingredient here is the hy-
perplane arrangement of rank n−1 which is dual to the monotone path zonotope
of Z in the sense of Billera-Sturmfels ([BS92, BS94]).1 The latter depends on
an auxiliary parameter λ0 which is also apparent in our formula. In connection
with this zonotope we introduce in §4 below a certain graded algebra T over the
polynomial ring s with one indeterminate for each positive root. The crucial fact
allowing the induction step to go through is that T is generated as a s-module
by its homogeneous elements of degree < n. This property is obtained in the
companion paper [FL] as a result of a closer study of the algebra T .

Acknowledgment. We would like to thank Joseph Bernstein, Mark Goresky,
Gil Kalai, David Kazhdan, Ruth Lawrence-Naimark, Michael Rapoport, Jonathan
Rogawski, Birgit Speh, Yakov Varshavsky, Akshay Venkatesh, Michèle Vergne
and Nolan Wallach for useful discussions during various stages of this work. We
are indebted to Benjamin Weiss for considerably simplifying the proof of Lemma
7. The second and third named authors are very grateful to the Institute for
Advanced Study where part of this work was carried out.

2. The main result

Let G be a reductive group over a field F . All algebraic subgroups of G con-
sidered in the following will be tacitly assumed to be defined over F . Throughout
we fix a (not necessarily minimal) parabolic subgroup P0 of F -co-rank n = n(P0)
in G and a Levi decomposition P0 = MU0.

We will mostly follow Arthur’s notation (cf. [Art82b]) up to some minor
differences. In particular, a∗M denotes the n-dimensional vector space over R
spanned by the F -rational characters of M trivial on the center ZG of G, aM is
the dual space spanned by the F -rational co-characters of ZM ∩Gder and P(M)
denotes the (finite) set of parabolic subgroups of G (defined over F ) which contain

1Related constructions for the root system of type An were considered by Manin-Schechtman
[MS89], Lawrence-Naimark [Law97], Bayer-Brandt [BB97] and Felsner-Ziegler [FZ01].
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M as their Levi part. The opposite parabolic of P ∈ P(M) (with respect to M)
will be denoted by P ∈ P(M). The simple roots (resp. co-roots) of P ∈ P(M)
are denoted by ∆P ⊂ a∗M (resp. ∆∨

P ⊂ aM), and the reduced positive roots by
ΣP . We have |∆P | = |∆∨

P | = n and the lattice generated by ∆P (resp. ∆∨
P ) is

independent of P ∈ P(M) and will be called the root (resp. co-root) lattice of
M . Similarly, the cardinality N of ΣP does not depend on P . For brevity we
write ∆0 = ∆P0 and Σ0 = ΣP0 . We denote by a∗P,+ the Weyl chamber of a∗M
corresponding to P ∈ P(M). Also set ΣP ;Q = ΣP ∩ ΣQ for any P,Q ∈ P(M).

We say that the subgroups P,Q ∈ P(M) are adjacent along α ∈ ∆P , denoted
P |αQ, if ΣP ;Q = {α}. To each α ∈ ∆P there exists a unique Q ∈ P(M) such
that P |αQ, and we have ΣQ = ΣP ∪ {−α} \ {α}.

The main object we consider is the following.

Definition 1. A (G,M)-intertwining family consists of the data

F = ((FP )P∈P(M), (FQ|P (λ))P,Q∈P(M)),

where FP is a finite dimensional vector space for any P ∈ P(M) and for each pair
P,Q ∈ P(M) of parabolics FQ|P (λ) : FP → FQ is an operator valued function
depending meromorphically on λ ∈ a∗M,C and satisfying the following properties.

(1) FP |P ≡ Id for all P ∈ P(M).
(2) For any P1, P2, P3 ∈ P(M) we have FP3|P1 ≡ FP3|P2 ◦ FP2|P1 .
(3) If P |αQ then FQ|P (λ) depends only on 〈λ, α∨〉.

The key example of an intertwining family is given by intertwining operators
(in the global case) and normalized intertwining operators (in the local case).

Note that if F is an intertwining family and µ ∈ a∗M,C then the translation
FP |Q(·+ µ) is also an intertwining family. We say that an intertwining family is
regular at λ ∈ a∗M,C if FP |Q is holomorphic near λ for all P,Q ∈ P(M).

Suppose that F is regular at λ and consider the functions

cP (F ;P0)(Λ) = cP (Λ) = FP |P0(λ)−1FP |P0(λ+ Λ) : FP0 → FP0 , P ∈ P(M),

with values in End(FP0). They are holomorphic near 0 and for any adjacent
parabolics P |αP ′ the restrictions of cP and cP ′ to the hyperplane 〈Λ, α∨〉 = 0
coincide as meromorphic functions. Technically this does not mean that cP is a
(G,M)-family in the sense of [Art81, §6], since F is not assumed to be regular
on λ+ ia∗M . However, the proof of [Art81, Lemma 6.2] shows that the limit

(1) cM(F ;P0)(λ) = lim
Λ→0

∑
P∈P(M)

cP (Λ)

θP (Λ)
∈ End(FP0)

exists, where

θP (Λ) =
∏
α∈∆P

〈Λ, α∨〉 .

We will establish a formula for cM(F) in terms of one-dimensional logarithmic
derivatives. In order to state the formula in this case, we first consider the most
general form of logarithmic derivative relevant here. Since we are considering a
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non-commutative situation, we have to take the order in which the operators are
composed into account. This is dealt with by the following concept.

Definition 2. A gallery G is a sequence P0|α1P1| . . . |αNPN = P0 of adjacent
parabolics. The sequence α1, . . . , αN is a (linear) ordering of Σ0 which completely
determines the gallery, and will be simply called the ordering of the gallery.

For any gallery G : P0|α1P1| . . . |αNPN = P0 and a multiplicity function m :
Σ∨

0 → N of degree
∑

α∈Σ0
m(α∨) we write

∂mG (F)(λ) = FP0|P0
(λ)−1F (m(α∨N ))

PN |PN−1
(λ) . . .F (m(α∨1 ))

P1|P0
(λ) : FP0 → FP0 ,

where F (l)
Pi|Pi−1

denotes the l-th derivative of FPi|Pi−1
, the latter viewed as a func-

tion in the variable 〈·, α∨i 〉. We note that there are many linear relations (valid
for all intertwining families) among the expressions ∂mG (F). This matter will be
analyzed in more detail in §4 below.

Denote by B = BP0 the set of ordered bases of aM consisting of elements
of Σ∨

0 . For β ∈ BP0 let vol(β) be the index [Z(∆∨
P ) : Z(β)] of the lattice Z(β)

spanned by β in the co-root lattice Z(∆∨
P ) of aM and let 1β : Σ∨

0 → N denote
the characteristic function of β. Fix λ0 ∈ a∗P0,+

and let β ∈ B. We will see

below that there exists a gallery G lex
β whose ordering of Σ0 is induced by the

lexicographic order of the coordinate vectors with respect to β of the normalized

co-roots α∨

〈λ0,α∨〉 , α ∈ Σ0. In particular, this ordering is compatible with that of

β. Our main result is

Theorem 1. Suppose that λ0 ∈ a∗P0,+
is strongly regular (see Definition 4 below).

For any intertwining family F we have an equality of meromorphic functions

(2) cM(F)(λ) =
(−1)n

n!

∑
β∈BP0

vol(β)∂
1β

Glex
β

(F)(λ).

The proof will occupy §§3-5 below. It is indirect and uses induction on n.
By translation, it is enough to prove (2) at λ = 0 under the assumption that F
is regular at 0. Henceforth, we will always assume that F is regular at 0 and
simplify the notation by writing cM(F) = cM(F)(0) and similarly for ∂mG (F).

Remark 1. The case n = 1 is straightforward. In this case P(M) = {P0, P0} and
(2) reduces to the identity

lim
λ→0

(
1

λ
−
FP0|P0

(0)−1FP0|P0
(λ)

λ

)
= −FP0|P0

(0)−1F ′
P0|P0

(0).

The case n = 2 is already non-evident. In this case there are exactly two galleries

(cf. Lemma 2 below), and for both of them the coefficient of ∂
1β

G (F) on the
right-hand side of (2) is 1

2
vol(β), regardless of λ0.

Remark 2. Consider the case where

(1) FP does not depend on P .
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(2) The operators FQ|P (λ) act as scalars.
(3) There exist meromorphic functions φα : C → C, one for each α ∈ Σ0,

such that FP ′|P (λ) = φα(〈λ, α∨〉) for all P |αP ′.

Then ∂mG (F) does not depend on G and (2) reduces to [Art82b, Lemma 7.1]
applied to

cα(t) =

{
1, α ∈ Σ0,

φ−α(0)
−1φ−α(−t), otherwise.

Unfortunately, the method in [ibid., §7] does not apply in the general case.

Remark 3. In general, it is not a priori clear that the right-hand side of (2) is
independent of the choice of λ0. The strong regularity condition on λ0 can be
lifted once this independence on λ0 is established. However, we will not consider
this matter here since it does not really limit the applicability of the Theorem.

Remark 4. The concept of an intertwining family and both sides of (2) make
sense in the more general context of simplicial hyperplane arrangements. Our
proof establishes the identity (2) also for non-crystallographic root systems. In
addition, it can easily be adapted to the case of simplicial arrangements of rank
at most four.

Finally, as in [Art82b, §7] it is useful to have a slightly more general formula-
tion of Theorem 1. Let L(M) denote the set of all Levi subgroups of G containing
M . For L ∈ L(M) let PL

0 = P0 ∩ L (a parabolic subgroup of L). We write ∆L
0

for ∆PL
0

and view it as a subset of Σ0. Suppose that L ∈ L(M) and Q ∈ P(L).
The restrictions of cP to a∗L coincide for all P ⊂ Q. If we denote their common
value by cQ, then

cL = lim
Λ→0

∑
Q∈P(L)

cQ(Λ)

θQ(Λ)

is defined.

Corollary 1. Let L ∈ L(M) be of co-rank m in G. Then for strongly regular
λ0 ∈ a∗P0,+

we have

(3) cL(F ;P0) =
(−1)m

n!

∑
β∈BP0

:β⊃(∆L
0 )∨

vol(β)∂
1

β\(∆L
0 )∨

Glex
β

(F).

3. Galleries in root hyperplane arrangements

For the proof of Theorem 1 we need to consider the concept of a gallery in
more detail. Before doing so, we first recall some standard facts and notation
about hyperplane arrangements in general and root arrangements in particular.
For background about hyperplane arrangements and their duality with zonotopes
we refer to [OT92] and [Zie95, Ch. 7], respectively.

Let V be a finite-dimensional real vector space and V ∗ its dual space. A
finite set of non-zero vectors S = {v1, . . . , vm} ⊂ V such that no two of them
are linearly dependent defines a hyperplane arrangement A in the dual space
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V ∗ consisting of the hyperplanes Hi = {w ∈ V ∗ : 〈w, vi〉 = 0}. The rank of
A is by definition the dimension of the linear span of S. There are two natural
combinatorial objects associated to A. First, there is the intersection lattice of A,
namely the set of all intersections ∩i∈SHi ⊂ V ∗, S ⊂ {1, . . . , n}, with respect to
opposite inclusion. Second, there is a partition of V ∗ into a cone decomposition
given by the connected components of X \ ∪i:X 6⊂Hi

(X ∩ Hi) (which are open
polyhedral cones in X) where X ranges over the intersection lattice. The set of
all cones forms a lattice with C1 ≤ C2 if and only if C1 ⊃ C2. There is a natural
lattice map from the lattice of cones to the intersection lattice, which associates
to each cone C the vector space spanned by it. Dually, we consider the zonotope
(i.e. Minkowski sum of line segments) Z =

∑m
i=1[−1, 1]vi ⊂ V , a convex polytope

in the space V ′ spanned by the vectors v1, . . . , vm. There is a simple, but useful,
duality between the cone decomposition of A and the face lattice of Z. Under
this duality a cone C of A is mapped to the face

F = {v ∈ Z : 〈c, ·〉 attains its maximum value on Z at v},

where c ∈ C is arbitrary. This defines a lattice isomorphism, and under this
duality the dimensions of C and F satisfy dimC+dimF = dimV . In particular,
the vertices of Z correspond to the open cones inside V ∗, and Z itself to the
vector subspace (V ′)⊥ = ∩mi=1Hi contained in the closure of all cones. For any
element X of the intersection lattice of A, the cones contained in X as open
subsets correspond under this bijection to the faces F of Z parallel to U = X⊥,
i.e. such that F − F spans U . These faces are all translates of the zonotope
ZU =

∑
i:vi∈U [−1, 1]vi ⊂ Z. The zonotope Z is determined up to combinatorial

equivalence (but not affine equivalence) by the hyperplane arrangement A.
Specializing to the case of root systems, the co-roots α∨ ∈ aM define a

(simplicial) hyperplane arrangement A in the space a∗M . Its chambers correspond
to the set P(M), while in general, cones in the induced cone decomposition of a∗M
correspond to parabolic subgroups of G containing M . The map L 7→ a∗L defines
a lattice isomorphism between L(M) and the intersection lattice of A. The
map from the cone lattice to the intersection lattice corresponds to the canonical
map P(M)→ L(M) defined by taking the unique Levi subgroup containing M .
Dually, we have the root zonotope Z =

∑
α∈Σ0

[−1, 1]α∨ in the space aM , the face
lattice of which is in bijection with the lattice of parabolics of G containing M .
For example, when G = GL(n) and M is a maximal torus, the root zonotope is
the well-known permutahedron (cf. [Zie95, p. 17-18, 200]).

Let us recall the behavior of these objects under changes of the groups G and
M . If L ∈ L(M) the notation pertaining to L will be used with a superscript L.
Henceforth, we will use this convention repeatedly without further comment. For
example PL(M) and aLM denote the set of parabolic subgroups of L containing
M and the R-vector space spanned by the F -rational co-characters of ZM ∩
Lder, respectively. For L ∈ L(M) we denote by rkM L the co-rank of M in L,
i.e. dim aLM . For simplicity we write ΣL

0 for ΣPL
0

and view it as a subset of Σ0.
The cone decomposition in a∗L ⊂ a∗M given by the hyperplanes of A = AM not
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containing a∗L (i.e. the roots α ∈ Σ0 \ ΣL
0 ) is the cone decomposition associated

to L inside G. On the other hand, we have the projection from a∗M to (aLM)∗,
which maps the maximal cones of A to the maximal cones of the arrangement AL
associated to M inside L. This corresponds to the map P 7→ PL := P ∩ L from
P(M) to PL(M). The first process might be also dually be viewed as projecting
the zonotope ZM modulo the vector subspace aLM . The faces of ZM parallel to
aLM correspond bijectively to the vertices of the zonotope ZL ⊂ aL. For a fixed
vertex (a fixed chamber of AL), the corresponding face of Z is just a translate of
the zonotope ZLM ⊂ aLM . In order to facilitate the understanding of the analogous
case of galleries considered below, we explicate this fact as follows: if µ ∈ a∗L is
regular, then by considering vectors λ ∈ a∗M in general position and sufficiently
close to µ, we obtain all chambers of AM containing the chamber of AL associated
to µ. Furthermore, the projection a∗M → (aLM)∗ induces a bijection between the
set of these chambers and the set of all chambers of ALM . On the level of parabolic
subgroups, for any Q ∈ P(L) the map P 7→ PL from {P ∈ P(M) : P ⊂ Q} to
PL(M) is a bijection whose inverse is P 7→ Q(P ) = PUQ.

There is a dual construction for intertwining families. Namely, given a
(G,M)-intertwining family F , L ∈ L(M) and Q ∈ P(L) we consider the family

FQ given by FQP = FQ(P ), P ∈ PL(M), and

FQP2|P1
= FQ(P2)|Q(P1), P1, P2 ∈ PL(M).

Clearly, this is an intertwining family with respect to (L,M), which is called the
restriction of F .

We come back to the hyperplane arrangement A = AM associated to a fixed
Levi subgroup M , and consider the galleries from P0 to P0 in this arrangement. It
is instructive to think of a gallery in terms of a continuous path in a∗M from a∗P0,+

to a∗
P0,+

= a∗P0,− which intersects each root hyperplane once, and no two of them

at the same time. The order in which the path intersects the root hyperplanes
describes the ordering of the gallery. The order of the chambers of the hyperplane
arrangement traced by the path describes the sequence P0, . . . , PN . In the dual
picture, a gallery corresponds to a path of minimal length from the vertex of the
zonotope Z associated to P0 to its opposite vertex. In the special case when P0 is
a minimal parabolic, there is yet another description of the galleries of the root
system Σ0, namely as reduced decompositions of the longest element of the Weyl
group.

For the sake of completeness we record the following combinatorial charac-
terization of the orderings of Σ0 arising from galleries. (For the case where P0 is
a minimal parabolic, the statement can be found in [Zhe87].)

Definition 3. We say that an ordering α1, . . . , αN of Σ0 satisfies the braiding
property if

α∨j = α∨i + α∨k =⇒ either i < j < k or i > j > k.

(The analogous property with roots instead of co-roots is equivalent.)
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Lemma 1. An ordering of Σ0 is obtained from a gallery if and only if it satisfies
the braiding property.

Proof. Suppose that P0|α1P1| . . . |αNPN = P0 is a gallery. Then ΣPi
= ΣP0 \

{α1, . . . , αi}∪{−α1, . . . ,−αi}, αi ∈ ∆Pi−1
and −αi ∈ ∆Pi

, i = 1, . . . , N . If we had
α∨j = α∨i +α∨k with j < i, k, then this would contradict that αj ∈ ∆Pj−1

. Similarly,
if j > i, k, this contradicts −αj ∈ ∆Pj

. Therefore, the braiding condition is
satisfied. Conversely, suppose that α1, . . . , αN is an ordering of ΣP0 which satisfies
the braiding property. It follows that α1 ∈ ∆P0 . Therefore, we can take P1 to
be the parabolic adjacent to P0 along α1. Suppose that P1, . . . , Pi are defined
with ΣPi

= ΣP0 \ {α1, . . . , αi} ∪ {−α1, . . . ,−αi}. We claim that αi+1 ∈ ∆Pi
.

Otherwise, either α∨i+1 = α∨l + α∨k , k, l > i, or α∨i+1 = α∨k − α∨j , k > i, j ≤ i,
i.e. α∨j + α∨i+1 = α∨k . Both possibilities violate the braiding property. Thus, we
can take Pi+1 to be the parabolic adjacent to Pi along αi+1. In this way we obtain
a gallery P0|α1P1| . . . |αNPN = P0. �

In the following, we will work exclusively with a certain subset of the set of
all galleries determined by the (non-canonical) choice of λ0 ∈ a∗P0,+

. Namely, we
consider the galleries induced by the straight paths in direction λ0, i.e. µ(t) =
tλ0 + µ (t decreasing from +∞ to −∞) for any µ ∈ a∗M such that the path
µ(t) does not cross any two different root hyperplanes at the same time. This

restriction means that the numbers tα(µ) = − 〈µ,α∨〉
〈λ0,α∨〉 , α ∈ Σ0 are all distinct. To

put it otherwise, µ lies outside the union of the hyperplane arrangement Aλ0 in
a∗M defined by

Aλ0 = {HL := a∗L + Rλ0 : L ∈ L2(M)},
where L2(M) = {L ∈ L(M) : rkM L = 2}. Clearly ∩LHL is the line spanned by
λ0. Thus, Aλ0 has rank n − 1. For µ ∈ a∗M \ ∪Aλ0 denote by G(µ) the gallery
determined by the path µ(t). Its ordering is given by the ordering of the tα(µ)’s
as real numbers. Let

X = XG
λ0

= {G(µ) : µ in general position}

be the set of galleries obtained this way. Note that G(µ) depends only on the
connected component of µ in the complement of ∪Aλ0 . On the other hand,
if G(µ) = G(µ′), then µ and µ′ lie on the same side of any hyperplane HL.
Therefore, under the map µ 7→ G(µ), the galleries in Xλ0 correspond bijectively
to the chambers of Aλ0 in a∗M , that is to the vertices of the (combinatorially
unique) dual zonotope Zλ0 in H = {v ∈ aM : 〈λ0, v〉 = 0}. Such a zonotope
Zλ0 can be constructed as the fiber polytope, in the sense of [BS92], of the
linear map z 7→ 〈λ0, z〉 from Z to a line segment. In other words, Zλ0 is the
monotone path polytope of Z in direction λ0. This follows from [ibid., Lemma
2.3 and Theorem 4.1] by considering the root zonotope Z as the image of an
N -dimensional hypercube.

Definition 4. We say that λ0 ∈ a∗P0,+
is strongly regular if for any L ∈ L(M)

and L′ ∈ L2(M), a∗L is not contained in HL′ unless L′ ⊂ L. Equivalently, λ0 does
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not lie on the hyperplanes a∗L + a∗L′ where L ∈ L(M), L′ ∈ L2(M), L′ 6⊂ L and
a∗L + a∗L′ 6= a∗M .

Assume that λ0 is strongly regular. In particular, the hyperplanes HL, L ∈
L2(M) are all distinct. If x, x′ ∈ X correspond to two components which are

separated by a single hyperplane HL, L ∈ L2(M), we write x
L←→ x′. In this way,

the set X carries naturally the structure of a labeled graph with the labels of
the edges given by the Levi subgroups in L2(M). This graph is nothing but the
one-skeleton of the zonotope Zλ0 and the labels correspond to the directions of
the edges.

For root systems of type An, the hyperplane arrangement Aλ0 and the zono-
tope Zλ0 were studied in [Law97]. The dependence of Aλ0 and Zλ0 on λ0 is in
general rather subtle (even for λ0 in general position). As for the intersection
lattice of Aλ0 we refer the reader to [FL] and the literature cited therein.

The case n = 2 is easy to understand. Given an ordered basis (v1, v2) of a
two-dimensional space V , denote by v1 	 v2 the associated orientation on V .

Lemma 2. Suppose that n = 2.

(1) Let G be a gallery with ordering α1, . . . , αN . Then the orientations α∨i 	
α∨j , i < j, coincide. We call this orientation on aM the orientation of G.

(2) A gallery is determined by its orientation.
(3) For G = G(µ), the dual orientation of G on a∗M is given by µ 	 λ0.

Thus, there are exactly two galleries, both of the form G(µ), corresponding to the
two half-planes formed by the complement of the line Rλ0 in a∗M . The labeled
graph XG has exactly two vertices, which are joined by an edge with the label G.

We note that the set Y of all galleries from P0 to P0 can also be given the
structure of a connected labeled graph in a way that is compatible with the
corresponding structure of X. Namely, two galleries y, y′ ∈ Y are joined by an
edge with label L ∈ L2(M) if the orderings of y and y′ are

α1, . . . , αi−1, αi, . . . , αj, αj+1, . . . , αN

and

α1, . . . , αi−1, αj, . . . , αi, αj+1, . . . , αN

with {αi, . . . , αj} = ΣL
0 for some 1 ≤ i < j ≤ N . The inclusion Xλ0 ↪→ Y is

then an embedding of the labeled graph Xλ0 as a complete labeled subgraph of
Y. In general, the sets Xλ0 for any λ0 and even their union ∪λ0Xλ0 are proper
subsets of Y (the latter is the case for G = GL(n), n ≥ 9, and M a maximal
torus [FZ01]). The set Y can also be given a natural topological structure that
extends its graph structure ([Bau80, BKS94]), but for n > 2 the result is more
complicated than a polytope, and we do not know if our proof strategy can be
adapted to this setting.

If in the construction of Aλ0 we omit the hyperplanes HL associated to Levi
subgroups L ∈ L2(M) with reducible root system ΣL, we obtain a smaller subar-
rangement A′

λ0
, which still carries all the information necessary for our purposes.
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The chambers of the modified arrangement correspond to certain sets of galleries,
namely the equivalence classes under the equivalence relation generated by x ∼ x′

if x
L←→ x′ for a Levi subgroup L ∈ L2(M) with reducible root system. In the

case of G = GL(n) and M a maximal torus, these arrangements are the dis-
criminantal arrangements of Manin-Schechtman [MS89] with k = 2. The set Y′

of all equivalence classes of galleries is the higher Bruhat order B(n, 2), and the
corresponding embedding X′

λ0
↪→ Y′ is described by Bayer-Brandt [BB97] and

Felsner-Ziegler [FZ01].

Example. Let G = GL(4) and M be a maximal torus. There are six positive
roots, enumerated α1, . . . , α6 with α1, α2, α3 simple, α4 = α1 + α2, α5 = α2 + α3,
α6 = α1 + α2 + α3. The labeled graph Y of galleries in A (equivalently, reduced
decompositions of the longest element of the Weyl group) is the following.

146352

364

253
146253

26
142653

142
241653

165

136452
13

rrrrrrrrrr
45

LLLLLLLLLL 245613
45

rrrrrrrrrr
13

LLLLLLLLLL

316452

45 LLLLLLLLLL 136542

13rrrrrrrrrr
254613

13 LLLLLLLLLL 245631

45rrrrrrrrrr

316542

165

254631

364

356142
142

356241
26

352641
253

253641

Here each gallery is given by the induced ordering of the positive roots, and the
Levi subgroups L ∈ L2(M) are described by enumerating their positive roots.
One checks that the strong regularity condition on λ0 ∈ a∗P0,+

is that 〈λ0, α
∨
1 〉 6=

〈λ0, α
∨
3 〉. In this case, the rank two arrangementAλ0 consists of seven hyperplanes

(corresponding to the four Levi subgroups of type GL(3) and the three subgroups
of type GL(2)×GL(2)), and therefore, the graph Xλ0 is a 14-gon. More precisely,
for 〈λ0, α

∨
1 〉 > 〈λ0, α

∨
3 〉 (resp. 〈λ0, α

∨
1 〉 < 〈λ0, α

∨
3 〉) the graph Xλ0 is obtained from

Y by deleting the galleries labeled 136542 and 245631 (resp. 316452 and 254613).
In the degenerate case 〈λ0, α

∨
1 〉 = 〈λ0, α

∨
3 〉 the edges 13 and 45 collide and we get

a dodecagon.
If we identify vertices joined by edges of type A1 ×A1, i.e. labeled by 13, 26

or 45, the graph reduces to an octagon.

146352

364

253
14(62)53

142
241653

165
2(45)6(13)

364

(13)6(45)2
165

356142
142

35(62)41
253

253641
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Here parentheses around a pair of indices indicate that the two roots may occur
in any order. Note that in this case we have X′

λ0
= Y′, even for degenerate λ0.

Similarly, for the root system of type C3, we label the positive roots as α1,
α2, α3 (simple), α4 = α1 + α2, α5 = α2 + α3, α6 = α1 + α2 + α3, α7 = 2α2 + α3,
α8 = α1 +2α2 +α3, α9 = 2α1 +2α2 +α3. The roots α3, α7, α9 are the long roots.
The sets ΣL

0 , L ∈ L2(M), are 13, 124, 2357, 156, 1789, 268, 29, 3469, 38, 458, 47,
59, 67. The labeled graph Y′ is given by the following 14-gon.

14(29)8(67)53

142

286
149682753

2753
1496(38)572

3694
(31)6948572

485

24198(67)53

1987

(31)6(59)8(74)2

165

2(47)891653

165

356198742

1987

2(47)8(95)6(13)

485

35(76)89142

142

2758496(13)
3694

275(83)6941
2753

357286941
286

35(76)8(29)41

Once again we have Y′ = X′
λ0

for all λ0 (even in the degenerate case), because
any two Levi subgroups in L2(M) which are not of type A1×A1 have a common
root.

For a description of the case GL(5) (where one still has X′
λ0

= Y′) and some
information about the case GL(6) (where X′

λ0
is always a proper subset) see

[Bau80], [Law97] and [FZ01].

We can now explain how Theorem 1 fits into this framework and at the same
time formulate a somewhat more general statement suitable for the induction
process. For a fixed λ0 ∈ a∗P0,+

and a basis β = (β∨1 , . . . , β
∨
n ) ∈ BP0 we define an

associated linear map

µβ : Rn → a∗M

by the linear equations〈
µβ(ξ), β

∨
i

〉
= ξi 〈λ0, β

∨
i 〉 , i = 1, . . . , n.

That is, µβ is the dual of the coordinate map with respect to the basis
β∨i

〈λ0,β∨i 〉
of aM . If ξ is in general position (i.e. away from the finitely many hyperplanes

µ−1
β (HL) ⊂ Rn, L ∈ L2(M), β ∈ BP0), then G(µβ(ξ)) is well defined and in its

ordering βi precedes βj if and only if ξi < ξj. Also, if σ is a permutation of
{1, . . . , n} then

(4) µσβ(σξ) = µβ(ξ)
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where (σξ)i = ξσ−1(i), and similarly for σβ.
The generalization of Theorem 1 alluded to above is

(5) cM(F) =
(−1)n

n!

∑
β∈BP0

vol(β)∂
1β

G(µβ(ξ))(F)

for any ξ in general position (and λ0 strongly regular). Note that G lex
β = G(µβ(ξ))

for ξ1 � ξ2 � · · · � ξn, which shows how to obtain the original statement as a
special case.

Assume now that λ0 is strongly regular. Let L ∈ L(M) and consider the
faces of Zλ0 which are parallel to aLM ∩ H. By the condition on λ0 these are the
translates of ZL

λL
0

where λL0 is the projection of λ0 to (aLM)∗. Note that λL0 lies

in the positive Weyl chamber with respect to PL
0 and is strongly regular with

respect to L. The construction of these faces is analogous to the case of the root
zonotopes, but unlike it, we do not get all faces of Zλ0 this way for n ≥ 4. To
explicate it, let ν be a regular element of a∗L which does not lie on any hyperplanes
HL′ , L

′ ∈ L2(M), L′ 6⊂ L. (The existence of ν is assured by the assumption on
λ0.) Consider the galleries GG(µ) for all µ ∈ a∗M sufficiently close to ν and in
general position. By the assumptions on µ and ν, the numbers tα = tα(µ) are
all distinct and the relative positions of the tα for α 6∈ ΣL

0 do not depend on µ.
On the other hand, the tα for α ∈ ΣL

0 are smaller in absolute value than the rest
of the tα’s, so that they comprise a contiguous segment. They depend only on
the projection µL of µ to (aLM)∗ and their ordering matches that of the gallery
GL(µL) corresponding to the projection µL(t) = tλL0 + µL.

Thus GL(µ) 7→ GG(µ + ν) (for µ ∈ (aLM)∗ close to the origin and in general
position) defines an embedding of labeled graphs

ψGL;ν : XL
λL
0
→ XG

λ0
,

in the sense that if x
L′←→ y in XL

λL
0

then ψGL;ν(x)
L′←→ ψGL;ν(y) in XG

λ0
. Let Q ∈ P(L)

be such that ν ∈ a∗Q,+. Then all the galleries in ψGL;ν(X
L
λL
0
) begin with the same

sequence from P0 to Q(PL
0 ) and end with the same sequence from Q(PL

0 ) to P0.

They only differ in the sequence between Q(PL
0 ) and Q(PL

0 ), which is dictated
by the input gallery in XL

λL
0
.

For L ∈ L2(M) this embedding yields for each ν ∈ a∗L in general position an
edge of XG

λ0
with label L, and by varying ν we obtain all edges with this label.

Likewise, we can obtain all vertices by taking any L ∈ L(M) with rkM L = 1 (in
which case XL is a point) and varying ν.

Henceforth we will implicitly assume that λ0 is strongly regular.

4. A combinatorial variant of the problem

We now turn to a combinatorial variant of Theorem 1. We proceed in this
way since it is not convenient to work with intertwining families directly. Instead
we introduce an algebraic setup which controls their relations. Ultimately, this
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will reduce the problem to a question in commutative algebra, which is settled in
[FL].

Consider first the following abstract situation. Let W be a finite-dimensional
vector space over C, W∨ its dual space, and s = Sym(W ) and s∨ = Sym(W∨)
the corresponding symmetric algebras, which can be considered as the algebras
of polynomials on W∨ and W , respectively. Both s and s∨ are naturally graded
objects. Let X be a finite index set and let S = sX =

⊕∞
n=0 Sn and S∨ = (s∨)X =⊕∞

n=0 S
∨
n be the graded modules of functions from X to s and s∨, respectively.

The natural perfect duality W×W∨ → C induces a duality between s and s∨,
and in turn a duality between S and S∨ given by a bilinear form (·, ·) : S×S∨ →
C satisfying (Sn, S

∨
m) = 0 for all n 6= m. Thus, (V ⊥)⊥ = V for all graded

vector subspaces V of S. The natural diagonal action of s on S translates into
a dual diagonal action of s on S∨, which lowers degree and can be understood
as applying the elements of s as differential operators to the components. In
particular, for w ∈ W and s∨ ∈ S∨ we write ∂ws

∨ for the element of S∨ satisfying
(s, ∂ws

∨) = (ws, s∨) for all s ∈ S. In the following, we will always consider S
and S∨ as s-modules in this way. We also think of S∨ as a free s∨-module in the
obvious way. Note that R ⊂ S∨ is a graded s-submodule of S∨ if and only if
T = R⊥ is a graded s-submodule of S, in which case

T = {s = (sx) ∈ S :
∑
x

sxux = 0 for all u = (ux) ∈ R}.

In this situation we can also think of T as the graded dual of S∨/R, i.e. T =⊕∞
n=0(S

∨
n/Rn)

∗.

Lemma 3. Let R be a graded s-submodule of S∨ and suppose that T = R⊥ ⊂ S
is generated as an s-module by its homogeneous elements of degree < K. Then
an element u of S∨k , k ≥ K, belongs to R if (and only if) ∂wu ∈ R for all w ∈ W .

Proof. Suppose that u ∈ S∨k and ∂wu ∈ R for all w ∈ W . Then ∂w(
∑

x sxux) =∑
sx∂wux = 0 for all s = (sx)x∈X ∈ T and w ∈ W . Therefore

∑
sxux is a

constant for all s ∈ T . However, if s ∈ Tl, l < K, then deg(
∑
sxux) = k − l ≥

K − l > 0 and therefore
∑
sxux = 0. We conclude that

∑
sxux = 0 for a set of

generators s of T and therefore u ∈ T⊥ = R. �

To connect this discussion to the previous setup, let W be the vector space
⊕α∈ΣP0

Cα∨ with the canonical projection pr : W → aM . We write pr∗ both for
the dual map a∗M → W∨ and for the induced map Sym(a∗M) → s∨. In order to
distinguish α∨ as an element of W and aM we write (Θα∨)α∈ΣP0

for the basis
of W where Θα∨ = α∨ in the α-component and 0 otherwise. Denote by ($α∨)
the corresponding dual basis of W∨. Set $α =

∏m
i=1$α∨i

for any (multi-)set

α = {α∨1 , . . . , α∨m} ⊂ Σ∨
0 . The index set X will be the set X = XG

λ0
of all galleries

obtained from straight paths in direction λ0. We denote the resulting modules S
and S∨ by S and S∨. We also denote by 1G the element of S∨ with component
1 at the index G ∈ X and all other components zero.
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We define sF ∈ End(FP0) for an element s ∈ S∨ and an intertwining family
F by linear extension in the first variable of(∏

α∈Σ0

$
m(α∨)
α∨ 1G

)
F := ∂mG (F).

Thus, the module S∨ is a means to keep track of all possible logarithmic
differential operators which can be applied to intertwining families. The action
of s on S∨ has a simple description in this framework, which we include here
since it may serve as motivation for our inductive strategy. For α ∈ ΣP0 and an
intertwining family F , we consider the new intertwining family Fα defined by
FαP = FP and

FαQ|P (λ) = (1 + 〈λ, α∨〉)1ΣP
(α)−1ΣQ

(α)FQ|P (λ).

Then

(6) sFα = sF + (∂Θα∨
s)F

for any s ∈ S∨.
Because of the commuting relations satisfied by intertwining families, there

exist many elements s ∈ S∨ annihilating all families. We denote the space of these
elements by K. Equation (6) implies that K is actually an s-module (but not an
s∨-module). While it may be difficult to describe the module K completely, it is
not difficult to construct certain elements in K explicitly.

First, for any gallery G and any D ∈ Sym(a∗M), acting as a differential oper-
ator on functions on a∗M , we have

FP0|P0
(0)−1

[
DFP0|P0

]
(0) = (pr∗(D)1G)F .

In particular, the right-hand side is independent of G, and it follows that for any
x, x′ ∈ X we have Sym(pr∗(a∗M)) (1x − 1x′) ⊂ K.

Let L ∈ L(M) and identify WL with a subspace of W . For any ν ∈ a∗L
in general position we construct a map φGL;ν from (SL)∨ to (SG)∨. Recall the
embedding

ψGL;ν : XL
λL
0
→ XG

λ0

of labeled graphs defined in §3 above. Define

φGL;ν : (SL)∨ = Sym((WL)∨)XL → Sym(W∨)XG

= (SG)∨

by
φGL;ν(s1G) = π∗L(s)1ψG

L;ν(G),

where πL : W → WL is the linear transformation defined by

ΘG
α∨ 7→

{
ΘL
α∨ if α ∈ ΣL

0 ,

0 otherwise.

By the description of the image of ψGL;ν , it follows that if ν ∈ a∗Q,+, s ∈ (SL)∨,

and A ∈ Sym((WL)⊥) ⊂ s∨ then AφGL;ν(s)F can be written as the composition
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of sFQ with certain operators (on the left and on the right). Thus, for all ν ∈ a∗L
in general position we have

Sym((WL)⊥)φGL;ν(KLλL
0
) ⊂ KGλ0

.

Let

RelL = Ker pr|WL = {
∑
α∈ΣL

0

cαΘα∨ :
∑
α

cαα
∨ = 0}

be the space of relations associated to L. Its annihilator Rel⊥L ⊂ W∨ can be
expressed as

Rel⊥L = (WL)⊥ + π∗L pr∗L((aLM)∗) = (WL)⊥ + pr∗(a∗M).

Consequently, for any galleries x, x′ ∈ ψGL;ν(X
L
λL
0
) we have

Sym(Rel⊥L) (1x − 1x′) ⊂ K.
We are interested in the sum of all these subspaces of K, for which it is

evidently enough to consider only Levi subgroups L ∈ L2(M). For any two

galleries x, x′ ∈ X such that x
L←→ x′ for L ∈ L2(M), define

Rx,x′ = Sym(Rel⊥L) (1x − 1x′) ,

and set

R =
∑
x

L←→x′

Rx,x′ .

Then R ⊂ K. Clearly, each vector space Rx,x′ , and therefore also their sum R,
is a graded s-submodule of S∨. Also, for any L ∈ L(M) and ν ∈ a∗L in general
position we have the compatibility relation

(7) Sym((WL)⊥)φGL;ν(RL
λL
0
) ⊂ RG

λ0
.

The module R corresponds to the relations for intertwining families given by
elementary Coxeter moves. Its annihilator T = R⊥ ⊂ S can be described as

T = {s = (sx)x∈X ∈ S : sx − sx′ ∈ (RelL) for all x
L←→ x′},

where (RelL) denotes the ideal of s generated by the vector space RelL ⊂ W . It
is clear that T is in fact an s-algebra, although we will have no use of this fact.
The key fact which we will use is [FL, Corollary 3]. Applying it to the hyperplane
H of aM we infer

T is generated as a s-module by its homogeneous elements of

degree smaller than n.
(8)

Note that the elements of T are constant on the equivalence classes in X′,
since RelL = 0 for L ∈ L2(M) with reducible root system ΣL. In studying T it
is therefore possible to consider the smaller subarrangement A′

λ0
instead of Aλ0 .

Although this observation is useful for working out examples, it is not needed in
the proof.
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Example. In rank two, there are just two galleries G1 and G2, and the module
T = {s11G1 + s21G2 : s1 − s2 ∈ (RelL)} is clearly generated by the elements
1G1 + 1G2 (of degree zero) and r1G1 for r ∈ RelL (of degree one).

In rank three, the graph Xλ0 is necessarily a circuit. We number its vertices

as G0, . . . ,Gm−1 in such a way that for any 0 ≤ i ≤ m − 1 we have Gi
Li←→ Gi+1

with Li ∈ L2(M) (where we set Gm := G0). Let Wi = RelLi
⊂ W . Then it is

an exercise in commutative algebra to verify that the module T = {
∑

i si1Gi
:

si+1−si ∈ (Wi), i = 0, . . . ,m−1} (where we again identify sm and s0) is generated
by the elements

∑
i 1Gi

(of degree zero),
∑

j<iwj1Gi
for wj ∈ Wj with

∑
j wj = 0

(of degree one) and wiwj
∑

i<k≤j 1Gk
for i < j, wi ∈ Wi, wj ∈ Wj (of degree two).

We leave open the question of whether in fact R = K. The question is subtle
because it is not clear how to construct many examples of intertwining families.
However, the lack of an affirmative answer is only a bookkeeping difficulty. (For
n = 2 it is in fact not difficult to show that R = K. We omit the proof of this
statement, since it is unnecessary for the proof of our main result.)

The main identity (5) for cM(F) can now be reduced to an identity of ele-
ments of the quotient space S∨n /Rn. First, it is clear that the right hand side of
(5) can be written as dξF , where

dξ =
(−1)n

n!

∑
β∈BP0

vol(β)$β1G(µβ(ξ)) ∈ S∨n .

It is also not hard to express cM(F) directly in the form cF for a (different)
element c = cη;(µP )P

∈ S∨n . For any P ∈ P(M) let prP0;P = pr ◦πP0;P : W → aM
where πP0;P : W → ⊕α∈ΣP0;P

Cα∨ is the projection map. The dual map a∗M → W∨

is then given by

pr∗P0;P (η) =
∑

α∈ΣP0;P

〈η, α∨〉$α∨ .

We also denote by pr∗P0;P the induced map Sym(a∗M)→ s∨.

Lemma 4. We have cM(F) = cη;(µP )P
F for all intertwining families F , where

cη;(µP )P
=

1

n!

∑
P∈P(M)

pr∗P0;P (ηn)∏
α∈∆P

〈η, α∨〉
1G(µP ) ∈ S∨n .

Here η ∈ a∗M with 〈η, α∨〉 6= 0 for all α ∈ Σ0, and for each P ∈ P(M), µP ∈ a∗P,+
is in general position.

Proof. Following Arthur, we evaluate (1) by setting λ = tη and taking the limit
as t→ 0 using de L’Hôpital’s rule. That is,

cM(F) =
1

n!

∑
P∈P(M)

FP |P0(0)
−1
[
( ∂
∂η

)nFP |P0

]
(0)

θP (η)
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The gallery G(µP ) contains a sub-gallery from P0 to P , obtained by restricting
the path tλ0 + µP to t ≥ 0. Therefore, for any D ∈ Sym(a∗M), acting as a
differential operator on functions on a∗M , we have

FP |P0(0)−1
[
DFP |P0

]
(0) =

(
pr∗P0;P (D)1G(µP )

)
F .

The Lemma follows. �

Theorem 1 asserts that cη;(µP )P
−dξ ∈ K. We will show the following stronger

algebraic statement.

Theorem 2. Let cη;(µP )P
∈ S∨n and dξ ∈ S∨n be as above. Then

cη;(µP )P
− dξ ∈ Rn.

Note that this implies in particular that modulo Rn, dξ and cη;(µP )P
are

independent of all choices. In fact, in the proof we first check this independence.

Lemma 5. The image of cη;(µP )P
in S∨n /Rn is independent of the choices of µP ,

P ∈ P(M), and η ∈ a∗M . Moreover,

1

n!

∑
P∈P(M)

pr∗P0;P (ηk)∏
α∈∆P

〈η, α∨〉
1G(µP ) ∈ Rk

for all k < n.

Proof. First, note that the class modulo Rn of the term pr∗P0;P (ηn)1G(µP ) corre-
sponding to P ∈ P(M) does not depend on the choice of µP ∈ a∗P,+. Indeed, since
〈λ0, α

∨〉 > 0 for all α ∈ Σ0, if µP moves in the chamber associated to P , it can
only cross hyperplanes of Aλ0 associated to L ∈ L2(M) with either ΣL

0 ⊂ Σ0∩ΣP

or ΣL
0 ⊂ Σ0 ∩ ΣP . The difference

pr∗P0;P (ηn)
(
1G(µP ) − 1G(µ′P )

)
= (

∑
α∈ΣP0;P

〈η, α∨〉$α∨)n
(
1G(µP ) − 1G(µ′P )

)
for vectors µP and µ′P separated by the single hyperplane HL lies in the relation
spaceRG(µP ),G(µ′P ). Namely, in the first case no root of L occurs in this expression,
and in the second case the roots of L form a subset of ΣP0;P . Therefore the factor

pr∗P0;P (ηn) lies in Sym(Rel⊥L) in both cases.
The class cη of cη in S∨n /Rn is now a priori a rational function of η of ho-

mogeneous degree zero with values in a finite-dimensional vector space and at
most simple singularities along the hyperplanes 〈η, α∨〉 = 0, α ∈ ΣP0 . We show
that for any pair P |αP ′ of adjacent parabolics the poles along 〈η, α∨〉 = 0 in the
contribution from P and P ′ to cη cancel. Indeed, we have

pr∗P0;P ′(η
n) =

n∑
k=0

(
n

k

)
〈η, α∨〉k$k

α∨ pr∗P0;P (ηn−k).



18 TOBIAS FINIS, EREZ LAPID AND WERNER MÜLLER

On the other hand, we can take µP ∈ a∗P,+ and µP ′ ∈ a∗P ′,+ very close to each
other so that G(µP ′) = G(µP ). Then the total contribution(

pr∗P0;P (ηn)∏
γ∈∆P

〈η, γ∨〉
+

pr∗P0;P ′(η
n)∏

γ∈∆P ′
〈η, γ∨〉

)
1G(µP )

of P and P ′ is regular along the hyperplane 〈η, α∨〉 = 0. Therefore, cη is in fact
a polynomial in η. Since it has homogeneous degree zero, it is constant.

The second part follows in a similar vein, except that now the function is
regular of homogeneous degree k − n < 0, and is therefore zero. �

The same independence property is true for the right hand side of the formula.
In fact, for the inductive process we need a somewhat more precise statement.

Proposition 1. The class dξ of dξ in S∨n /Rn is independent of the choice of ξ.

More generally, let I ⊂ {1, . . . , n} and β
0

= (α∨i )i∈I with αi ∈ Σ0 and set

B0(β0
) = {(β∨1 , . . . , β∨n ) ∈ B0 : βi = αi for all i ∈ I}.

Then the image of

(9) dβ
0
,ξ =

(−1)n

n!

∑
β∈B0(β

0
)

vol(β)$β\β
0
1G(µβ(ξ))

in S∨/R depends only on |I| and the set underlying β
0
, and not on ξ, I or the

ordering of β
0
.

Proof. By (4) it suffices to show that (9) is independent of ξ. Clearly, (9) depends
only on the connected component of ξ in the complement of⋃

β∈B0(β
0
),H∈Aλ0

µ−1
β (H).

Suppose that ξ(i), i = 1, 2, are separated by a single wall H. Let β ∈ B and

set Gi(β) = G(µβ(ξ(i))), i = 1, 2. Then G1(β) = G2(β) unless µβ(H) = HL for

some L ∈ L2(M) in which case G1(β)
L←→ G2(β). Thus,

(10) dβ
0
,ξ(1) − dβ

0
,ξ(2) =

(−1)n

n!

∑
β∈C

vol(β)$β\β
0
(1G1(β) − 1G2(β)),

where
C = {β ∈ B0(β0

) : µβ(H) ∈ Aλ0}.
If β ∈ C, we denote by L(β) the Levi L ∈ L2(M) such that µβ(H) = HL. Since

β \ β
0

is linearly independent, we have |aL(β)

M ∩ β \ β
0
| ≤ 2.

Consider first β ∈ C such that a
L(β)

M ∩ β ⊂ β
0
. Then $β\β

0
∈ Sym(Rel⊥L(β))

and therefore
vol(β)$β\β

0
(1G1(β) − 1G2(β)) ∈ RG1(β),G2(β).
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Next, suppose that a
L(β)

M ∩ β = {β∨i , β∨j } with i, j /∈ I. Then H is the

hyperplane ξi = ξj. Let β′ be the basis obtained from β by interchanging β∨i
and β∨j . Then β′ ∈ C, Gi(β′) = G3−i(β) and L(β) = L(β′), and therefore the

contributions of β and β′ to (10) cancel.
Finally, we have to consider the contribution from

C1 = {β ∈ C : |aL(β)

M ∩ β \ β
0
| = 1}.

We may write C1 as the disjoint union over L ∈ L2(M) of

CL1 = {β ∈ C1 : L(β) = L}.

We can partition each CL1 further into sets of the form

CL,i,β′ = {ιβ∨,i(β′) := (β∨1 , . . . , β
∨
i−1, β

∨, β∨i+1, . . . , β
∨
n ) : β ∈ ΣL

P0
} ∩BP0

for some i /∈ I and β′ = (β∨j )j 6=i. Fix i and β′ such that CL,i,β′ ⊂ CL1 . It remains
to show that

(11)
∑

β∈ΣL
P0

:β∨ /∈span({β∨j }j 6=i)

vol(ιβ∨,i(β
′))$β′\β

0
$β∨(1G1(ιβ∨,i(β)) − 1G2(ιβ∨,i(β))) ∈ R.

Note that G1(CL,i,β′)∪G2(CL,i,β′) consists of two vertices G ′1,G ′2 ∈ X such that

G ′1
L←→ G ′2. For any n-tuple β of vectors in aM let M(β) be the transition matrix

from ∆∨
0 to β. We claim that G1(ιβ∨,i(β

′)) = G ′k where k is determined by the

sign of the determinant of M(ιβ∨,i(β
′)).

Indeed, let 0 6= v1 ∈ aLM∩span({β∨j }j 6=i). The sign of detM(ιw,i(β
′)), w ∈ aLM ,

is determined by w 	 v1. On the other hand, G1(ιβ∨,i(β
′)) is determined by its

projection to L. By Lemma 2 the orientation of the latter differs from β∨ 	 v1

by the sign of∣∣∣∣∣∣
〈
µιβ∨,i(β

′)(ξ
(1)), β∨

〉
〈λ0, β

∨〉〈
µιβ∨,i(β

′)(ξ
(1)), v1

〉
〈λ0, v1〉

∣∣∣∣∣∣ = 〈λ0, β
∨〉 (ξ(1)

i 〈λ0, v1〉 −
〈
µιβ∨,i(β

′)(ξ
(1)), v1

〉
),

which is independent of β since 〈λ0, β
∨〉 > 0 and v1 ∈ span({β∨j }j 6=i).

Therefore, up to a sign, (11) is equal to∑
β∈ΣL

P0

detM(ιβ∨,i(β
′))$β′\β

0
$β∨(1G′1 − 1G′2).

This belongs to RG′1,G′2 , since β∨ 7→ detM(ιβ∨,i(β
′)) is the restriction of a linear

functional on aLM . �

5. The induction argument

We now turn to the inductive proof of Theorems 1 and 2. For α ∈ Σ0

consider the set Lα̂(M) of Levi subgroups L ∈ L(M) of co-rank one in G such
that α /∈ ΣL

0 . For L ∈ Lα̂(M) we write P(L) = {QL, QL} where α /∈ ΣQL and
denote by $L ∈ a∗L the vector satisfying 〈$L, β

∨〉 = 1 where ∆QL
= {β}. The
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set {QL : L ∈ Lα̂(M)} consists of the maximal parabolic subgroups Q of G
containing M such that α /∈ ΣQ.

The motivation for our proof strategy is that the difference cM(Fα)− cM(F)
for an intertwining family F can be expressed in terms of limits cLM for the groups
L ∈ Lα̂(M). In our algebraic setup, this translates into the consideration of ∂Θα∨

c
and ∂Θα∨

d. In virtue of Lemma 5 and Proposotion 1 we may and will suppres
the dependence of c and d on their auxiliary parameters from the notation.

Proposition 2. For α ∈ Σ0 we have

(12) ∂Θα∨
cG ≡

∑
L∈Lα̂(M)

〈$L, α
∨〉φGL;$L

(cL) (mod Rn−1).

Proof. For any P ∈ P(M) and β ∈ ∆P let Pβ be the maximal parabolic subgroup

of G containing P defined by β, i.e. such that ∆P \ Σ
Pβ

P = {β}. We first claim
that

(13) ∂Θα∨
pr∗P0;P (ηn) = n

∑
β∈∆P :α/∈Σ

Pβ

〈
$Pβ

, α∨
〉
〈η, β∨〉 pr∗P0;P (ηn−1).

Both sides are zero if α ∈ ΣP . Otherwise, the condition α /∈ ΣPβ is equivalent to
α /∈ ΣLβ , where Lβ ∈ L(M) is the Levi subgroup of Pβ. Since $Pβ

, β ∈ ∆P , is
the basis of a∗M dual to ∆P , we have∑

β∈∆P :α/∈Σ
Pβ

〈
$Pβ

, α∨
〉
β∨ = α∨.

The equality (13) reduces in this case to the chain rule identity

∂Θα∨
pr∗P0;P (ηn) = n 〈η, α∨〉 pr∗P0;P (ηn−1).

Using (13) and the relation

θP (η) = θ
Lβ

P
Lβ

(η) 〈η, β∨〉

for β ∈ ∆P , we may now write the left-hand side of (12) as the sum over L ∈
Lα̂(M) of

1

(n− 1)!

∑
P∈P(M),β∈∆P :Pβ=QL

〈$L, α
∨〉

pr∗P0;P (ηn−1)

θL
PL(η)

1G(µP ).

Note that the sum is over P ∈ P(M) such that P ⊂ QL. It remains to show that
for any L ∈ Lα̂(M) we have

(14) φGL;$L
(cL) ≡ 1

(n− 1)!

∑
P∈P(M), P⊂QL

pr∗P0;P (ηn−1)

θL
PL(η)

1G(µP ) (mod Rn−1)

for any η ∈ a∗M and µP ∈ a∗P,+ in general position. To show this, we first observe
that

φGL;$L
(cL) = φGL;$L

(
1

(n− 1)!

∑
P∈PL(M)

pr∗
PL

0 ;P
(ηn−1)

θP (η)
1GL(µP ))
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with µP ∈ (aLP,+)∗, which we can assume to be close to the origin. Note that

this expression depends only on ηL, and is therefore valid for any η ∈ a∗M . Also,
ψGL;$L

(GL(µP )) = GG($L + µP ). Therefore,

φGL;$L
(cL) =

1

(n− 1)!

∑
P∈PL(M)

(prPL
0 ;P πL)∗(ηn−1)

θP (η)
1GG($L+µP )

=
1

(n− 1)!

∑
P∈PL(M)

pr∗
QL(PL

0 );QL(P )
(ηn−1)

θP (η)
1GG($L+µP ).

Since $L +µP ∈ a∗QL(P ),+, in order to obtain (14) it remains to show that we can
replace pr∗

QL(PL
0 );QL(P )

in the expression above by pr∗P0;QL(P ) without changing its

value modulo Rn−1. We have ΣQL(PL
0 ) ∩ ΣQL(P ) ⊂ ΣL

0 ⊂ Σ0, and therefore

pr∗P0;QL(P )(η
n−1) =

n−1∑
k=0

(
n− 1

k

)
pr∗P0;QL(PL

0 )(η
k) pr∗QL(PL

0 );QL(P )(η
n−1−k).

We are reduced to showing that modulo Rn−1 only the term k = 0 contributes.
It follows from the second part of Lemma 5 applied to L that∑

P∈PL(M)

pr∗
PL

0 ;P
(ηn−1−k)

θP (η)
1GL(µP ) ∈ RL

n−1−k

for k > 0. Using (7), we infer that

pr∗P0;QL(PL
0 )(η

k)
∑

P∈PL(M)

pr∗
QL(PL

0 );QL(P )
(ηn−1−k)

θP (η)
1GG($L+µP ) ∈ Rn−1.

Thus, only the term k = 0 contributes, which yields (14). �

The analogous result is true for the right hand side.

Proposition 3. For α ∈ Σ0 we have

(15) ∂Θα∨
dG ≡

∑
L∈Lα̂(M)

〈$L, α
∨〉φGL;$L

(dL) (mod Rn−1).

Proof. The left-hand side is given by

(−1)n

n!

∑
β∈BP0

:α∨∈β

vol(β)$β\{α∨}1G(µβ(ξ)).

We write this as the sum over j = 1, . . . , n of

(16)
(−1)n

n!

∑
β∈Bα

P0

vol(ιj(β))$β1G(µιj(β)(ξ)),

where Bα
P0

is the set of (n− 1)-tuples β of elements of Σ∨
0 such that ιj(β) ∈ BP0 ,

ιj(β) = ια∨,j(β) denoting the n-tuple obtained from β by inserting α∨ in the
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j-th position. By Proposition 1 applied with I = {j} and αj = α, for each j
(16) does not depend on ξ modulo Rn−1. In particular, in (16) we can assume
that ξj < 0 and |ξj| � |ξi| for all i 6= j. We group together the summands
according to the linear span of β. The latter is of the form aLM for a uniquely

determined L ∈ Lα̂(M). Note that β ∈ BL
PL

0
(which we abbreviate as BL

0 ) and

vol(ιj(β)) = −〈$L, α
∨〉 volL(β), since the co-root lattice is generated by ∆∨

QL(PL
0 )

.

Therefore we can write (16) as

1

n

∑
L∈Lα̂(M)

〈$L, α
∨〉 (−1)n−1

(n− 1)!

∑
β∈BL

0

volL(β)$β1G(µιj(β)(ξ)).

It remains to show that

(−1)n−1

(n− 1)!

∑
β∈BL

0

volL(β)$β1G(µιj(β)(ξ)) = φGL;$L
(dL
ξ(j)

)

where ξ(j) denotes the (n−1)-tuple obtained from ξ by deleting ξj, which amounts

to showing that G(µιj(β)(ξ)) = ψGL;$L
(GL(µLβ (ξ(j)))). This follows from the fact

that the projection of µιj(β)(ξ) to (aLM)∗ is µLβ (ξ(j)), whereas
〈
µιj(β)(ξ), β

∨
〉
� 0

if ∆QL
= {β} by the assumption on ξj. �

Proof of Theorems 1 and 2. We show that e = c− d ∈ R by induction on n. The
case n = 1 is covered by Remark 1 in §2. Using (12), (15) and the induction
hypothesis, we obtain that ∂Θα∨

e ∈ R for all α ∈ ΣP0 . According to (8) the
conditions of Lemma 3 are satisfied for R = R with K = n. Applying it to u = e
we infer that e ∈ R, and a fortiori e ∈ K, as required. �

Proof of Corollary 1. We prove (3) by induction on k = n −m, the case k = 0
being Theorem 1. Let f be the (G,M)-family given by

fP (λ) =
∏

α∈ΣP∩∆L
0

(1 + 〈λ, α∨〉).

Using [Art82b, Lemma 7.1] and the product formula [Art81, Corollary 6.5] we
have

(17) (fc)M =
∑
A⊂∆L

0

(−1)|A|cMA
,

where MA ∈ LL(M) is such that aMA
M is spanned by A. On the other hand, we

can compute (fc)M using Theorem 1 applied to the (G,M)-intertwining family

F̃P2|P1(λ) =
∏
α∈∆L

0

(1 + 〈λ, α∨〉)1ΣP1
(α)−1ΣP2

(α)FP2|P1(λ).
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We obtain

(18) (fc)M =
(−1)n

n!

∑
A⊂∆L

0

∑
β∈BP0

:β⊃A

vol(β)∂
1β\A

Glex
β

(F).

Comparing (17) and (18) and using the induction hypothesis we obtain (3), and
therefore Corollary 1. �

Remark 5. We can rewrite Corollary 1 as the equality

cL(F ;P0) =
(−1)m

m!

∑
β=(β∨1 ,...,β

∨
n )∈BP0

:
βi=αi i=1,...,k

vol(β)∂
1{β∨

k+1
,...,β∨n }

Glex
β

(F),

where ∆L
0 = {α1, . . . , αk}. Indeed, by Proposition 1 the partial sums in (3)

pertaining to each of the n!
m!

placements of α1, . . . , αk in β are all equal.

6. Absolute convergence of the spectral side

Let nowG be a reductive group defined over a number field F and let A be the
ring of adeles of F . We consider the spectral side of Arthur’s trace formula whose
fine expansion was obtained in [Art82b]. For a test function f ∈ C∞

c (G(A)1) it
is given by an absolutely convergent sum∑

χ∈X

Jχ(f)

where χ ranges over cuspidal data of G, that is over G(F )-conjugacy classes of
pairs (M,π) consisting of a Levi subgroup M defined over F and an irreducible
cuspidal representation of M(A)1.

To describe the distributions Jχ in a convenient way we first recall, with some
minor modifications, additional notation from [Art82a] and [Art82b]. Fix a maxi-
mal F -split torus T0 and let M0 be its centralizer, which is a minimal Levi defined
over F . Denote by A0 the connected component of the identity of T0(R) where R
is embedded in A through R ↪→ F∞ = R⊗Q F . We also fix a maximal compact
subgroup K = K∞Kf of G(A) = G(F∞)G(Af ) which is admissible with respect
to M0. The Weyl group W0 of (G, T0) acts on the set L(M0) by conjugation.
Let M ∈ L(M0). Denote by TM = T0 ∩ Z(M) the split part of the center Z(M)
of M and let AM = A0 ∩ TM . We have M(A) = M(A)1 × AM and identifying
AM/AG with aM we obtain a homomorphism HM : M(A)→ aM which is trivial
on M(A)1. For any P ∈ P(M) (in which case we write aP = aM), let A2(P )
be the space of automorphic forms φ on NP (A)M(F )\G(A) such that for all

x ∈ G(A) the function φx(m) := δP (m)−
1
2φ(mx) belongs to L2(AMM(F )\M(A))

where δP is the modulus function of P (A). The decomposition

L2(M(F )\M(A)1) = ⊕̂L2(M(F )\M(A))χ
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according to cuspidal data gives rise to a decomposition A2(P ) = ⊕A2
χ(P ). Let

Ā2(P ) be the Hilbert space completion ofA2(P ) with respect to the inner product

(φ1, φ2) =

∫
AMM(F )NP (A)\G(A)

φ1(g)φ2(g) dg.

The map HM uniquely extends to a left NP (A) and right K-invariant map HP :
G(A) → aM . We endow ia∗M with the Haar measure which is dual to the one
on aM for which the co-root lattice has co-volume one. We denote by ρ(P, λ),
λ ∈ a∗M,C, the induced representation of G(A) on Ā2(P ) given by

(ρ(P, λ, y)φ)(x) = φ(xy)e〈λ,HP (xy)〉e−〈λ,HP (x)〉.

It is isomorphic to the representation parabolically induced from the representa-
tion on M(A) which, via the decomposition M(A) = M(A)1 ×AM , is the tensor
product of the discrete part of L2(M(F )\M(A)1) (i.e. the sum of all irreducible
subrepresentations) with the character e〈λ,HM (·)〉 of AM .

Given M ′ ∈ L(M0), let W (aM , aM ′) be the set of all linear isomorphisms from
aM to aM ′ which are restrictions of elements of W0. The set W (aM) = W (aM , aM)
can be identified with the quotient of the stabilizer of M in W0 by the Weyl group
WM

0 of (M,T0). For P ∈ P(M), Q ∈ P(M ′) and s ∈ W (aP , aQ) = W (aM , aM ′)
let

MQ|P (s, λ) : A2(P )→ A2(Q), λ ∈ a∗M,C,

be the intertwining operator [Art82b, §1], which is the meromorphic continuation
in λ of ∫

NQ(A)∩wsNP (A)w−1
s \NQ(A)

φ(w−1
s nx)e〈λ,HP (w−1

s nx)〉e−〈sλ,HQ(x)〉 dn,

where φ ∈ A2(P ) and x ∈ G(A). In particular, for P,Q ∈ P(M) set

MQ|P (λ) := MQ|P (1, λ).

Suppose that t ∈ W0 and P ∈ P(M). Let tM = wtMw−1
t ∈ L(M0) and tP =

wtPw
−1
t ∈ P(tM), so that t ∈ W (aM , atM). The map t : A2(P )→ A2(tP ) given

by tφ(x) = φ(w−1
t x) is an isometry which intertwines ρ(P, λ) with ρ(tP, tλ). It

also satisfies tA2
χ(P ) = A2

χ(tP ) for all χ ∈ X and tMQ|P (s, λ) = MtQ|tP (s, tλ)t for
all s ∈ W (aP , aQ) and λ ∈ a∗P,C such that sλ = λ (cf. [Art82b, (1.4), (1.5)]).

Fix P ∈ P(M) and λ ∈ ia∗M . For Q ∈ P(M) and Λ ∈ ia∗M define

MQ(P, λ,Λ) = MQ|P (λ)−1MQ|P (λ+ Λ).

Then

{MQ(P, λ,Λ) | Λ ∈ ia∗M , Q ∈ P(M)}

is a (G,M)-family with values in the space of operators on A2(P ) [Art82b,
p. 1310]. Therefore, for any L ∈ L(M) and Q ∈ P(L) the restrictionMQ(P, λ, ·)
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of MQ1(P, λ, ·) to ia∗L does not depend on Q1 ∈ P(M) provided that Q1 ⊂ Q,
and the limit

ML(P, λ) = lim
Λ∈ia∗L
Λ→0

∑
Q∈P(L)

MQ(P, λ,Λ)

θQ(Λ)

exists.
Recall that any s ∈ W (aM) uniquely determines a Levi L(s) ∈ L(M) such

that {H ∈ aM | sH = H} = aL(s) (cf. [OT92, Theorem 6.27]). In fact L(s) is the
smallest L ∈ L(M) such that s ∈ WL (cf. [Art05, p. 129]). We set

ιs =
∣∣∣det(s− 1)

a
L(s)
M

∣∣∣−1

.

Note that for any t ∈ W0 and s ∈ W (aM) we have tst−1 ∈ W (atM), L(tst−1) =
tL(s) and

ML(tst−1)(tP, tλ)MtP |tP (tst−1, 0)ρ(tP, tλ, h)t = tML(s)(P, λ)MP |P (s, 0)ρ(P, λ, h)

for all λ ∈ ia∗L. Also, for all Q ∈ P(L), P ′ ∈ P(M) we have

MP |P ′(λ)MQ(P ′, λ,Λ) =MQ(P, λ,Λ)MP |P ′(λ+ Λ)

and therefore

MP |P ′(λ)ML(s)(P
′, λ)MP ′|P ′(s, 0)ρ(P ′, λ, h)

=ML(s)(P, λ)MP |P (s, 0)ρ(P, λ, h)MP |P ′(λ).

Since the orbit of M under W0 is of size |W0|
|WM

0 | |W (aM)|−1, we can reformulate

[Art82b, Theorems 8.1 and 8.2] (cf. [Art05, p. 137]) as follows. For any bi-K-
finite h ∈ C∞

c (G(A)1) we have
(19)

Jχ(h) =
∑

[P ],s∈W (aP )

ιs
|W (aP )|

∫
ia∗

L(s)

tr
(
ML(s)(P, λ)MP |P (s, 0)ρ(P, λ, h)|Ā2

χ(P )

)
dλ,

where P ranges over parabolic subgroups up to association, and the integral is
absolutely convergent with respect to the trace norm ‖·‖1. Implicit here is that the
operatorML(s)(P, λ)ρ(P, λ, h) extends to a trace class operator on Ā2

χ(P ). (Note
that MP |P (s, 0) commutes with ρ(P, λ, h) for λ ∈ ia∗L(s).) Our goal is to rewrite

the integrand on the right-hand side of (19) in terms of first-order derivatives
of co-rank one intertwining operators. Summing over χ we will obtain a refined
spectral expansion which is valid for a larger class of test functions and for which
the expression is absolutely convergent with respect to the trace norm.

Fix an open subgroup K0 of Kf . The space K0\G(A)1/K0 is a discrete
union of countably many copies of G(A)1 ∩ G(F∞) and in particular, it is a
differentiable manifold. Let C∞(G(A)1, K0) be the space of smooth functions on
K0\G(A)1/K0, viewed as bi-K0-invariant functions on G(A)1. Let U(g1

C) be the
universal enveloping algebra of the complexified Lie algebra of G(F∞) ∩ G(A)1.
Let C(G(A)1, K0) be the topological vector space of h ∈ C∞(G(A)1, K0) such
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that |X ∗ h ∗ Y |L1(G(A)1) < ∞ for all X, Y ∈ U(g1
C). For any h ∈ C(G(A)1, K0),

the image of ρ(P, λ, h) lies in the smooth and K0-invariant part of Ā2(P ).
Let Π(M(A)) be the set of equivalence classes of irreducible unitary represen-

tations of M(A). For π ∈ Π(M(A)) let A2
π(P ) be the subspace of all φ ∈ A2(P )

such that for each x ∈ G(A), φx transforms under M(A) according to the rep-
resentation π. In particular, A2

π(P ) = 0 unless π is trivial on AM . We have a
canonical isomorphism of G(Af )× (gC, K∞)-modules

jP : Hom(π, L2(AMM(F )\M(A)))⊗ Ind(π)→ A2
π(P ).

Let A2
π(P )K0 be the subspace of K0-invariant functions in A2

π(P ). Its closure
Ā2
π(P )K0 in Ā2(P ) is a unitary representation of G(F∞) which is isomorphic to

finitely many copies of I(π∞). The smooth part Ā2
π(P )∞K0

of Ā2
π(P )K0 is a Fréchet

space with respect to the semi-norms

sup
k∈K
‖(Xφ)k‖L2(M(F )\M(A)1), X ∈ U(gC).

Let
Πdisc(M(A);K0) = {π ∈ Π(M(A)) : A2

π(P )K0 6= 0}.
Recall the local normalized intertwining operators RQ|P (πv, λ) of [Art82b,

§6]. If RQ|P (π, λ) = ⊗vRQ|P (πv, λ) then the intertwining operator on A2
π(P )

admits a factorization

MQ|P (λ) ◦ jP = rQ|P (π, λ) · jQ ◦ (Id⊗RQ|P (π, λ))

where rQ|P (π, λ) is the global normalizing factor (cf. [Mül02, (2.17)]).
Let F be the intertwining family defined by FP = A2(P ) and FQ|P (λ) =

MQ|P (λ), Q,P ∈ P(M). Technically, the spaces FP are not finite-dimensional.
However we may restrict F to any K- and z-type (where z is the center of U(gC)).
Therefore, Corollary 1 applies.

Suppose that P |αQ. Then MQ|P (λ) depends only on s = 〈λ, α∨〉 and we
denote its restriction toA2

π(P ) byMQ|P (π, s). By the discussion following [Lap07,
Corollary 2] there exists a discrete set Xπ ⊂ iR such that for all φ ∈ Ā2

π(P )∞K0
the

function MQ|P (π, ·)φ is holomorphic (with values in Ā2
π(P )∞K0

) for s ∈ iR \ Xπ.
(In fact, it is possible to take Xπ = ∅ but we will not need to use this fact.)

The main technical statement is the following Theorem.

Theorem 3. Fix K0 and let M ∈ L(M0), L ∈ L(M), P ∈ P(M), G a gallery
with respect to P and β ⊂ Σ∨

P such that β ∪ (∆L
M)∨ forms a basis of aM . Then

the semi-norm ∫
ia∗L

‖∂1β

G (F)(λ)ρ(P, λ, h)‖1 dλ

on C(G(A)1, K0) is continuous.

Note that by the above, for almost all λ ∈ ia∗L, the operator ∂
1β

G (F)(λ) is
defined on ⊕π∈Πdisc(M(A);K0)Ā2

π(P )∞K0
(algebraic direct sum), and therefore,

∂
1β

G (F)(λ)ρ(P, λ, h) is defined on the dense subspace ⊕πĀ2
π(P ) (algebraic direct
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sum) of Ā2(P ). Implicit in Theorem 3 is that for almost all λ, ∂
1β

G (F)(λ)ρ(P, λ, h)
extends to a trace class operator on Ā2(P ).

Remark 6. The case P = G essentially amounts to the assertion that ρ(G, h) is
of trace class. This is the trace-class conjecture of Selberg which was settled in
[Mül89] for K-finite test functions and in general in [Mül98] and independently
by Ji [Ji98].

Let C(G(A)1) be the inductive limit of C(G(A)1, K0) over the open subgroups
K0 of Kf . Using (19), Theorem 3 and Corollary 1 we get the following conse-
quence which is our main result. (The passage from bi-K-finite functions to
compactly supported functions is explained in [Art82b, p. 1326] using [Art82a,
Proposition 2.3].)

Corollary 2. For any h ∈ C∞
c (G(A)1) the spectral side of Arthur’s trace formula

is given by∑
[P ]

1

|W (aP )|
∑

s∈W (aP )

ιs

∫
ia∗

L(s)

tr(ML(P, λ)MP |P (s, 0)ρ(P, λ, h)) dλ.

Choosing strongly regular λ0(P ) ∈ a∗P,+ for each associate class [P ], we can also
write it as∑

[P ]

1

n(P )!

1

|W (aP )|
∑

s∈W (aP )

(−1)rkL G · ιs
∑

β∈BP :β⊃∆∨
PL(s)

[Z(∆∨
P ) : Z(β)]

∫
ia∗

L(s)

tr(∂
1β\∆∨

PL(s)

Glex
β

(F)(λ)MP |P (s, 0)ρ(P, λ, h)) dλ.

In both expressions the integrals are absolutely convergent with respect to the trace
norm and define a distribution on C(G(A)1).

We note that in the case G = GL(n) the absolute convergence of the spectral
side was established by a different method in [MS04].

We will now prove Theorem 3 completing the analysis of [Mül98] and [Mül02].
Fix M , P , L, G as above and let m be the co-rank of L in G. Let

∆ = Id−Ω + 2ΩK∞

where Ω is the Casimir operator of G(F∞) ∩G(A)1. For any k ∈ N we have

‖∂1β

G (F)(λ)ρ(P, λ, h)‖1 ≤ ‖∂
1β

G (F)(λ)ρ(P, λ,∆2k)−1‖1‖ρ(P, λ,∆2kh)‖

≤ ‖∂1β

G (F)(λ)ρ(P, λ,∆2k)−1‖1
∣∣∆2kh

∣∣
L1(G(A)1)

.

It remains to show the convergence, for k � 1, of∫
ia∗L

‖∂1β

G (F)(λ)ρ(P, λ,∆2k)−1‖1 dλ.
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For τ ∈ K̂∞ we denote by A2
π(P )K0,τ the τ -isotypical subspace of A2

π(P )K0 .
Then A2

π(P )K0,τ is a finite-dimensional subspace on which ρ(P, λ,∆) acts by a
scalar µ(π, λ, τ) satisfying

(20) |µ(π, λ, τ)|2 ≥ 1

4
(1 + ‖λ‖2 + λ2

π + λ2
τ )

where λπ and λτ denote the Casimir eigenvalues of π∞ and τ , respectively ([Mül02,
(6.9)]).

Suppose that in G we have Pki
|βiPki+1, i = 1, . . . ,m. We denote the restric-

tion of MPki+1|Pki
(π, s) to A2

π(P )K0,τ by MPki+1|Pki
(π, s)K0,τ . Using the inequality

‖A‖1 ≤ dimV ‖A‖
for any operator A on a finite-dimensional space V , and the unitarity of MQ|P (λ),
we reduce to showing the convergence, for sufficiently large k, of∑
τ∈dK∞

∑
π

dim(A2
π(P )K0,τ )

∫
ia∗L

|µ(π, λ, τ)|−2k
m∏
i=1

‖M ′
Pki+1|Pki

(π, 〈λ, β∨i 〉)K0,τ‖ dλ.

By [Mül98, Corollary 0.3] there exists k ∈ N such that∑
τ∈dK∞

∑
π∈Πdisc(M(A);K0)

dim(A2
π(P )K0,τ )(1 + λ2

π + λ2
τ )
−k <∞.

Therefore, using (20), it suffices to show that there exist C, N and N1 such that∫
ia∗L

m∏
i=1

‖M ′
Pki+1|Pki

(π, 〈λ, β∨i 〉)K0,τ‖(1 + |λ|)−N dλ ≤ C(1 + λ2
τ + λ2

π)
N1

for all τ ∈ K̂∞ and π ∈ Πdisc(M(A);K0). Using the change of variables λ 7→
(〈λ, β∨i 〉)mi=1, it suffices to establish a similar bound for∫

iR
‖M ′

Q|P (π, x)K0,τ‖(1 + |x|)−N dx

for P |αQ, or, what is the same, for∫
iR
‖MQ|P (π, x)−1

K0,τ
M ′

Q|P (π, x)K0,τ‖(1 + |x|)−N dx.

For P |αQ the global normalizing factor is given by

rQ|P (π, λ) = rα(π, 〈λ, α∨〉), λ ∈ a∗P,C

for a certain single variable meromorphic function rα(π, ·). We can therefore write
MQ|P (π, x)−1M ′

Q|P (π, x) as

r′α(π, x)

rα(π, x)
Id + jP ◦ (Id⊗RQ|P (π, x)−1R′

Q|P (π, x)) ◦ j−1
P .

By [Mül02, Theorem 5.3] there exist C, N , N1 such that∫
iR

∣∣∣∣r′α(π, x)rα(π, x)

∣∣∣∣ (1 + |x|)−N dx ≤ C(1 + Λ2
π)
N1
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for all π ∈ Πdisc(M(A);K0). Here, as in [ibid.],

Λπ = min
τ∈WP (π∞)

(λ2
π + λ2

τ )
1/2

whereWP (π∞) denotes the set of minimalK∞-types of the induced representation
IndGP (π∞).

To deal with the term involving the normalized intertwining operator, we may
assume that K0 =

∏
v<∞Kv where Kv is an open compact subgroup of G(Fv),

and Kv is hyperspecial for almost all v. Let π = ⊗vπv and let RQ|P (πv, x) be the
local normalized intertwining operators. Let RQ|P (πv, x)Kv denote the restriction

of RQ|P (πv, x) to the subspace of Kv-invariant vectors, and for τ =
∏

v|∞ τv ∈ K̂∞

let RQ|P (πv, x)τv be the restriction of RQ|P (πv, x) to the τv-isotypical subspace.
We recall that there exists a finite set of places S, including the archimedean
ones, such that

RQ|P (πv, x)Kv = Id, v /∈ S, π ∈ Πdisc(M(A);K0)

([Art89]). Thus RQ|P (π, x)−1R′
Q|P (π, x) =

∑
v∈S RQ|P (πv, x)

−1R′
Q|P (πv, x) on

I(π)K0 . Using the unitarity of RQ|P (πv, x) for x ∈ iR, we are reduced to the
estimation of

(21)

∫
iR
‖R′

Q|P (πv, x)Kv‖(1 + |x|)−N dx, v ∈ S finite,

and

(22)

∫
iR
‖R′

Q|P (πv, x)τv‖(1 + |x|)−N dx v|∞.

Since ‖(ai,j)‖ ≤
∑
|ai,j|, the integrals (21) and(22) are bounded by∑
i,j

∫
iR

∣∣(R′
Q|P (πv, x)ei, ej)

∣∣ (1 + |x|)−N dx,

where ei is an orthonormal basis for Ind(πv)
Kv (in the p-adic case) or Ind(πv)τ

(in the archimedean case). Note that dim Ind(πv)
Kv is bounded independently

of πv in the p-adic case and dim Ind(πv)τv ≤ (deg τv)
2 for v|∞. Let ‖τv‖ be the

norm of the highest weight of τv. By Weyl’s dimension formula, deg τv is bounded
polynomially in ‖τv‖.

Lemma 6. Let P1|αP2 ∈ P(M) and πv ∈ Π(M(Fv)).

(1) Suppose that v is p-adic and (IndGP πv)
Kv 6= 0. Then any matrix coefficient

(RP2|P1(s$)ϕ1, ϕ2) with ϕ1, ϕ2 ∈ (Ind πv)
Kv is of the form f(qs) for some

rational function f with deg f bounded in terms of Kv only.

(2) Suppose that v is archimedean and let τ ∈ K̂v. Then any matrix coefficient
f(s) = (RP2|P1(s$)ϕ1, ϕ2) with ϕ1, ϕ2 ∈ (Ind πv)τ is a rational function
with deg f ≤ c(1 + ‖τ‖) where c depends only on G.

Proof. We argue as in [MS04]. The rationality of f in both cases follows from
[Art89]. Suppose first that v is p-adic. In the following, the notation will be
relative to Fv. (In particular, M0 is a minimal Levi defined over Fv and so on.)
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Without loss of generality we can assume that M is of co-rank one in G. Write
πv as a Langlands quotient JMQ (σv, µ) where Q ∈ PM(M0), σv is a tempered

representation of MQ and µ ∈ a∗Q,+ ⊂ (aM)∗. Therefore, πv is a quotient of

IndMR (δv, µ) where R ∈ PM(M0), R ⊂ Q, δv ∈ Π2(MR) and µ ∈ a∗R,+. Then, as
explained in [Art89, p. 30], we have a commutative diagram

IndP (R)(δ, µ+ s$)
RP̄ (R)|P (R)(δ,µ+s$)
−−−−−−−−−−−−→ IndP̄ (R)(δ, µ+ s$)y y

IndP (π, s)
RP̄ |P (π,s)
−−−−−−→ IndP̄ (π, s)

Therefore, any matrix coefficient of RP̄ |P (πv, s) is one for RP̄ (R)|P (R)(δv, µ + s).
By factoring the latter into rank one intertwining operators, we are reduced to
the case where π is square integrable. However, up to a twist by an unramified
character there are only finitely many square-integrable representations such that
(Ind π)Kv 6= 0.

In the archimedean case deg f is the number of poles of f since |f(s)| ≤ 1
on the unitary axis. By [MS04, Proposition A.2] this number is bounded by
c(1 + ‖τ‖) where c depends on G only. �

To complete the proof we appeal to the following Lemma. We thank Ben-
jamin Weiss for simplifying its proof considerably from an earlier version.

Lemma 7. Let C be either the imaginary axis or the unit circle. Let f(z) be a
scalar valued rational function of degree ≤ m such that |f(z)| ≤ 1 for all z ∈ C.
Then

(23)

∮
C

|f ′(z)| |dz| ≤ 8m

Proof. Assume first that f takes real values on C. Then the left-hand side of (23)

is the total variation of f on C, i.e.
∑k

j=1 |f(zj)− f(zj−1)| where zj, j = 1, . . . , k
are the extrema of f on C and we set z0 = zk. Since k ≤ 2m, we get∮

|f ′(z)| |dz| ≤ 4m

in this case. The general case follows immediately. �

Remark 7. Let C be as in Lemma 7. Borwein and Erdélyi proved the following
stronger inequality ([BE96]). Given z0 ∈ C, a1, . . . , am /∈ C and f(z) such that
|f(z)| ≤ 1 on C and

∏
(z − ai)f(z) is polynomial of degree ≤ m we have

|f ′(z0)| ≤ max(

∣∣∣∣∣∣
 ∏
j:|aj |>1

1− ājz
z − aj

′ (z0)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
 ∏
j:|aj |<1

1− ājz
z − aj

′ (z0)

∣∣∣∣∣∣)
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for the unit circle and

|f ′(z0)| ≤ max(

∣∣∣∣∣∣
 ∏
j:Re aj>0

z − āj
z + aj

′ (z0)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
 ∏
j:Re aj<0

z − āj
z + aj

′ (z0)

∣∣∣∣∣∣)
for the imaginary axis. Estimating the maximum by the sum and integrating
over C we obtain Lemma 7 with 8 replaced by 2π which is best possible.

The operators RQ|P (πv, x)Kv are unitary on the imaginary axis, and therefore
their matrix coefficients are bounded by 1. By Lemmas 6 and 7 it follows that
there exist C > 0 and N1 ∈ N such that for all π ∈ Π(M(Fv))∫

iR
‖R′

Q|P (πv, x)Kv‖(1 + |x|)−N dx ≤ C

if v ∈ S is non-archimedean, and∫
iR
‖R′

Q|P (πv, x)τv‖(1 + |x|)−N dx ≤ C(1 + ‖τv‖)N1

if v is archimedean and τv ∈ K̂v. This completes the proof of Theorem 3.
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