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Abstract. A result of Huang and van Neerven [11] establishes weak individ-
ual stability for orbits of C0-semigroups under boundedness assumptions on
the local resolvent of the generator. We present an elementary proof for this
using only the inverse Fourier-transform representation of the orbits of the
semigroup in terms of the local resolvent.
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1. Introduction

This paper is originally motivated by the structure theory of relatively weakly
compact semigroups on Banach spaces as presented, for example, in Engel, Nagel
[6, Ch. V]. Suppose that a C0-semigroup (T (t))t≥0, with generator (A,D(A)), is
relatively weakly compact, that is each of the orbits {T (t)x : t ≥ 0} is a relatively
weakly compact subset of the Banach space X. Then the Jacobs–Glicksberg–de
Leeuw decomposition yields the existence of a projection Q ∈ L(X) commuting
with the semigroup (T (t))t≥0 such that

ker Q =
{
x ∈ X : 0 ∈ {T (t)x : t ≥ 0}

σ}
,

rg Q = lin
{
x ∈ D(A) : ∃ α ∈ R with Ax = iαx

}
.

In particular, if (T (t))t≥0 is a bounded semigroup on a reflexive Banach space X,
then the semigroup is of course relatively weakly compact, and we always have the
existence of such a projection. If now the generator does not have point spectrum
on the imaginary axis, then we have kerQ = X. So 0 belongs to the weak closure of
each orbit. There are however examples showing that generally we can not expect
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weak stability, i.e., that all orbits converge to 0 in the weak topology (see [6, Ex-
ample V.2.11 ii)]). In fact, the “no eigenvalues on the imaginary axis” assumption
is roughly speaking equivalent to almost weak stability (i.e., convergence to zero
along a large set of time values) but, in general, not to weak stability, see [7], [8],
and also [9].

Concerning stability questions for bounded semigroups the size of the spec-
trum on the imaginary line and the growth of the resolvent R(λ, A) in a neigh-
bourhood of it play an important role. The celebrated theorem of Arendt, Batty
[1] and Lyubich, Vũ [14] gives a sufficient condition on the boundary spectrum for
strong stability. They show that, in case of reflexive X, countable spectrum σ(A)
on the imaginary axis and no eigenvalues on iR imply strong stability of bounded
C0-semigroups. Later Batty [2] gave similar results for weak individual stability of
the orbit T (t)x0 under the above spectral assumptions and the boundedness of the
orbit (see also Batty, Vũ [5]).

In connection with individual stability or growth of orbits, the boundedness
of the local resolvent has gained wide recognition. In the sequel, we will say, with
a slight abuse of terminology, that a bounded local resolvent R(λ)x0 exists on C+

if the function ρ(A) 3 λ 7→ R(λ, A)x0 admits a bounded, holomorphic extension
R(λ)x0 to the whole right halfplane C+ := {µ : <µ > 0}.

Huang and van Neerven [11] proved that if the Banach space X has Fourier
type p ∈ (1, 2], then the existence of a bounded local resolvent R(λ)x0 on C+

already implies the strong convergence T (t)R(µ,A)αx0 → 0 as t → +∞, for all
µ > ω0(A) and α > 1 (see also [10]).

Interestingly enough, weak convergence of the orbit may be also concluded
from the existence of bounded local resolvent. In [4] a functional calculus method
was developed for investigating asymptotic behaviour of C0-semigroups with boun-
ded local resolvents. A corollary of this approach is an alternative proof of the next
theorem (see [11] Theorem 0.3]).

Theorem (Huang, van Neerven [11], Theorem 0.3). Let (T (t))t≥0 be a C0-semi-
group with generator (A,D(A)), x0 ∈ X, and suppose that the local resolvent
R(λ)x0 exists on the open right halfplane and that it is bounded, i.e., there exists
some M > 0 such that

‖R(λ)x0‖ ≤ M for all λ ∈ C+.

Then it holds

T (t)R(µ,A)αx0 → 0 weakly as t → +∞ for all α > 1 and µ > ω0(A).

In [17] van Neerven obtains even the exponent α = 1 under an additional
positivity assumption.

Theorem (van Neerven [17]). Suppose that X is an ordered Banach space with
weakly closed normal cone C. If for some x0 ∈ X

i) T (t)x0 ∈ C for all sufficiently large t, and
ii) R(·, A)x0 has a bounded holomorphic extension to C+,
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then for all µ ∈ ρ(A) and y ∈ X ′

〈T (t)R(µ,A)x0, y〉 → 0 as t → +∞.

It is also known that the above eventual positivity assumption cannot be
omitted (see Batty [3], van Neerven [17]).

Reformulating van Neerven’s assertion we can write

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′). (1)

This is an individual stability result for the orbit of x0 under the semigroup. Our
aim is to give an elementary proof of such convergence in the presence of bounded
local resolvent without assumption on the Banach space, but only for y ∈ D(A′2).
This is the above mentioned result in the case α = 2. That we assume α = 2
instead of α > 1 is only technical to keep the arguments the simplest possible.

At the end, we formulate the analogous individual stability result for bi-
continuous semigroups (see [13] for general theory).

2. The Result

Theorem 1. Let (T (t))t≥0 be a C0-semigroup with generator (A,D(A)), x0 ∈ X,
and suppose that the local resolvent R(λ)x0 exists on the open right halfplane and
that it is bounded, i.e., there exists some M > 0 such that

‖R(λ)x0‖ ≤ M for all λ ∈ C+.
Then the convergence

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′2)

holds.

Remark. To make distinction between the resolvent operator and the local resol-
vent, for the latter we will use the notation R(µ)x0, while the use of the symbol
R(λ, A) tacitly assumes that λ belongs to the resolvent set ρ(A), hence (λ−A)−1

is a bounded linear operator.

To prove the theorem we need the following series of lemmas.

Lemma 1. For all λ ∈ ρ(A) and µ ∈ C+

R(λ, A)x0 −R(µ)x0 = (µ− λ)R(λ, A)R(µ)x0 (2)

holds.

Proof. For a fixed λ ∈ ρ(A) both functions on the two sides of (2) are analytic on
C+. For large <µ the resolvent identity holds, so the assertion follows by uniqueness
of analytic functions. �

Lemma 2. For all λ ∈ ρ(A) and µ ∈ C+ we have

‖R(λ, A)R(µ)x0‖ ≤
M + ‖R(λ, A)x0‖

|λ− µ|
.
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Proof. Use Lemma 1. �

Lemma 3. For y ∈ D(A′2) and a > ω0(T ) there exists a constant c := c(y, a) such
that

‖R2(a + is, A′)y‖ ≤ c

a2 + s2
for all s ∈ R.

Proof. Let us write λ = a + is. Then we have

R(λ, A′)y =
1
λ

(R(λ, A′)A′y + y) .

Thus

R(λ, A′)2y =
1
λ

(R(λ, A′)R(λ, A′)A′y + R(λ, A′)y)

=
1
λ2

(R(λ, A′)A′R(λ, A′)A′y + R(λ, A′)A′y + R(λ, A′)A′y + y) .

The assertion follows by noticing that the terms in parenthesis are bounded. �

Lemma 4. For y ∈ D(A′2), x ∈ X and a > ω0(T ) we have

〈T (t)x, y〉 =
1
2π

∫ +∞

−∞
e(a+is)t〈R(a + is, A)x, y〉ds

=
1

2πt

∫ +∞

−∞
e(a+is)t〈R2(a + is, A)x, y〉ds. (3)

Proof. The integral in (3) is just

1
2πt

∫ +∞

−∞
e(a+is)t〈x,R2(a + is, A′)y〉ds,

and it is absolutely convergent by Lemma 3. Integration by parts yields equality
of the two integrals. In particular, since the first integral converges, we obtain
immediately that it coincides with 〈T (t)x, y〉 as the inverse Laplace transform of
the resolvent (see [12, Lemma 2.4]). �

Lemma 5. For y ∈ D(A′2), x ∈ X, a > ω0(T ) and 0 < δ < a we have

〈T (t)x0, y〉 =
1
2π

∫ +∞

−∞
e(a+is)t〈R(a + is, A)x0, y〉ds

=
1
2π

∫ +∞

−∞
e(δ+is)t〈R(δ + is)x0, y〉ds.



Weak individual stability of C0-semigroups 5

Proof. Let N be positive, then using the analyticity of R(λ)x0 on C+ and Cauchy’s
theorem, we obtain for some µ ∈ ρ(A)

∣∣∣ 1
2π

∫ +N

−N

e(a+is)t〈R(a + is, A)x0, y〉ds− 1
2π

∫ +N

−N

e(δ+is)t〈R(δ + is)x0, y〉ds
∣∣∣

≤ (a− δ) max
b∈[δ,a]

∣∣e(b+iN)〈R(b + iN)x0, y〉
∣∣+(a− δ) max

b∈[δ,a]

∣∣e(b−iN)〈R(b− iN)x0, y〉
∣∣

= (a− δ)
(

max
b∈[δ,a]

∣∣eb〈R(µ,A)R(b + iN)x0, (µ−A′)y〉
∣∣

+ max
b∈[δ,a]

∣∣eb〈R(µ,A)R(b− iN)x0, (µ−A′)y〉
∣∣),

but this converges to 0 by Lemma 2 as N → +∞. �

Proof of Theorem 1. According to (2) Lemma 1

R(δ + is)x0 =R(a + is, A)x0+(a− δ)R(a + is, A)R(δ + is)x0

=R(a + is, A)x0+(a− δ)R2(a + is, A)x0

+(a− δ)2R2(a + is, A)R(δ + is)x0.

Using Lemma 5 we obtain for y ∈ D(A′2)

2πe−δt〈T (t)x0, y〉 =
∫ +∞

−∞
eist〈R(δ + is)x0, y〉ds

=
∫ +∞

−∞
eist〈R(a + is, A)x0, y〉ds

+ (a− δ)
∫ +∞

−∞
eist〈R2(a + is, A)x0, y〉ds

+ (a− δ)2
∫ +∞

−∞
eist〈R2(a + is, A)R(δ + is)x0, y〉ds.

The functions fδ(s) := 〈R2(a + is, A)R(δ + is)x0, y〉 form a relatively compact
subset of L1(R). Indeed, we have

|fδ(s)| = |〈R2(a + is, A)R(δ + is)x0, y〉| = |〈R(δ + is)x0, R
2(a + is, A′)y〉|

≤ M‖R2(a + is, A′)y‖,

and the function on the right hand side belongs to L1(R). This shows the family
fδ to be uniformly integrable (and bounded), thus relatively compact. So by com-
pactness we find a sequence δn → 0 such that fδn

→ f in L1(R) (n → ∞). Thus
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substituting δn in the above equality and letting n →∞ we obtain

2π〈T (t)x0, y〉 =
∫ +∞

−∞
eist〈R(a + is, A)x0, y〉ds

+ a

∫ +∞

−∞
eist〈R2(a + is, A)x0, y〉ds

+ a2

∫ +∞

−∞
eistf(s) ds =: I1(t) + I2(t) + I3(t).

It is easy to deal with the last term I3. Since f belongs to L1(R) so by the Riemann–
Lebesgue Lemma its Fourier transform vanishes at +∞, i.e., I3(t) → 0 as t → +∞.
Since y ∈ D(A′2), we can rewrite I1 by Lemma 4 as

I1(t) =
∫ +∞

−∞
eist〈x0, R(a + is, A′)y〉ds =

1
t

∫ +∞

−∞
eist〈x0, R

2(a + is, A′)y〉ds.

The last integral is absolutely convergent by Lemma 3, hence

|I1(t)| ≤
1
t

∫ +∞

−∞
‖x0‖ · ‖R2(a + is, A′)y‖ds → 0 as t → +∞.

As for I2 we first notice that 〈x0, R
2(a + i·, A′)y〉 ∈ L1(R), so by the Riemann–

Lebesgue Lemma we have

I2(t) = a

∫ +∞

−∞
eist〈x0, R

2(a + is, A′)y〉ds → 0 as t → +∞.

This concludes the proof. �

Let us draw the following consequences of the above result.

Corollary 1. Let (T (t))t≥0 be a C0-semigroup with generator (A,D(A)), and sup-
pose that {T (t)x0 : t ≥ 0} is bounded and that the local resolvent R(λ)x0 exists
and is bounded on C+. Then

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′).

Proof. Since (A′, D(A′)) is a Hille–Yosida operator, its part A′0 generates a C0-
semigroup on D(A′). But D(A′0

2) ⊆ D(A′2) ⊆ D(A′0), so D(A′2) is dense in D(A′).
Now let ε > 0. For y ∈ D(A′) take y′ ∈ D(A′2) with ‖y − y′‖ ≤ ε/2M , where
‖T (t)x0‖ < M , t ≥ 0. For large t we have |〈T (t)x0, y

′〉| ≤ ε/2 by Theorem 1. So

|〈T (t)x0, y〉| ≤ |〈T (t)x0, y
′〉|+ |〈T (t)x0, y − y′〉| ≤ ε/2 + M · ‖y − y′‖ ≤ ε,

for large t. �

Corollary 2. Let (T (t))t≥0 be a bounded C0-semigroup with generator (A,D(A)),
and suppose σp(A) ∩ iR = ∅. If (is − A)−1x0 exists and is bounded in s ∈ R for
some x0 ∈ X, then

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′).
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Proof. A version of the resolvent identity states that

(is−A)−1x0 −R(a + is, A)x0 = (λ− is)R(a + is, A)(is−A)−1x0.

Here the right-hand side is bounded for a > 0 and s ∈ R by the Hille–Yosida theo-
rem and by the assumption, so R(a + is, A)x0 is bounded. The proof is concluded
by applying Corollary 1. �

The above proof of Theorem 1 remains valid if the semigroup (T (t))t≥0 is
only strongly continuous for some coarser locally convex topology τ . More precisely,
one has to assume that the semigroup is τ -bi-continuous, see [13] for the theory.
Then the infinitesimal generator (A,D(A)) is a Hille–Yosida operator, but D(A)
is not necessarily dense with respect to the norm in X. It is dense however for
the topology τ , so in the following the adjoint A′ of A is understood with respect
to τ . In addition, the resolvent identity, and replacing the vector-valued integrals
by τ -strong integrals, all the above integral formulas remain valid, which were the
essential ingredients of the proof. This proves the following.

Theorem 2. For a bi-continuous semigroup (T (t))t≥0 with generator (A,D(A)) and
x0 ∈ X suppose that the local resolvent R(λ)x0 exists on the open right halfplane
and that it is bounded. Then for all y ∈ D(A′2)

〈T (t)x0, y〉 → 0

holds for t → +∞.
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[8] T. Eisner, A. Serény, Category theorems for weakly and almost weakly stable semi-
groups, preprint, 2006.

[9] F. Hiai, Weakly mixing properties of semigroups of linear operators, Kodai Math. J.
1 (1978), no. 3, 376–393.

[10] S.-Z. Huang, A local version of Gearhart’s theorem, Semigroup Forum 58 (1999),
no. 3, 323–335.

[11] S.-Z. Huang, J. M. A. M. van Neerven, B-convexity, the analytic Radon-Nikodym
property, and individual stability of C0-semigroups, J. Math. Anal. Appl. 231 (1999),
1–20.

[12] M. A. Kaashoek, S. M. Verduyn Lunel, An intgerability condition on the resolvent
for hyperbolicity of the semigroup, J. Diff. Eq. 112 (1994), 374–406.
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e-mail: talo@fa.uni-tuebingen.de

Bálint Farkas
Fachbereich Mathematik, Technische Universität Darmstadt
Schloßgartenstraße 7, D-64289, Darmstadt, Germany
e-mail: farkas@mathematik.tu-darmstadt.de


