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Abstract

We characterize generators of polynomially bounded C0-semigroups in

terms of an integrability condition for the second power of the resolvent

on vertical lines. This generalizes results by Gomilko, Shi and Feng on

bounded semigroups and by Malejki on polynomially bounded groups.∗†

1 Introduction

The Hille-Yosida estimates for the norm of the resolvent R(z,A) (see [E-N, The-
orem II.3.8]) characterize generators A of C0-semigroups (T (t))t≥0 on Banach
spaces and yield exponential estimates of the form

‖T (t)‖ ≤ Metω, t ≥ 0.

However, except in the case M = 1, one needs estimates for all powers of R(z,A),
a task rarely possible in concrete situations. In addition, these results do not
characterize polynomial growth for ‖T (t)‖. It is the purpose of this paper to
deal with these problems.

The key to our results is an integrability condition for the square R(a + i·, A)2

of the resolvent along imaginary lines. This condition and the corresponding
estimates (see (6) below) imply that A generates a C0-semigroup which grows
only polynomially. In the case of Hilbert spaces such estimates are necessary
(Theorem 2.6).

For bounded C0-semigroups such conditions already appeared in a paper by
Gomilko [Gom] with an alternative proof given by Shi and Feng [Sh-F]. On the
other side, Malejki [Mal] characterized polynomially bounded C0-groups. This
paper is a generalization of these results.

We now fix the notation to be used in this paper. We denote a linear operator
on a Banach space X by (A,D(A)) and its spectrum by σ(A). The following
two constants related to the spectrum of A are used.
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Definition 1.1 We call

s(A) := sup{Reλ : λ ∈ σ(A)}

the spectral bound of A and

s0(A) := inf{a ∈ R : R(λ,A) is uniformly bounded on {λ : Reλ ≥ a}}

the pseudo spectral bound of A.

If A is the generator of a C0-semigroup X, we denote the semigroup by (T (t))t≥0.
For more detailed information about theory of C0-semigroups we refer to [E-N].

2 Results

We first state a simple property following from the resolvent identity.

Lemma 2.1 Let A be densely defined on a Banach space X and s0(A) < ∞.
Then for every a > s0(A) and every x ∈ X

R(z,A)x → 0, |z| → ∞, Rez ≥ a.

Proofs for the results in this section will be given in Section 3.

The following property is the basis of our approach:

< R(a + i·, A)2x, y >∈ L1(R) for all x ∈ X, y ∈ X∗, (1)

where a > s0(A). Indeed, this property allows us to construct the inverse
Laplace transform of the resolvent of the operator A which actually is a semi-
group. Note that this semigroup need not to be strongly continuous.

Lemma 2.2 Let A be a densely defined linear operator on a Banach space X

satisfying s0(A) < ∞. Assume that for some a > s0(A) the condition (1) holds.
Then this condition also holds for all a > s0(A) and the bounded linear operators
defined by T (0) = Id and

T (t)x =
1

2π

∫ ∞

−∞

e(a+is)tR(a + is, A)xds (2)

=
1

2πt

∫ ∞

−∞

e(a+is)tR(a + is, A)2xds (3)

are independent of a > s0(A). In addition, the family (T (t))t≥0 is a semigroup
which is strongly continuous on (0,∞) and satisfies

lim
t→0+

T (t)x = x for all x ∈ D(A2). (4)

Finally, we have

R(z,A)x =

∫ ∞

0

e−ztT (t)xds for all x ∈ D(A), Rez > s0(A). (5)
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Note that condition (1) holds for generators of analytic semigroups by the in-
equality ||R(z,A)|| ≤ M

|z−ω| . By Plancherel’s theorem and the Schwarz inequal-

ity this condition always holds for generators on a Hilbert space.

As a first application of Lemma 2.2 we will give an alternative proof of a result
of Kaashoek and Verduyn Lunel ([Kaa-Lu]) generalizing Gearhart’s stability
theorem (see [E-N, Theorem V.1.11]) to semigroups on Banach spaces, provided
condition (1) holds. Here and later we denote by ω0(T ) the growth bound of
the semigroup (T (t))t≥0 (see [E-N, Definition I.5.6]).

Theorem 2.3 ([Kaa-Lu]) Let A generate a C0-semigroup (T (t))t≥0 on a Ba-
nach space X. If condition (1) for the resolvent of A holds for some a > s0(A),
then s0(A) = ω0(T ).

Our main result is the following generalization of Malejki’s characterization of
generators of polynomially bounded C0-groups (see [Mal]).

Theorem 2.4 (generation of polynomially bounded semigroups) Let X

be a Banach space and A be a densely defined operator on X with s(A) ≤ 0 and
d ≥ 0. If the condition

∫ ∞

−∞

|
〈

R(a + is, A)2x, y
〉

|ds ≤
M

a
(1 + a−d)||x||||y||, ∀x ∈ X, ∀y ∈ X∗ (6)

holds for all a > 0, then A is the generator of a C0-semigroup (T (t))t≥0 which
does not grow faster than td, i.e.,

||T (t)|| ≤ K(1 + td) (7)

for some constant K and all t > 0.

Note that in the case given in Theorem 2.4 the semigroup is exponentially stable
if and only if the resolvent of A exists and is uniformly bounded on iR. This
follows from Theorem 2.3 and the proof of Theorem 2.4.

It can be seen from the proof of Theorem 2.4 that condition (6) for large a

is responsible for the strong continuity of the semigroup, while this condition
for small a is responsible for its polynomial growth. Therefore the following
corollary from Theorem 2.4 holds.

Proposition 2.5 Let A be the generator of a C0-semigroup on a Banach space
X with s0(A) ≤ 0. If condition (6) holds for all a ∈ (0, a0) for some a0 > 0,
then the semigroup satisfies growth estimate (7).

As in the paper of Malejki the converse implication in Theorem 2.4 holds on
Hilbert spaces.

Theorem 2.6 Let A generate a C0-semigroup on a Hilbert space X satisfying
growth estimate (7). Then estimate (6) for the resolvent of A holds with d1 := 2d
for all a > 0.
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Note that for d = 0 in Theorem 2.4 and Theorem 2.6 we obtain the generation
theorem of Gomilko for bounded semigroups (see [Gom]). The method used in
the proof of Lemma 2.2 and Theorem 2.4 is based on the alternative proof of
Gomilko’s result given by Shi and Feng (see [Sh-F]) and on the papers of Kaiser
and Weis [Kai-We] and Batty [Ba].

3 Proofs

Proof of Lemma 2.1. Let a > s0(A). Then there exists a constant M > 0
such that ‖R(z,A)‖ ≤ M for all z ∈ C with Rez ≥ a. Let now x ∈ D(A) and z

with Rez ≥ a. Then

‖R(z,A)x‖ =
1

|z|
‖x + R(z,A)Ax‖ ≤

1

|z|
(‖x‖ + M‖Ax‖),

and therefore we have

R(z,A)x → 0, |z| → ∞, Rez ≥ a

for all x ∈ D(A). Since D(A) is dense in X and the resolvent of A is uniformly
bounded on {z : Rez ≥ a}, this is true for all x ∈ X.

Proof of Lemma 2.2. Let us first prove that condition (1) holds for all
a > s0(A) if it is true for some a0 > s0(A). Let x ∈ X, y ∈ X∗ and a > s0(A).
Then the resolvent identity implies

R(a + is, A)2x = [Id + (a0 − a)R(a + is, A)]2R(a0 + is, A)2x

and therefore

‖ < R(a + i·, A)2x, y > ‖1 ≤ [1 + L|a0 − a|]2 ‖ < R(a0 + i·, A)2x, y > ‖1,

where L = L(a) := sups∈R
‖R(a + is, A)‖ (which is finite because a > s0(A)).

So (1) is true for all a > s0(A). Let us define now T (0) := Id and

T (t)x :=
1

2π

∫ ∞

−∞

e(a+is)tR(a + is, A)xds (8)

(the inverse Laplace transform of the resolvent) for all x ∈ X, t > 0 and some
a > 0. We prove that the integral on the right hand side of (8) converges for
all a > 0 and all x ∈ X and does not depend on a > 0. Let us fix t > 0. Since
d
dz (R(z,A)) = −R(z,A)2, we have for any r > 0

it

∫ r

−r

e(a+is)tR(a + is, A)xds = e(a+ir)tR(a + ir, A)x − e(a−ir)tR(a − ir, A)x

+ i

∫ r

−r

e(a+is)tR(a + is, A)2xds,
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and by Lemma 2.1 the first two summands converge to zero if r → +∞. There-
fore

t

∫ ∞

−∞

e(a+is)tR(a + is, A)xds =

∫ ∞

−∞

e(a+is)tR(a + is, A)2xds, (9)

and by condition (1) the integral on the right hand side converges. Indeed, for
all r,R ∈ R and all x ∈ X we have, by the uniform boundedness principle, that

‖

∫ R

r

eistR(a + is, A)2xds‖ = sup
y∈B∗

∫ R

r

< eistR(a + is, A)2x, y > ds

≤ sup
y∈B∗

‖ < R(a + i·, A)2x, y > ‖1 ≤ L1(a)‖x‖,

where B∗ = {y ∈ X∗ : ‖y‖ = 1}, holds for some constant L1(a) independend
on x. This implies the convergence of the integral on the right hand side of (9).

Therefore the integral on the right hand side of (8) converges and

T (t)x =
1

2πt

∫ ∞

−∞

e(a+is)tR(a + is, A)2xds (10)

for every x ∈ X and t > 0. We show next that T (t) does not depend on a > 0.
Indeed, by Cauchy’s theorem we obtain for all a, b > s0(A)

∫ r

−r

e(a+is)tR(a + is, A)2xds −

∫ r

−r

e(b+is)tR(b + is, A)2xds

= −

∫ b

a

eτ+irR(τ + ir, A)2xdτ +

∫ b

a

eτ−irR(τ − ir, A)2xdτ.

By Lemma 2.1 the right hand side converges to zero if r → +∞. So we have
proved that T (t) does not depend on a > 0 and formula (10) holds.
Again by (10) we obtain

| < T (t)x, y > | ≤
eat

2πt
‖ < R(a + i·, A)2x, y > ‖1 (11)

and by the uniform boundedness principle, each T (t) is a bounded linear oper-
ator satisfying

‖T (t)‖ ≤
Ceat

t
, t > 0, (12)

for some constant C depending on a > s0(A).

By [Kai-We, Lemma 4.2] we obtain that T (t+s)x = T (t)T (s)x for all x ∈ D(A4).
Since D(A4) is dense, the semigroup law holds for all x ∈ X. Let us prove
that (5) holds for all x ∈ D(A). Take x ∈ D(A), z with Re(z) > s0(A) and
a ∈ (s0(A), Rez) . Then by Fubini’s theorem and Cauchy’s integral theorem for
bounded functions on a right half-plane we have
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∫ ∞

0

e−ztT (t)xdt

=
1

2π

∫ ∞

0

e−zt

∫ ∞

−∞

e(a+is)tR(a + is, A)xdsdt

=
1

2π

∫ ∞

−∞

{
∫ ∞

0

e(a+is−z)tdt

}

R(a + is, A)Ax + x

a + is
ds

=
1

2π

∫ ∞

−∞

R(a + is, A)Ax + x

(a + is)(z − a − is)
ds =

R(z,A)Ax + x

z
= R(z,A)x.

So equality (5) is proved.

Finally we show strong continuity of our semigroup on (0,∞). Since by (12)
the semigroup is uniformly bounded on all compact intervals from (0,∞), it is
enough to show that (4) holds for all x ∈ D(A2). Take such x ∈ D(A2) and any
a > 0. By [Kai-We, Lemma 4.1 and 4.2] we have

T (t)x − x =
1

2π

∫ ∞

−∞

e(a+is)t R(a + is, A)Ax

a + is
ds

and ||R(a+ is, A)Ax|| ≤ c||A2x||
1+|a+is| for some constant c. Therefore, by Lebesgue’s

theorem,

lim
t→0+

(T (t)x − x) =
1

2π

∫ ∞

−∞

R(a + is, A)Ax

a + is
ds (13)

and the integral on the right hand side converges absolutely.

We now show that

∫ ∞

−∞

R(a + is, A)Ax

a + is
ds = 0. (14)

By Cauchy’s theorem and Lemma 2.1 we have

∥

∥

∥

∥

∫ r

−r

R(a + is, A)Ax

a + is
ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ π/2

−π/2

ireiφ

a + reiφ
R(a + reiφ, A)Axdφ

∥

∥

∥

∥

∥

≤

∫ π/2

−π/2

‖R(a + reiφ, A)Ax‖dφ → 0, r → ∞.

So equality (14) is proved and (13) implies (4) and the strong continuity of our
semigroup on (0,∞).

Proof of Theorem 2.3. It is sufficient to prove that s0(A) < 0 implies
ω0(T ) < 0. Indeed, if s0(A) < ω0(T ), then we can rescale our semigroup so that
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s0(A) < 0 < ω0(T ). Note that property (1) is still true for the rescaled semi-
group. So assume s0(A) < 0. By Lemma 2.2 our semigroup can be represented

as

T (t)x =
1

2πt

∫ ∞

−∞

e(a+is)tR(a + is, A)2xds

for all x ∈ X, t > 0 and a > s0(A). Taking here a = 0 we obtain

| < T (t)x, y > | ≤
1

2πt

∫ ∞

−∞

| < R(is, A)2x, y > |ds

for all x ∈ X and y ∈ X∗. By the principle of uniformly boundedness there
exists a constant K independent on x and y such that

‖T (t)‖ ≤
K

t

holds for all t > 0. Therefore we have

etω0(T ) = r(T (t)) ≤ ‖T (t)‖ → 0, t → ∞,

and ω0(T ) < 0 holds.

Proof of Theorem 2.4. Step 1. Let us first prove that by condition (6) we
have s0(A) ≤ 0. Since d

dz R(z,A) = −R2(z,A) we have for all a > 0, x ∈ X and
y ∈ X∗,

< R(a + is, A)x, y >=< R(a,A)x, y > − i

∫ s

0

< R(a + iτ, A)2x, y > dτ. (15)

By the absolute convergence of the integral on the right hand side we obtain
that < R(a + is, A)x, y >→ 0 if s → ∞. From (15) and condition (6) it follows
that

‖R(a + is, A)‖ ≤
M

a
(1 + a−d),

hence s0(A) ≤ 0 holds.

Step 2. By Lemma 2.2 the operators given by (2) form a semigroup. Let us
estimate the norm of T (t). From representation (3) and condition (6) we have

| < T (t)x, y > | ≤
eat

2πt

∫ ∞

−∞

| < R(a + is, A)2x, y > |ds

≤
Meat

2πta
(1 + a−d)‖x‖‖y‖.

Taking a := t−1 we obtain for C := Me
2π the desired estimate
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‖T (t)‖ ≤ C(1 + td). (16)

The strong continuity of (T (t))t≥0 follows from estimate (16) and Lemma 2.2.

4 Remarks

Note that although the representation (2) of the semigroup as the inverse
Laplace transform always holds in UMD-spaces (see [ABHN, Theorem 3.12.2]),
property (1) studied in this paper is not automatically true for generators on
UMD-spaces. Indeed, by Theorem 2.3 property (1) implies Gearhart’s stability
theorem for the semigroup. On the other hand side the example considered in
[We] shows that Gearhart’s stability theorem does not hold in Lp-spaces for all
p ∈ (1,∞), p 6= 2.

A direct application of the characterization of generators of polynomially bounded
semigroups given in Theorem 2.4 is made in the paper by J. Goldstein and
M. Wacker (see [Go-Wa]). However, condition (6) in Theorem 2.4 is not so easy
to check. In addition, the converse implication is true for Hilbert spaces but not
for Banach spaces. Even condition (1) is not always satisfied which follows by
Theorem 2.3. So it remains an open problem to find criteria for the property
that a densely defined operator on a Banach space satisfying s(A) ≤ 0 is the
generator of a polynomially bounded semigroup .

Acknowledgement The author is deeply grateful to Prof. Ch. J. K. Batty,
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subject of this paper.
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