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Abstract

Given the infinitesimal generator A of a C0-semigroup on the Ba-
nach space X which satisfies the Kreiss resolvent condition, i.e., there
exists an M > 0 such that ‖(sI −A)−1‖ ≤ M

Re(s) for all complex s with

positive real part. We show that for general Banach spaces this con-
dition does not give any information on the growth of the associated
C0-semigroup. For Hilbert spaces the situation is less dramatic. In
particular, we show that the semigroup can grow as much like t. Fur-
thermore, we show that for every γ ∈ (0, 1) there exists an infinites-
imal generator satisfying the Kreiss resolvent condition, but whose
semigroup grows like tγ . As a consequence, we find that for R

N with
the standard Euclidian norm, the estimate ‖ exp(At)‖ ≤ M1 min(N, t)
cannot be replaced by a lower power of N or t.
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1 Introduction

Let us begin by introducing some notation; (T (t))t≥0 will denote a C0-
semigroup on the Banach space X, and A its infinitesimal generator. The
celebrated Hille-Yosida Theorem states that ‖T (t)‖ ≤ M for all t ≥ 0 if and
only if ‖Re(s)n(sI − A)−n‖ ≤ M for all s ∈ C

+
0 := {s ∈ C | Re(s) > 0} and

n ∈ N. Unfortunately, this theorem can be very hard to check. Hence people
have tried to find conditions which are easier to check. One of the conditions
which has been proposed is the Kreiss resolvent condition, originally stated
in Kreiss [11] for A being a matrix. This condition corresponds precisely to
the first condition in the Hille-Yosida Theorem, i.e.,

‖(sI − A)−1‖ ≤
M

Re(s)
(1)

for s ∈ C
+
0 . From the Hille-Yosida Theorem it is clear that if the semigroup

is bounded, then (1) holds. Furthermore, it is easy to see that if M = 1, then
(1) is equivalent with the Hille-Yosida conditions. For Banach spaces and
M > 1 it is known that the Kreiss resolvent condition does not imply the
boundedness of the semigroup, see e.g. Engel and Nagel [8, section V.1.b.].
For a finite-dimensional space, i.e., X = R

N it was shown in Dorsselaer et
al [6] that (1) implies that ‖ exp(At)‖ ≤ eMN , see also [13]. Furthermore,
if the norm on R

N is the maximum-norm, then there exists an A such
that supt≥0 ‖ exp(At)‖ ≥ 2N−1

π+1 M , see Kraaijevanger [10]. For discrete-time,

finite-dimensional systems, it is known that ‖Ak‖ ≤ eMd min{(N + 1), k},
where Md is the constant in the Kreiss resolvent estimate for the unit disc,
see [6]. However, we were not able to find a continuous-time counterpart of
this result in the literature. Using a scaled version of the example of [10],
one can construct an example satisfying the Kreiss resolvent condition (1),
but ‖ exp(At)‖ ≥ c min{N, t} for some constant c independent of t and N .
For a nice overview of these and related results and for historic remarks, we
refer the reader to [6]. We remark that the discrete time counterpart of the
Kreiss resolvent estimate has attracted more attention, than the continuous
time version as we study in this article. A cited reference reach showed that
there are 29 citation to the original Kreiss paper [11] on the continuous-time
version, whereas there are 68 citations to [12] discussing the discrete-time
version. For an overview and many more references we refer to [1, 6, 20].

On basis of the discrete-time result and the above mentioned example,
one might hope that the Kreiss resolvent condition (1) implies that the
semigroup grows at most like t. In Section 2 we show that this indeed
holds X being a Hilbert space. Unfortunately, in general a Banach space
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exponential growth is possible, see Section 3. We show that for any M > 1
and α > 0 there exists an infinitesimal generator which satisfies (1) with this
M , but grows like exp(αt). In Section 4 we construct for every γ ∈ [0, 1) a
Hilbert space and an infinitesimal generator A satisfying the Kreiss resolvent
condition on this Hilbert space, but the corresponding semigroup grows like
tγ .

The example leads to a finite dimensional example, showing that if a
N ×N matrix A satisfies (1), then the supremum of exp(At) over t > 0 can
be of the order Nγ .

2 An upperbound on the growth

In this section we show that for every Hilbert space, the Kreiss resolvent
condition implies that the semigroup grows at most like t. The proof uses
the following lemma of Eisner [7], which holds on a general Banach space.

Lemma 2.1. Assume that A is the infinitesimal generator of the C0-semigroup
(T (t))t≥0 and let s0(A) be the pseudo spectral bound, i.e.,

s0(A) = inf{r ∈ R | (sI − A)−1is uniformly bounded on Re(s) > r}.

If there exists a r > s0(A) such that for all x ∈ X and y ∈ X∗

∫ ∞

−∞
|〈((r + iω)I − A)−2x, y〉|dω < ∞, (2)

then for all x ∈ X and t > 0 the following equality holds

T (t)x =
1

2πt

∫ ∞

−∞
e(r+iω)t((r + iω)I − A)−2xdω. (3)

Note that since the left-hand side does not depend on r, the right-hand
side should give the same answer for all r > s0(A). A consequence of this
lemma is the following result.

Theorem 2.2. Let A be the infinitesimal generator of the C0-semigroup
(T (t))t≥0. Assume that C

+
0 is contained in the resolvent set of A and that

the following conditions hold:

1. A satisfies the Kreiss estimate (1);

2. There exists a ρ > 0 such that for all x ∈ X, y ∈ X∗ the function
ω 7→ |〈((ρ + iω)I − A)−2x, y〉| is integrable.
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Then there exists a K > 0 such that ‖T (t)‖ ≤ K(1 + t) for all t ≥ 0.

Proof. The proof consists out of several steps. First we show that item 2.
holds for all ρ, ρ̃ > 0. Secondly, we estimate the L1-norm of the function
appearing in item 2. Finally, we apply Lemma 2.1 to show the assertion.

Step 1 Since the Kreiss estimate holds, we have that s0(A) ≤ 0, see Lemma
2.1.

Step 2 Since the function ω 7→ 〈((ρ + iω)I − A)−2x, y〉 is an element of
L1(R, C) for all x ∈ X and y ∈ X∗, we conclude from the uniform bound-
edness theorem that there exists a constant M0 > 0 such that

‖〈((ρ + i·)I − A)−2x, y〉‖L1(R,X) ≤ M0‖x‖‖y‖ (4)

for all x ∈ X, y ∈ X∗.

Step 3 Since C
+
0 is contained in the resolvent set of A, we obtain by the

resolvent identity that for r > s0(A)

((r + iω)I − A)−2x =
[

I + (ρ − r)((r + iω)I − A)−1
]2

((ρ + iω)I − A)−2x

for all r, ρ > 0. Hence

|〈((r + iω)I − A)−2x, y〉| ≤

[

1 + |ρ − r|
M

r

]2

|〈((ρ + iω)I − A)−2x, y〉|,

where we have used the Kreiss estimate (1). Combining this with the esti-
mate (4), we find that for s0(A) < r ≤ 1

‖〈((r + i·)I − A)−2x, y〉‖L1 ≤

[

1 + |ρ − r|
M

r

]2

M0‖x‖‖y‖

≤ M1

[

1 +
1

r

]2

‖x‖‖y‖ (5)

holds for some constant M1.

Step 4 Combining equation (3) with (5), we see that

|〈T (t)x, y〉| ≤
1

2πt

∫ ∞

−∞
ert|〈((r + iω)I − A)−2x, y〉|dω

≤
1

2πt
ertM1‖x‖‖y‖

[

1 +
1

r

]2

. (6)
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Since this holds for all s0(A) < r < 1, and since s0(A) ≤ 0, we may choose
r in (6) equal to 1/t. This gives

|〈T (t)x, y〉| ≤
1

2πt
eM1‖x‖‖y‖ [1 + t]2 . (7)

So for large t the norm of the semigroup is bounded by eM1

π t. Since any
C0-semigroup is uniformly bounded on a compact time interval, the result
follows.

Remark 2.3. We have the following remarks concerning this theorem.

1. As is clear from the proof of the above theorem, the relation between
the constants M (the constant in the Kreiss resolvent condition) and
K (the constant in the growth) involves other constants as well. We

have that K = eM0

π max{ρM, 1+(1−ρ)M
2 }. Hence one does not have

that K is a universal constant times M .

2. The second condition in Theorem 2.2 is satisfied if

(a) There exists a ρ > 0 such that for all x ∈ X the function
ω 7→ ((ρ + iω)I − A)−1x lies in Lp(R, X),

(b) There exists a ρ̃ > 0 such that for all y ∈ X∗ the function
ω 7→ ((ρ̃ + iω)I − A∗)−1y lies in Lq(R, X)

for some 1 < p, q < ∞ such that 1
p + 1

q = 1. Indeed, analogously to
step 2 of Theorem 2.2 it is easy to see that these two conditions hold
for all ρ, ρ̃ > 0, whenever s0(A) ≤ 0. The rest follows immediately
from Cauchy-Schwarz inequality. In particular, we obtain the following
corollary.

Corollary 2.4. If A is the infinitesimal generator of the C0-semigroup
(T (t))t≥0 on the Hilbert space H, and if A satisfies the Kreiss estimate (1),
then there exists a K > 0 such that ‖T (t)‖ ≤ K[1 + t] for all t ≥ 0.

Proof. Since the Kreiss resolvent condition holds, we have that s0(A) ≤ 0.
By Proposition 2 of [17] this implies that the growth bound of the semigroup
is less or equal than zero. Hence we have that the function t 7→ e−tT (t)x is
square integrable for every x ∈ H. By Paley-Wiener theorem this implies
that the function ω 7→ ((1 + iω)I − A)−1x is square integrable. Since a
similar argument holds for the dual semigroup, we conclude from Theorem
2.2 and Remark 2.3 for p = q = 2 that there exists a K > 0 such that
‖T (t)‖ ≤ K[1 + t] for all t ≥ 0.
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3 Worst growth on a Banach space

In this section we construct an example showing that if the generator A
on a Banach space satisfies the Kreiss estimate, then the corresponding
semigroup need not to be bounded by a constant times t. The example will
show that for all M > 1 in (1) any exponential growth is possible.

Example 3.1. The example is based on the counterexample on page 254 in
Engel and Nagel [8]. Let α be a positive number. As state space we choose
Xα := C0([0,∞)) ∩ L1((0,∞), esds) with norm

‖f‖Xα = α sup
η≥0

|f(η)| +

∫ ∞

0
|f(η)|eηdη.

With this norm Xα becomes a Banach space, and this space is similar to
X1. On the space Xα we define the operator

A0f = ḟ

with D(A0) = {f ∈ X | f ∈ C1([0,∞)), ḟ ∈ Xα}. In Engel and Nagel it is
shown that the resolvent set of A0 on X1 contains every complex number
with real part greater than −1. Since Xα is similar to X1, the same assertion
holds for the resolvent set of A0 on Xα. It is easy to see that A0 is the
infinitesimal generator of the C0-semigroup (T0(t))t≥0 with (T0(t)f) (η) =
f(t+ η). From this expression, one easily sees that ‖T0(t)‖ = 1 for all t ≥ 0.
Furthermore, it is not hard to see that the inverse of sI − A0 is given by

(

(sI − A0)
−1f

)

(η) =

∫ ∞

η
es(η−ξ)f(ξ)dξ (8)

for Re(s) > −1. Using this expression one can show that

‖(sI − A0)
−1f‖Xα = ‖(Re(s)I − A0)

−1
(

e−iIm(s)·f(·)
)

‖Xα .

Since ‖e−iIm(s)·f(·)‖Xα = ‖f‖Xα , we find that

‖(sI − A0)
−1‖ = ‖(Re(s)I − A0)

−1‖ (9)
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Using equation (8) and the definition of the norm, we find for r > −1

‖(rI − A0)
−1f‖Xα = α sup

η≥0

∣

∣

∣

∣

∫ ∞

η
er(η−ξ)f(ξ)dξ

∣

∣

∣

∣

+

∫ ∞

0

∣

∣

∣

∣

∫ ∞

η
er(η−ξ)f(ξ)dξ

∣

∣

∣

∣

eηdη

= α sup
η≥0

∣

∣

∣

∣

∫ ∞

η
e(r+1)(η−ξ)e−ηeξf(ξ)dξ

∣

∣

∣

∣

+

∫ ∞

0

∣

∣

∣

∣

∫ ∞

η
e(r+1)(η−ξ)eξf(ξ)dξ

∣

∣

∣

∣

dη

≤ α sup
η≥0

∫ ∞

η
|eξf(ξ)|dξ +

∫ ∞

0
e−(r+1)ξdξ

∫ ∞

0
|eξf(ξ)|dξ

≤ α‖f‖X +
1

r + 1
‖f‖X . (10)

Since A0 is the infinitesimal generator of a contraction semigroup, we know
that

‖(rI − A0)
−1‖ ≤

1

r

for all r > 0. Hence by combining this with (10) and (9) we find

‖(sI − A0)
−1‖ ≤

{

α + 1
Re(s)+1 Re(s) ∈ (−1, 0]

min{ 1
Re(s) , α + 1

Re(s)+1} Re(s) > 0
. (11)

Choose an ε > 0, then on [1/ε,∞) we have that r−1 ≤ (1 + ε)(r + 1)−1

and for α = ε2/(1 + ε) we have that α + (r + 1)−1 ≤ (1 + ε)(r + 1)−1 for
r ∈ (−1, 1/ε]. Thus for any ε > 0 we can find an α such that

‖(sI − A0)
−1‖ ≤

1 + ε

Re(s) + 1
Re(s) > −1. (12)

Yet we construct the infinitesimal generator with exponential growth. Define
for γ > 0

Aγ := γA0 + γI.

Then we have that for s with positive real part that

‖(sI −Aγ)−1‖ = ‖((s − γ)I − γA0)
−1‖

=
1

γ

∥

∥

∥

∥

∥

((

s

γ
− 1

)

I − A0

)−1
∥

∥

∥

∥

∥

≤
1 + ε

Re(s)
, (13)
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where we have used (12). Thus Aγ satisfies the Kreiss estimate. Since A0

is the infinitesimal generator, we have that Aγ is it too. The corresponding
semigroup is given by

Tγ(t) = eγtT0(γt).

Since ‖T0(t)‖ = 1 for all t ≥ 0, we find

‖Tγ(t)‖ = eγt. (14)

Thus we have constructed an infinitesimal generator satisfying the Kreiss
estimate (1), but having exponential growth.

4 Worst growth on a Hilbert space

In this section we construct an infinitesimal generator on a Hilbert space
which satisfies the Kreiss resolvent condition (1), but its corresponding semi-
group grows like tγ . We can do this construction for any γ < 1. It turns
out that the generator is a bounded operator. As a consequence of this
construction, we find N × N matrices QN satisfying the Kreiss resolvent
condition for the same constant, and the supremum of eQN t of the order Nγ

for any γ < 1.
The idea of this example is based on the papers by Spijker, Tracogna, and

Welfert [18], Borovykh and Spijker [3], and on the one page note by Kalton
and Montgomery-Smith [16]. Note that the basis of the idea is already in
the paper by McCarthy and Schwartz [15] from 1965.

Let w be a positive measurable function from the interval (−π, π) to R.
By L2((−π, π), w) we denote the set of all measurable functions from (−π, π)
to C for which

∫ π
−π |f(x)|2w(x)dx < ∞. This space is a Hilbert space with

inner product

〈f, g〉w =

∫ π

−π
f(x)g(x)w(x)dx. (15)

By spank∈Z{e
ikx}, we denote the finite span, i.e., f ∈ spank∈Z{e

ikx} can be
written as f =

∑

k∈Z
αke

ikx with all but finitely many αk’s equal to zero.
Using a result by Hunt, Muckenhoupt, and Wheeden [9] it is not hard to
show the following.

Lemma 4.1. For n ∈ Z and f ∈ spank∈Z{e
ikx}, we define

(Pnf) (x) =
n

∑

k=−∞

αke
ikx. (16)
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Let w satisfies the condition

sup
I⊂[−π,π]

1

|I|2

∫

I
w(x)dx

∫

I
w(x)−1dx < ∞, (17)

where I is an interval and |I| is the length of this interval. Then the following
holds.

1. The Pn’s are bounded linear projections on L2((−π, π), w), and they
are uniformly bounded, i.e.,

‖Pnf‖w ≤ cw‖f‖w (18)

for all f ∈ L2((−π, π), w), where cw does not depend on f and n.

2. For all f ∈ L2((−π, π), w) we have that

lim
n→−∞

Pnf = 0, lim
n→∞

Pnf = f, (19)

The above results imply that the set {. . . , e−i2x, e−ix, 1, eix, ei2x, . . .} is a con-
ditional basis on L2((−π, π), w).

Proof. The proof consists out of several steps. In the first two steps we
show that (18) is satisfied, and in the last step we prove (19).

Step 1. Define the mapping

(Mnf) (x) = einxf(x)

Since einx has absolute value one, it is easy to see that Mn is a bounded
linear mapping on L2((−π, π), w) with norm one.

The conjugate function f̃ is defined as

f̃(y) :=
1

2π
lim
ε↓0

∫

ε≤|y|≤π

f(x − y)

tan(y
2 )

dy. (20)

We denote Hf := f̃ . It is not hard to see (for example using induction) that

(

Heinx
)

(y) =











−ieiny, n > 0;

0, n = 0;

ieiny, n < 0.

(21)

Theorem 1 of [9] shows that H is a bounded linear mapping on L2((−π, π), w)
whenever w satisfies condition (17).
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Step 2. For f =
∑

k αke
ik· ∈ spank∈Z{e

ikx} we consider the following map-
ping

−iMnHM−nf + f + αneinx = −iMnH

(

∑

k

αke
i(k−n)x

)

+ f + αneinx

= 2
∑

k≤n

αke
ikx = 2Pnf,

where we have used (21). So we see that the right combination of M ’s and
H equals the projection Pn. Using the bounds on Mn, M−n, H from step
1, we see that this projection is uniformly bounded if and only if the norm
of αneinx is bounded by some constant (independent of n and f) times the
norm of f . Using (17), we see that

‖αneinx‖2
w = |αn|

2

∫ π

−π
|einx|2w(x)dx

=

∣

∣

∣

∣

1

2π

∫ π

−π
f(x)e−inxdx

∣

∣

∣

∣

2 ∫ π

−π
w(x)dx

≤
1

4π2

∫ π

−π
|f(x)|2w(x)dx

∫ π

−π
|e−inx|2w(x)−1dx

∫ π

−π
w(x)dx

= c1‖f‖
2
w,

where c1 = 1
4π2

∫ π
−π w(x)−1dx

∫ π
−π w(x)dx, which is finite by (17). So we

have shown that
‖Pnf‖w ≤ cw‖f‖w

for all f ∈ spank∈Z{e
ikx}. Since by Theorem 8 of [9] this span is dense in

L2((−π, π), w), we have proved (18).

Step 3. Like in the previous step we first choose f ∈ spank∈Z{e
ikx}. Since

f =
∑

k∈Z
αke

ikx with all but finitely many αk’s equal to zero, it is easy to
see that (19) holds. Since the projection are uniformly bounded and since
the finite span is dense in L2((−π, π), w), we have that (19) holds for all
f ∈ L2((−π, π), w).

Since the exponential function will be used a lot, we simplify notation a
little bit. For n ∈ Z we define φn(x) = einx, x ∈ [−π, π]. A consequence of
the above lemma is the following result.

Lemma 4.2. Assume that w is a positive weight satisfying the condition
(17) and that {βn}n∈Z ⊂ R is a sequence with βn ≤ βn+1 for all n ∈ Z.
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1. If sup |βn| < ∞, then the operator Q defined as Qφn = iβnφn, n ∈ N

extends to a bounded linear operator on L2((−π, π), w). Furthermore,
we have that

‖Q‖ ≤ cw

[

lim
n→∞

[βn − β−n]
]

+ lim
n→∞

|βn|. (22)

2. The operator R(s, Q) defined as R(s, Q)φn = (s − iβn)−1φn, n ∈ N

extends for all s ∈ C with Re(s) 6= 0 to a bounded linear operator on
L2((−π, π), w). Furthermore, we have that

‖R(s, Q)‖ ≤
1 + πcw

|Re(s)|
for Re(s) 6= 0. (23)

3. If sup |βn| < ∞, then every s ∈ C with Re(s) 6= 0 is in the resolvent
set of Q, and R(s, Q) = (sI − Q)−1.

In both estimates cw is the constant from (18).

Proof. 1. Let f be an element in the span of φn, then f =
∑N

n=−N αnφn

for some N > 0. By the linearity of Q we have

Q

(

N
∑

n=−N

αnφn

)

=
N

∑

n=−N

αnQφn =
N

∑

n=−N

αniβnφn

=
N

∑

n=−N

iβn (Pnf − Pn−1f)

=
N

∑

n=−N

iβnPnf −
N

∑

n=−N

iβnPn−1f

=
N

∑

n=−N

iβnPnf −
N−1
∑

n=−N−1

iβn+1Pnf

=
N−1
∑

n=−N

[iβn − iβn+1] Pnf + iβNf, (24)
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where we have used that for our f , PNf = f , and P−N−1f = 0. Thus

∥

∥

∥

∥

∥

Q

(

N
∑

n=−N

αnφn

)∥

∥

∥

∥

∥

w

≤
N−1
∑

n=−N

|iβn − iβn+1|‖Pnf‖w + |βN |‖f‖w

=
N−1
∑

n=−N

[βn+1 − βn] ‖Pnf‖w + |βN |‖f‖w

≤ cw

N−1
∑

n=−N

[βn+1 − βn] ‖f‖w + |βN |‖f‖w

≤

[

cw lim
N→∞

[βN − β−N ] + lim
N→∞

|βN |

]

‖f‖w,

where we have used twice that βn ≤ βn+1. Since the expression between the
square brackets is finite, and since the span of the φn is dense, we have that
Q is a bounded operator. Furthermore, we get that ‖Q‖ is bounded by the
expression within the square brackets, or equivalently that (22) holds.

2. Similar as in (24) we have for f =
∑N

n=−N αnφn that

R(s, Q)f =

N−1
∑

n=−N

[

(s − iβn)−1 − (s − iβn+1)
−1

]

Pnf +

(s − iβN )−1f.

Since for every real β we have that |(s − iβ)−1| ≤ |Re(s)|−1, we obtain by
(18) that

‖R(s, Q)f‖w ≤

[

cw

N−1
∑

n=−N

∣

∣

∣

∣

1

(s − iβn)
−

1

(s − iβn+1)

∣

∣

∣

∣

+
1

|Re(s)|

]

‖f‖w. (25)

So it remains to show that |Re(s)|
∑N−1

n=−N

∣

∣

∣

1
(s−iβn) −

1
(s−iβn+1)

∣

∣

∣
is bounded.

12



For this we write s = a + ib, with a and b real, a 6= 0.

|a|

N−1
∑

n=−N

∣

∣

∣

∣

1

(a + ib − iβn)
−

1

(a + ib − iβn+1)

∣

∣

∣

∣

=
N−1
∑

n=−N

∣

∣

∣

∣

∣

1

1 + i b−βn

a

−
1

1 + i b−βn+1

a

∣

∣

∣

∣

∣

=
N−1
∑

n=−N

∣

∣

∣

∣

∣

∫
b−βn
|a|

b−βn+1

|a|

−i

(1 + iη)2
dη

∣

∣

∣

∣

∣

≤
N−1
∑

n=−N

∫
b−βn
|a|

b−βn+1

|a|

1

1 + η2
dη

=

∫

b−β−N
|a|

b−βN
|a|

1

1 + η2
dη

≤

∫ ∞

−∞

1

1 + η2
dη = π, (26)

where we have used the monotonicity of βn. Combining (25) with (26), we
conclude that (23) holds.

3. Since R(s, Q) is the inverse of Q on the basis elements and since R(s, Q)
is bounded, the assertion follows immediately.

Note that the above proof is an adaptation of lemma 3.2.5 of Benamara
and Nikolski [2] which gives a bound on diagonal operators on a conditional
basis.

Let w be a weight which satisfies condition (17). On L2((−π, π), w) we
introduce the operators which will be used for our counter example. For
N > 0 we define AN as

ANφn :=











in
N φn, |n| ≤ N ;

−iφn, n < −N ;

iφn, n > N.

(27)

From Lemma 4.2 the following properties are immediate

• The AN extend to linear bounded operators on L2((−π, π), w) and the
norm of these operators is uniformly bounded by 2cw + 1.

13



• For each s ∈ C with nonzero real part we have that sI−A is boundedly
invertible on L2((−π, π), w) and

‖(sI − AN )−1‖ ≤
1 + πcw

|Re(s)|
for Re(s) 6= 0. (28)

Hence the operators AN satisfy the Kreiss estimate for the same con-
stant.

Since AN is a bounded operator, it generates the C0-group
(

eAN t
)

t∈R
.

This group has the following property

Lemma 4.3. For the operator AN as defined in (27) we have that

eAN tφn =











ei n
N

tφn, |n| ≤ N ;

e−itφn, n < −N ;

eitφn, n > N,

(29)

and

eANNπ

(

sin((N + 1/2)x)

sin(x/2)

)

= (−1)N cos((N + 1/2)x)

cos(x/2)
. (30)

Proof. Using the fact that AN is diagonal, it is not hard to show that (29)
holds. So we concentrate on the other equality. First we remark that

sin((N + 1/2)x)

sin(x/2)
=

∑

|n|≤N

einx =
∑

|n|≤N

φn.

So by equation (29) we have that

eANNπ sin((N + 1/2)x)

sin(x/2)
= eANNπ

∑

|n|≤N

φn

=
∑

|n|≤N

eANNπφn

=
∑

|n|≤N

einπφn

=
∑

|n|≤N

(−1)neinx = (−1)N cos((N + 1/2)x)

cos(x/2)
.

Hence we have shown (30).

With these lemma’s we can now construct our example.
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Example 4.4. Let γ be a positive number less than 1. We shall construct
a bounded operator Aγ such that eAγt behaves like |t|γ .

We begin by choosing the weight function. Let 0 < γ < 1 be fixed and

w(x) =

{

|x|γ , −π
2 ≤ x ≤ π

2 ;

(π − |x|)−γ , π
2 < |x| < π.

(31)

We proceed as follows. In step 1. we show that this weight satisfies con-
dition (17), and in step 2. we prove that the induced operator norm on
L2((−π, π), w) of eANNπ is larger than Nγ . In the last step we construct
Aγ .

Step 1. To prove (17), let us consider first I = [a, b], where 0 < a < b ≤ π
2 .

Then

KI :=
1

|I|2

∫

I
w(x)dx

∫

I
w(x)−1dx =

1

(b − a)2

∫ b

a
xγdx

∫ b

a
x−γdx

=
1

(1 − γ2)(b − a)2
(b1+γ − a1+γ)(b1−γ − a1−γ) = [z :=

b

a
]

=
1

(1 − γ2)(z − 1)2
(z1+γ − 1)(z1−γ − 1) ≤

1

1 − γ2
.

Since this estimate is independent of a, it holds also for intervals of the form
I = [a, b], where 0 ≤ a < b ≤ π

2 .
Let I be now an arbitrary interval. Notice that if |I| ≥ δ for some

δ > 0, then we have immideately that KI ≤ Cδ−2, where C :=
∫ π
−π w(s)ds ·

∫ π
−π w(s)−1ds. So we can assume |I| ≤ π

2 . By symmetry reason it suffices
to consider intervals of the form J = [−a, b] for 0 ≤ a < b ≤ π

2 . For such
intervals we obtain

(a + b)2K[−a,b] = a2K[−a,0] + b2K[0,b] +
∫ 0

−a
w(x)dx ·

∫ b

0
w(x)−1dx +

∫ b

0
w(x)dx ·

∫ 0

−a
w(x)−1dx

≤
a2 + b2

1 − γ2
+ 2

∫ b

0
w(x)dx ·

∫ b

0
w(x)−1dx

≤
a2 + 3b2

1 − γ2
≤

3

1 − γ2
(a + b)2.

So the weight w satisfies condition (17).

Step 2. In this step we show that

‖eANNπfN‖2
w ≥ N2γ‖fN‖2

w, (32)
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where

fN (x) =
sin((N + 1/2)x)

sin(x/2)
.

We estimate first the left hand side of (32). For this purpose we need the
following trigonometrical facts which are easy to prove:

cos(x/2) ≤
π − x

2
, x ≤ π;

| cos((N + 1/2)x)| ≥
2

π
(N + 1/2)(π − x),

2Nπ

2N + 1
≤ x ≤ π.

Using these inequalities and Lemma 4.3 we have

‖eANNπfN‖2
w = 2

∫ π

0

∣

∣

∣

∣

cos((N + 1/2)x)

cos(x/2)

∣

∣

∣

∣

2

w(x)dx

≥ 2

∫ π

2Nπ/(2N+1)

∣

∣

∣

∣

cos((N + 1/2)x)

cos(x/2)

∣

∣

∣

∣

2 dx

(π − x)γ

≥
8(2N + 1)2

π2

∫ π

2Nπ/(2N+1)

dx

(π − x)γ

=
8(2N + 1)2

π2

π1−γ

1 − γ

(

1 −
2N

2N + 1

)1−γ

=
8

(1 − γ)π1+γ
(2N + 1)1+γ ≥

24+γ

(1 − γ)π2
N1+γ .

To estimate the right hand side of (32) we show first that

|fN (x)| ≤
π

x
, 0 < x ≤ π; (33)

|fN (x)| ≤ π(N + 1/2), 0 < x ≤ π. (34)

Really, for x ∈ (0, π] we have

∣

∣

∣

∣

sin((N + 1/2)x)

sin(x/2)

∣

∣

∣

∣

≤
1

sin(x/2)
≤

π

x

and
∣

∣

∣

∣

sin((N + 1/2)x)

sin(x/2)

∣

∣

∣

∣

≤ π
| sin((N + 1/2)x)|

x

= π(N + 1/2)
| sin((N + 1/2)x)|

(N + 1/2)x
≤ π(N + 1/2).
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Inequalities (33) and (34) are proved. Using them we obtain the following
estimate for the left hand side of (32):

‖fN‖2
w = 2

∫ π

0
|fN (x)|2w(x)dx

≤ 2

∫ 1/N

0
π2(N + 1/2)2xγdx + 2

∫ π/2

1/N

π2

x2
xγdx + 2

∫ π

π/2

π2

x2

dx

(π − x)γ

≤ 2π2(N + 1/2)2
1

N1+γ(1 + γ)
−

2π2

γ − 1

1

Nγ−1
+

8

1 − γ

(π

2

)1−γ

≤
8π2

γ + 1
N1−γ +

2π2

1 − γ
N1−γ +

8

1 − γ

(π

2

)1−γ

≤
π2(10 − 6γ)

1 − γ2
N1−γ +

3π2

1 − γ
≤

16π2

1 − γ2
N1−γ .

So we see that

‖eANNπfN‖2
w

‖fN‖2
w

≥ 2γ(1 + γ)N2γ ≥ N2γ ,

and therefore ‖eANNπ‖ ≥ Nγ holds for all N ∈ N. Note that the operator
−A has the same form as A, so by analogous construction we obtain that
the group satisfies

‖e±ANNπ‖ ≥ Nγ . (35)

Step 3. Let 0 < γ < 1. Consider the Hilbert space H := l2 (L2((−π, π), w)),
where w is given by (31). The inner product on this space is given by

〈(xn), (yn)〉 =
∞

∑

n=1

〈xn, yn〉w.

If Q = diag(Qn) is a (block) diagonal operator on H, then the norm of this
operator is given by

‖Q‖ = sup
n

‖Qn‖. (36)

On H we define Aγ := diag(An). By step 2 and (36), Aγ is a bounded
operator on H and it satisfies the Kreiss resolvent condition

‖R(s,Aγ)‖ ≤
1 + πcw

|Re(s)|
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for all s with Re(s) 6= 0. Moreover, by estimate (35) and (36) the group
generated by Aγ satisfies

‖eAγNπ‖ ≥ ‖eANNπ‖ ≥ Nγ ,

and the same holds at t = −Nπ. So we conclude that eAγt grows at least
as |t|γ .

There are several remarks to be made.

Remark 4.5. Concerning the Example 4.4 we have

• Note that it is not clear if there exists an operator on a Hilbert space
satisfying Kreiss resolvent condition such that the semigroup generated
by this operator grows exactly as t.

• The operator Aγ constructed in the above example is the infinitesimal
generator of a unbounded group. If the group on positive time would
be bounded, then the Kreiss resolvent condition on {s ∈ C | Re(s) < 0}
implies that the group is bounded on all time, see [4].

Now it remains to construct a matrix which satisfies the Kreiss resolvent
condition, but whose exponential function becomes (almost) the dimensions.
The example is more or less present in the previous example, but in order
to clarify the construction, we shall present the details. Before we do so, we
first present a simple lemma.

Lemma 4.6. Let H be a Hilbert space with inner product 〈·, ·〉, and let W
be bounded, linear operator on H which is positive and boundedly invertible.
With this W we define a new norm on H,

‖f‖2
W = 〈f, Wf〉.

Then for any bounded linear mapping Q on H we have that

‖Q‖W := sup
f 6=0

‖Qf‖W

‖f‖Q
= ‖W

1

2 QW− 1

2 ‖ := sup
f 6=0

‖W
1

2 QW− 1

2 f‖

‖f‖
.

Example 4.7. Let VN be the (2N + 1)-dimensional linear subspace of
L2((−π, π), w) which is spanned by eik·, k = −N, . . . , N .

If f(·) =
∑N

k=−N αke
ik·, then

‖f‖2
w = 〈(αk), W (αk)〉C2N+1 , (37)
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where 〈·, ·〉C2N+1 is the standard inner-product on C
2N+1, and

W = (Wkl)k,l=1,...,2N+1 with (38)

Wkl =

∫ π

−π
e(i(k−1−N)xe(−i(l−1−N)xw(x)dx. (39)

With this W we define a new inner product on C
2N+1, namely

‖(αk)‖
2
W = 〈(αk), W (αk)〉C2N+1 . (40)

Now we can define the matrix on C
2N+1 which has growth of the order Nγ .

We define the 2N + 1 by 2N + 1 matrix QN as

QN = W
1

2 diag

(

i
k

N

)

W− 1

2 , (41)

where W is defined in (38), (39) and w is given by (31). First we show that
this matrix satisfies the Kreiss condition with a constant independent of N .
It is easy to see that

(sI − QN )−1 = W
1

2 diag

(

(s − i
k

N
)−1

)

W− 1

2 .

Using Lemma 4.6, we find that

‖(sI − QN )−1‖C2N+1 = ‖diag

(

(s − i
k

N
)−1

)

‖W

= sup
(αk) 6=0

‖
(

diag
(

(s − i k
N )−1

))

(αk)‖W

‖(αk)‖W

= sup
f∈VN\{0}

‖(sI − AN )−1f‖w

‖f‖w
,

where we have used (27) and (37). Since VN is a subspace of L2(−π, π), w),
we have by (28) that

‖(sI − QN )−1‖C2N+1 ≤
1 + πcw

|Re(s)|
(42)

for Re(s) 6= 0. Similar one can show that

‖eQNNπ‖C2N+1 ≥ Nγ (43)

and thus completing the finite-dimensional example.
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