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Abstract

We characterize polynomial growth of a C0-semigroup in terms of
the first power of the resolvent of its generator. We do this for a class
of semigroups which includes C0-semigroups on Hilbert spaces and
analytic semigroups on Banach spaces. Furthermore, we characterize
polynomial growth for discrete semigroups.
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1 Introduction

A classical problem in semigroup theory is to characterize (in a useful way
and in terms of its generator) boundedness of a strongly continuous semi-
group. The characterization given by the Hille-Yosida theorem involves all
powers of the generator’s resolvent and is difficult to use in concrete situa-
tions.

Recently, (see Gomilko [5], Shi and Feng [13], Malejki [10], Eisner and
Zwart [14, 2, 3]) bounded and polynomially bounded semigroups and groups
have been characterized using only the first and the second power of the
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resolvent of the generator. In this note we use the method from [14, 3] to
describe polynomial growth in terms of the first power of the resolvent. We
do this for a class of C0-semigroups which includes semigroups on Hilbert
spaces and analytic semigroups on Banach spaces, see Theorem 2.1. An
analogous result for discrete semigroups is presented as well. Finally, we
also give the corresponding characterization of polynomially bounded C0-
groups. Note that polynomially bounded groups satisfy certain important
properties such as the weak spectral mapping theorem, see Nagel (ed.) [9,
Theorem A-III.7.4].

To be more precise we recall the following definitions.
A C0-semigroup (T (t))t≥0 on a Banach space X is called polynomially

bounded if ‖T (t)‖ ≤ C(1 + td) for some constants C, d ≥ 0 and all t ≥ 0.
Please note that d need not to be a positive integer, and hence td need not
to be a (proper) polynomial.

It is well-known that every matrix semigroup is polynomially bounded
if and only if the spectrum of the generator belongs to the closed left half-
plane. For the same reason every quasi-compact semigroup on a Banach
space is polynomially bounded under the same assumption on the spectrum
of its generator.

We denote by ω0(T ) the growth bound of a C0-semigroup (T (t))t≥0, by
R(λ, A) the resolvent of A at λ, and by

s0(A) := inf{a ∈ R : R(λ, A) is bounded on {λ : Reλ > a}}

the pseudo-spectral bound of A (also called abscissa of uniform boundedness
of the resolvent of A, see Arendt, Batty, Hieber, and Neubrander [1]).

In this paper we mainly consider semigroups whose generators have the
following resolvent property. We define that an operator A has a p-integrable
resolvent if for some/all a, b > s0(A) the following conditions hold

∫ ∞

−∞
‖R(a + is, A)x‖pds < ∞ for all x ∈ X, (1)

∫ ∞

−∞
‖R(b + is, A′)y‖qds < ∞ for all y ∈ X ′, (2)

where 1 < p, q < ∞ with 1
p

+ 1
q

= 1.

Plancherel’s theorem applied to the functions t 7→ e−atT (t)x and t 7→
e−atT ∗(t)y for sufficiently large a > 0 implies that every generator of a
C0-semigroup on a Hilbert space has 2-integrable resolvent. Moreover, for
generators on a Banach space with Fourier type p > 1 condition (1) is
satisfied automatically. Finally, every generator of an analytic semigroup
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(in particular, every bounded operator) on an arbitrary Banach space has
p-integrable resolvent for every p > 1. Intuitively, for a generator A the
property of having p-integrable resolvent for some p means good properties
of A or/and good properties of the space X.

2 Characterization of polynomial growth

The main result is the following characterization of polynomial growth of
semigroups.

Theorem 2.1. Let A be the generator of a C0-semigroup (T (t))t≥0 having

p-integrable resolvent for some p > 1. Assume that C
+
0 = {λ : Reλ > 0} is

contained in the resolvent set of A and there exist a0 > 0 and M > 0 such
that the following conditions hold:

(a) ‖R(λ, A)‖ ≤ M
(Reλ)d for all λ with 0 < Reλ < a0 and for some d ≥ 0;

(b) ‖R(λ, A)‖ ≤ M for all λ with Reλ ≥ a0.

Then ‖T (t)‖ ≤ K(1 + t2d−1) holds for some constant K > 0 and all t ≥ 0.
Conversely, if (T (t))t≥0 is a C0-semigroup on a Banach space with

‖T (t)‖ ≤ K(1 + tγ)

for some constants γ ≥ 0, K > 0 and all t ≥ 0, then for every a0 > 0 there
exists a constant M > 0 such that the resolvent of the generator satisfies
conditions (a) and (b) above for d = γ + 1.

Proof. The second part of the theorem follows easily from the representa-
tion R(λ, A)x =

∫ ∞
0 e−λtT (t)xdt. The idea of the proof of the first part is

based on the inverse Laplace transform representation of the semigroup and
the technique from [14, 3].

We first note that by conditions (a) and (b) we obtain s0(A) ≤ 0.
Next, by condition (1) and the uniform boundedness principle there ex-

ists a constant M0 > 0 such that

‖R(a + i·, A)x‖Lp(R,X) ≤ M0‖x‖ (3)

holds for all x ∈ X. Similarly, one obtains by (2) the dual result, i.e.,

‖R(b + i·, A′)y‖Lq(R,X′) ≤ M̃0‖y‖ (4)

for all y ∈ X ′.
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Take now 0 < r < a0. By the resolvent equality we have

R(r + iω, A)x = [I + (a − r)R(r + iω, A)] R(a + iω, A)x

and hence

‖R(r + iω, A)x‖ ≤ [1 + |a − r|‖(R(r + iω, A)‖] ‖R(a + iω, A)x‖

≤

[

1 + |a − r|
M

rd

]

‖R(a + iω, A)x‖,

where we have used (a). Combining this with estimate (3), we find that

‖R(r + i·, A)x‖Lp(R,X) ≤

[

1 + |a − r|
M

rd

]

M0‖x‖

≤ M1

[

1 +
1

rd

]

‖x‖. (5)

Similarly, we find that

‖R(r + i·, A′)y‖Lq(R,X′) ≤ M̃1

[

1 +
1

rd

]

‖y‖. (6)

By the estimates (5), (6) and the Cauchy–Schwarz inequality we obtain
∫ ∞

−∞
|〈R(r + iω, A)2x, y〉|dω

=

∫ ∞

−∞
|〈R(r + iω, A)x, R(r + iω, A′)y〉|dω

≤ ‖R(r + i·, A)x‖Lp(R,X)‖R(r + i·, A′)y‖Lq(R,X′)

≤ M1M̃1‖x‖‖y‖

[

1 +
1

rd

]2

. (7)

Convergence of the integral on the left hand side of (7) implies that the
inverse formula for the semigroup

T (t)x =
1

2πt

∫ ∞

−∞
e(r+is)tR(r + is, A)2xds

holds for all x ∈ X (see, e.g., Kaashoek and Verduyn Lunel [7], Kaiser and
Weis [8] or [2]). Notice that the condition r > s0(A) is essential. Combining
this formula with (7) we obtain

|〈T (t)x, y〉| ≤
1

2πt

∫ ∞

−∞
ert|〈R(r + iω, A)2x, y〉|dω

≤
1

2πt
ertM1M̃1‖x‖‖y‖

[

1 +
1

rd

]2

. (8)
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Since this holds for all 0 < r < a0, we may choose r = 1
t

for t large enough,
which gives

|〈T (t)x, y〉| ≤
1

2πt
eM1M̃1‖x‖‖y‖

[

1 + td
]2

. (9)

So for large t the norm of the semigroup is bounded by Ct2d−1 for some con-
stant C. Uniform boundedness of C0-semigroups on compact time intervals
finishes the proof.

As mentioned above every generator on a Hilbert space has 2-integrable
resolvent, hence we have the following immediate corollary.

Corollary 2.2. Let A generate a C0-semigroup (T (t))t≥0 on the Hilbert
space H. If A satisfies conditions (a) and (b) of Theorem 2.1 for some
d ≥ 0 and a0 > 0, then there exists K > 0 such that ‖T (t)‖ ≤ K[1 + t2d−1]
for all t ≥ 0.

Remark 2.3. Using the power series expansion for the resolvent, it is not
hard to show that if 0 ≤ d < 1, then conditions (a) and (b) already imply
s0(A) < 0. On the other hand, for generators with p-integrable resolvent the
equality ω0(T ) = s0(A) holds (see [7]). Combining these facts, we obtain
that in this case the semigroup is even uniformly exponentially stable. On
the other hand, the exponential stability follows from the Theorem 2.1 only
for d < 1

2 . So for 1
2 ≤ d < 1 Theorem 2.1 does not give the best information

about the growth of the semigroup. Nevertheless, for d = 1 the growth
stated in Theorem 2.1 is best possible, i.e., the exponent 2d − 1 cannot be
decreased in general (see [3]). For d > 1 it is not clear whether Theorem 2.1
gives the best possible constant γ.

Note that the parameter d = γ+1 in the converse implication of Theorem
2.1 is optimal for γ ∈ N. Indeed, for X := C

n and

A :=









0 1 0 ... 0
0 0 1 ... 0

...
0 0 0 ... 0









conditions (a) and (b) in Theorem 2.1 are fulfilled for d = n and the semi-
group generated by A grows exactly as tn−1.

By Corollary 2.2 we see that the class of generators of polynomially
bounded semigroups on a Hilbert space coincides with the class of generators
of C0-semigroups with resolvent conditions (a) and (b). For semigroups
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on Banach spaces this is not true since there exist semigroups such that
w0(T ) > s0(A) holds (see [4, Examples IV.3.2 and IV.3.3]).

We conclude this section with the discrete version of Theorem 2.1. Note
that in this case both the formulation and the proof are simpler than their
continuous analogues. For related results concerning the behavior of the
resolvent and growth of the powers of an operator see e.g. Nagy and Zemánek
[11], Nevanlinna [12], Gomilko and Zemánek [6].

Theorem 2.4. Let T be a bounded operator on a Banach space X with
r(T ) ≤ 1. If

lim sup
|z|→1+

(|z| − 1)d‖R(z, T )‖ < ∞ for some d ≥ 0, (10)

then
‖Tn‖ ≤ Cnd for some C > 0 and all n ∈ N. (11)

Moreover, if (11) holds for d = k, then (10) holds with d = k + 1.

Proof. Assume that condition (10) holds and take n ∈ N and r > 1. By
the Dunford functional calculus and (10) we have

‖Tn‖ ≤
rn+1

2π

∫ 2π

0
‖R(reiϕ)‖dϕ ≤

Mrn+1

(r − 1)d

for M := lim sup|z|→1+(|z| − 1)d‖R(z, T )‖. Taking r := 1 + 1
n

we obtain

‖Tn‖ ≤ 2Mend and the first part of the theorem is proved.
For the second part we assume that condition (11) holds for d = k. Take

n ∈ N, r > 1, ϕ ∈ [0, 2π), and q := 1
r

< 1. Then

‖R(reiϕ, T )‖ ≤
∞

∑

n=0

‖Tn‖

rn+1
≤ Cq

∞
∑

n=0

nkqn ≤ C
k−1
∑

n=0

nk + C
∞

∑

n=k

nkqn

≤ C
k−1
∑

n=0

nk + CC̃qk dk

dqk

∞
∑

n=0

qn ≤ C
k−1
∑

n=0

nk +
CC̃k!

(1 − q)k+1
,

where C̃ is such that nk ≤ C̃ · n(n − 1) . . . (n − k + 1) for all n ≥ k. For
k = 0 we suppose the first sum on the right hand side to be equal to zero.
Substituting q by 1

r
we obtain condition (10) for d = k + 1.
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3 Case of groups

As a corollary of Theorem 2.1 we have the following characterization of
polynomially bounded groups in terms of the resolvent of the generator.

Theorem 3.1. Let A be the generator of a C0-group (T (t))t≥0. Assume that
A has p-integrable resolvent for some p > 1. Then the group (T (t))t∈R is
polynomially bounded if and only if the following conditions on the operator
A are satisfied:

(a) σ(A) ⊂ iR;

(b) There exist a0 > 0 and d ≥ 0 such that ‖R(λ, A)‖ ≤ M
|Reλ|d

for some

constant M and all λ with 0 < |Reλ| < a0;

(c) R(λ, A) is uniformly bounded on {λ : |Reλ| ≥ a0}.

Proof. It is enough to show that also the operator −A has p-integrable
resolvent for A satisfying (a)–(c). Take any a > 0. Then by (b) or (c),
respectively, R(λ, A) is bounded on the vertical line −a+iR. By the resolvent
equation we obtain

‖R(−a + is, A)x‖ ≤ [1 + 2a‖R(−a + is, A)‖]‖R(a + is, A)x‖, (12)

and therefore the function s 7→ ‖R(−a+is, A)x‖ also belongs to Lp(R). The
rest follows immediately from Theorem 2.1.

Again, this yields a characterization of generators of polynomially bo-
unded groups on Hilbert spaces. Note that the relation between the growth
of the group and the growth of the resolvent appearing in (b) of Theorem
3.1 is the same as in Theorem 2.1.

Acknowledgement. The authors are grateful to Rainer Nagel for his valu-
able comments.
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