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Abstract. We offer a new way of proving spectral mapping properties of de-
lay semigroups in Lp-history spaces with finitely many rationally depending
delays based on a an explicit construction of approximate eigenvectors. This
allows us to provide proper generalizations of the existing spectral mapping
theorems.
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1. Introduction

Partial differential equations with delay play an important role in science and
engineering and have been studied for many years and by many different methods.

Hale [6] and Webb [11] were among the first to apply semigroup theory to
delay equations, and we refer to [1], Diekman et al. [4], or Wu [12] for more
recent references on differential equations with delay. By now, it is well-known
that fairly general classes of abstract delay equations generate strongly continuous
semigroups on appropriate function spaces. However, spectral properties of the
delay semigroup are not well understood. In particular, the following basic question
still remains open, in general: If the spectral mapping property

σ
(
T (t)

)
\ {0} = etσ(A), t > 0, (1.1)

holds for the spectrum σ(·) of the delay semigroup (T (t))t≥0 and its generator A.
The spectral mapping property (1.1) is widely discussed in the literature

on abstract strongly continuous semigroups, see e.g. the corresponding chapters
in Nagel et al. [9], Engel and Nagel [5], van Neerven [10], or [3]. This property
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is obviously of great importance because in concrete problems we often have a
good characterization of the generator but no explicit knowledge of the semigroup
itself. The spectral mapping property always holds for many known classes of
abstract semigroups, e.g., for eventually norm continuous, in particular, analytic
or eventually compact semigroups. In many applications, for example, in the study
of invariant manifolds for nonlinear evolution equations, even a more restrictive
result,

T · σ(T (t)) = T · etσ(A), (1.2)
where T := {|λ| = 1} is the unit circle, is also of great importance. Indeed, it tells
us that the hyperbolicity of the semigroup (T (t))t≥0 can be characterized via the
spectrum of A. Moreover, in the theory of strongly continuous semigroups one is
often interested in a consequence of (1.2), that is, in conditions for the equality

s(A) = ω0(A), (1.3)

where s(A) := sup{Reλ : λ ∈ σ(A)} and ω0(A) = limt→∞
log ‖T (t)‖

t is the spectral
bound of the generator and the growth bound of the semigroup, respectively.

Dealing with delay semigroups, results of type (1.1), (1.2) or (1.3) are cur-
rently known only in the situations where the delay system is finite dimensional,
or under some restrictive compactness assumptions leading to the fact that the
delay semigroup becomes eventually norm continuous. Thus, in these situations,
properties (1.1), (1.2) and (1.3) follow from general results on strongly continuous
semigroups. However, there are many striking examples of abstract semigroups for
which the spectral mapping properties fail. Using these examples, we show below
that, in general, the spectral mapping properties fail for delay semigroups as well.

In this paper we offer a new approach to properties (1.1), (1.2) and (1.3) that
does not require that the delay semigroup is eventually norm continuous and give
natural sufficient conditions for which these properties hold. More precisely, we
study the spectral mapping property of the semigroup associated to the abstract
delay equation of the form

u′(t) = Bu(t) + Φut, t ≥ 0,

u(0) = x,

u0 = f,

(DE)

in a Banach space X, where (B,D(B)) is the (unbounded) generator of a strongly
continuous semigroup of linear operators on X, ut(·) = u(t+ ·) on [−1, 0], and the
delay operator Φ is assumed to have the form

Φ(f) :=
∑m

j=1
Cjf(− j

m ), f : [−1, 0] → X, (1.4)

with given bounded operators Cj ∈ L(X), j = 1, . . . ,m, m ∈ N. Notice that this
setting in fact covers a much broader class of delays than (1.4), namely the case
of finitely many rationally depending delays, see remark 2.4.

As a first step one has to choose an appropriate state space for the solution u.
One of the possibilities is to work in the space of continuous X-valued functions.
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However, the state space E := X × Lp([−1, 0], X) turns out to be a better choice
with regards to certain applications (e.g., in control theory, see Bensoussan et. al.
[2], in numerical methods, see Kappel [7]), and will be used in this paper.

To formulate the main result of the current paper, for any λ ∈ C and τ ∈
[−1, 0] we let ελ(τ) := eλτ and define the operator, Φλ ∈ L(X), as follows:

Φλx := Φ(ελ ⊗ Id)x = Φ(eλ(·) x) for x ∈ X. (1.5)

Theorem 1.1. Assume that B and Φ are such that for each λ ∈ C the strongly
continuous semigroup generated by the operator B + Φλ has the following spectral
mapping property: for all rational t > 0,

σ
(

et(B+Φλ)
)
\ {0} = etσ(B+Φλ) . (1.6)

Then the operator

A :=
(

B Φ
0 d

dσ

)
(1.7)

with the domain

D(A) :=
{( x

f

)
∈ D(B)×W 1,p([−1, 0], X) : f(0) = x

}
(1.8)

generates a strongly continuous semigroup (T (t))t≥0 on the Banach space E :=
X × Lp([−1, 0], X) such that the spectral mapping property (1.1) is satisfied for
rational t > 0, and, moreover, equality (1.2) holds for all t ≥ 0.

Corollary 1.2. Under condition (1.6), the delay semigroup (T (t))t≥0 satisfies equal-
ity (1.3).

Condition (1.6) is satisfied in the case where (B,D(B)) generates an imme-
diately norm continuous or compact semigroup. As we have mentioned, outside
of this class, (1.6) is a nontrivial assumption. We stress again that, in general,
neither of the spectral mapping properties (1.1), (1.2) or (1.3) holds for the delay
semigroup, see Remark 2.7 below.

2. The delay semigroup

Let us summarize some results from monograph [1], which will be needed later, on
the semigroup approach to linear partial differential equations with delay. Consider
the general delay equation

(GDE)


u′(t) = Bu(t) + Φut, t ≥ 0,

u(0) = x,

u0 = f,

where
• x ∈ X, X is a Banach space,
• B : D(B) ⊆ X −→ X is a linear, closed, and densely defined operator,
• f ∈ Lp([−1, 0], X), p ≥ 1,
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• Φ : W 1,p([−1, 0], X) −→ X is a linear, bounded operator, having the form

Φ(f) :=
∫ 0

−1

dηf (2.1)

with a given function η : [−1, 0] → L(X) of bounded variation,
• u : [−1,∞) −→ X and ut : [−1, 0] −→ X is defined by ut(τ) := u(t + τ).

Definition 2.1. We say that a function u : [−1,∞) −→ X is a (classical) solution
of (GDE) if
(i) u ∈ C([−1,∞), X) ∩ C1([0,∞), X),
(ii) u(t) ∈ D(B) and ut ∈ W 1,p([−1, 0], X) for all t ≥ 0, and
(iii) u satisfies (DE) for all t ≥ 0.

To solve (GDE) by semigroup methods, we introduce the Banach space

E := X × Lp([−1, 0], X)

and the linear operator A described in (1.7) and (1.8).
Consider now the abstract Cauchy problem

(ACP)

{
v′(t) = A v(t), t ≥ 0,

v(0) = v0,

associated to the operator matrix (A, D(A)) on the Banach space E with initial
value v0 :=

( x
f

)
. There is a natural correspondence between the solutions of the

two problems, (GDE) and (ACP).

Lemma 2.2. [1, Theorem 3.12]
(i) If u is a solution of (GDE), then t 7→

(
u(t)
ut

)
is a solution of the Cauchy

problem (ACP).
(ii) If t 7→

( u(t)
v(t)

)
is a solution of (ACP), then v(t) = ut for all t ≥ 0, and u is a

solution of (GDE).

As an easy consequence of Lemma 2.2, we have that if (A, D(A)) generates a
strongly continuous semigroup (T (t))t≥0, then the solutions u of equation (GDE)
are given by the first component of the function t 7→ T (t)

( x
f

)
for

( x
f

)
∈ D(A):

u(t) =

{
x + B

∫ t

0
u(s) ds + Φ

∫ t

0
us ds for t ≥ 0,

f(t) for a.e. t ∈ [−1, 0).
(2.2)

By means of the perturbation theorem of Miyadera-Voigt, (see [5, Corollary
III.3.16]), one can formulate the following sufficient condition of the well-posedness
of (GDE). Let us assume that (B,D(B)) is the generator of a strongly continu-
ous semigroup (S(t))t≥0 on X, (T0(t))t≥0 is the nilpotent left shift semigroup on
Lp([−1, 0], X), and St : X → Lp([−1, 0], X) is defined by

(St x)(τ) :=

{
S(t + τ)x, −t < τ ≤ 0,

0, −1 ≤ τ ≤ −t.
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Theorem 2.3. [1, Theorem 3.29] Let (B,D(B)) be the generator of a strongly con-
tinuous semigroup on X and assume that the delay operator Φ is of form (2.1).
Then the operator (A, D(A)) is the generator of a strongly continuous semigroup
on E. Thus, (GDE) is well-posed.

Important special cases are operators Φ defined by

Φ(f) :=
∑n

k=0
Ckδhk

(f), f ∈ W 1,p([−1, 0], X), (2.3)

where δhk
(f) = f(hk) are the δ-measures supported at hk, the operators Ck ∈

L(X) are given, and hk ∈ [−1, 0] for k = 0, . . . , n. In particular, Theorem 2.3
holds for the operators Φ given in (1.4).

Remark 2.4. This seem to be the appropriate point to make a comment on time
measurement and the special form (1.4) of the delay in (DE). Assume that we are
given an equation of the form

v′(t) = Bv(t) +
∑k

j=1
Cjv(t− hj), t ≥ 0, (DE-1)

Then, denoting h := max{h1, . . . , hk}, we can rescale the time making the change
of variables t = hs and u(s) = v(hs). Hence we obtain a delay equation where the
largest delay equals 1. Further, if all the delays were rationally dependent, meaning
that hj ∈ αQ for some α ∈ R and all j = 1, . . . , k, then the new delays in the
rescaled equation will become rational numbers. Hence, there exists m ∈ N such
that h̃j = nj

m for suitable nj ∈ N. Introducing sufficiently many zero operators Cj ,
we see that (DE-1) could be rewritten as

u′(s) = B̃u(t) +
∑m

j=1
C̃ju(t− j

m ), t ≥ 0. (DE-2)

Hence, the delay operator in (1.4) actually covers the case of finitely many ratio-
nally dependent delays. Notice that the transformation above does not affect the
asymptotic behaviour of the solutions (for example, uniform exponential stability
or hyperbolicity), but it may affect the speed of the exponential convergence.

Finally, we characterize the resolvent set and the resolvent operator of A
(see [1, Section 3.2]). Let ελ(t) := eλt and Φλ ∈ L(X) be defined by Φλx :=
Φ(ελ ⊗ Id)x = Φ(eλ(·) x) for x ∈ X. Further, let (A0, D(A0)) be the generator of
the nilpotent left shift semigroup (T0(t))t≥0 in Lp([−1, 0], X). We use notation ρ(·),
σ(·), σp(·), σa(·), σr(·), and σess(·), respectively, for the resolvent set, spectrum,
point, approximate point, residual, and essential spectrum of an operator (·).

Lemma 2.5. Let X be a Banach space, (B,D(B)) be a linear, closed and densely
defined operator, and Φ : W 1,p([−1, 0], X) −→ X be linear and bounded. Let
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(A, D(A)) be the operator matrix defined in (1.7) and (1.8). Then

λ ∈ σ(A) if and only if λ ∈ σ(B + Φλ),

λ ∈ σp(A) if and only if λ ∈ σp(B + Φλ),

λ ∈ σa(A) if and only if λ ∈ σa(B + Φλ),

λ ∈ σr(A) if and only if λ ∈ σr(B + Φλ),

λ ∈ σess(A) if and only if λ ∈ σess(B + Φλ).

Moreover, for λ ∈ ρ(A) the resolvent R(λ,A) is given by(
R(λ, B + Φλ) R(λ, B + Φλ)ΦR(λ, A0)

ελ ⊗R(λ, B + Φλ) [ελ ⊗R(λ, B + Φλ)Φ + Id]R(λ, A0)

)
. (2.4)

Using a perturbation argument, one can show the following regularity results
for the delay semigroup, see [1, Proposition 4.3], [8].

Theorem 2.6. Consider the matrix operator (A, D(A)) defined by (1.7) and (1.8).
(a) If (B,D(B)) generates an immediately norm continuous semigroup, then the

semigroup generated by (A, D(A)) is norm continuous for t > 1.
(b) If (B,D(B)) generates an immediately compact semigroup, then the semi-

group generated by (A, D(A)) is compact for t > 1.

Hence, in these so called regular cases the spectral mapping property for the
delay semigroup does hold. It is also known, however, that if (B,D(B)) gener-
ates an eventually norm continuous or eventually compact semigroup, then this
property can be destroyed by the delay term.

Remark 2.7. Formula (2.4) shows that one should not expect the spectral mapping
properties (1.1), (1.2) or (1.3) to hold, in general, for delay semigroups. Indeed,
consider Φ as in (1.4) with m = 1. Choose B and C = C1 such that the spectral
mapping property (1.6) does not hold, see examples for such operators in [3, Ex-
amples 2.1.5] or in Engel and Nagel [5, Section IV.3.a]. Specifically, let us assume
that 2kπi ∈ ρ(B + C) for all k ∈ Z, but ‖(B + C − 2kπi)−1‖ → ∞ as k → ∞.
Then Φ2kπi = C e−2kπi = C, and hence

‖R(2kπi,B + Φ2kπi)‖ = ‖(B + C − 2kπi)−1‖ → ∞, as k →∞. (2.5)

By (2.4), we know that 2kπi ∈ ρ(A) for all k ∈ Z, but also by (2.4) and (2.5), we
have that ‖R(2kπi,A)‖ → ∞ as k → ∞, and thus 1 ∈ σ(T (1)). This shows that
assumption (1.6) is a natural assumption on (GDE) if one expects the spectral
mapping property for (T (t))t≥0 .

3. Proof of the main result

We consider from now on delay operators with finitely many rational depending
delays, i.e., operators of form (1.4),

Φ := Σm
j=1Cjδ− j

m
,
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for some m ∈ N. Note that some operators Cj may be zero. Recall, see Remark
2.4, that we rescaled the time so that the greatest time delay is 1. We have the
following necessary condition for λ ∈ C to be in the spectrum of T ( 1

m ).

Proposition 3.1. Let Φ be as in (1.4), and pick a nonzero λ ∈ σa(T ( 1
m )). Then

λ ∈ σa(e
1
m (B+Φµ)) for every µ satisfying e

µ
m = λ.

Proof. By assumption, there exists a sequence
{( xn

fn

)}∞
n=1

⊂ E such that∥∥( xn

fn

)∥∥
E = 1, (a)

‖(T ( 1
m )− λ)

( xn

fn

)
‖E → 0, n →∞. (b)

Our aim is to show that the sequence (xn) forms an approximate eigenvector
corresponding to the eigenvalue λ for the operator e

1
m (B+Φµ).

Let u be the mild solution of (DE) given by formula (2.2). By Lemma 2.2,
assertion (b) means, in terms of u, that

‖u( 1
m )− λxn‖X → 0, n →∞, (3.1)

‖u 1
m

(·)− λfn(·)‖Lp([−1,0],X) → 0, n →∞. (3.2)

Also by (b), we have, for j ∈ {1, . . . ,m + 1},

‖[T ( j
m )− λT ( j−1

m )]
( xn

fn

)
‖E ≤ ‖T ( j−1

m )‖ · ‖(T ( 1
m )− λ)

( xn

fn

)
‖E → 0, as n →∞

and therefore

‖u( j
m )− λu( j−1

m )‖X → 0, n →∞, ∀j = 1, . . . ,m, (3.3)

‖u j
m

(·)− λu j−1
m

(·)‖Lp([−1,0],X) → 0, n →∞, ∀j = 1, . . . ,m. (3.4)

Take any µ satisfying e
µ
m = λ. By representation (2.2) we have for all t ≥ 0

u(t) = xn + B

∫ t

0

u(s)ds + Φµ

∫ t

0

u(s)ds + g(t),

where the function g is given by

g(t) := Φ
∫ t

0

usds− Φµ

∫ t

0

u(s)ds = Φ
[∫ t

0

usds− εµ

∫ t

0

u(s)ds

]
, t ≥ 0. (3.5)

Then
u′(t) = Bu(t) + Φµu(t) + g′(t), t ≥ 0, u(0) = xn,

and we obtain by the variation of constant formula

u(t) = et(B+Φµ) xn +
∫ t

0

e(t−s)(B+Φµ) g′(s)ds, t ≥ 0. (3.6)

First we show that

‖g′‖Lp([0,1],X) → 0, n →∞. (3.7)
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By (3.5) and the form of the delay operator Φ in (1.4), we have:

g′(t) = Φ [ut − εµu(t)] =
m∑

j=1

Cj [u(t− j
m )− e−j µ

m u(t)]

=
m∑

j=1

λ−jCj [λju(t− j
m )− u(t)].

We fix j ∈ {1, . . . ,m} and show that ‖u(·)−λju(·− j
m )‖Lp([0,1],X) → 0, as n →∞.

Indeed,

‖u(·)− λju(· − j
m )‖Lp([0,1],X) = ‖u(1 + ·)− λju(1− j

m + ·)‖Lp([−1,0],X)

= ‖u1 − λju1− j
m
‖Lp([−1,0],X) ≤ ‖u1 − λu1− 1

m
‖Lp([−1,0],X)

+ |λ|‖u1− 1
m
− λu1− 2

m
‖Lp([−1,0],X) + . . .

+ |λ|j−1‖u1− j−1
m
− λu1− j

m
‖Lp([−1,0],X),

and by (3.4) each summand converges to 0 as n →∞. This proves property (3.7).
Next, we show that ‖ e

1
m (B+Φµ) xn − λxn‖X → 0 as n →∞. Indeed,

‖ e
1
m (B+Φµ) xn − λxn‖X ≤ ‖ e

1
m (B+Φµ) xn − u( 1

m )‖X + ‖u( 1
m )− λxn‖X .

The first summand here converges to 0 as n →∞ by applying the Hölder inequality
in (3.6), and using (3.7), while the second by (3.1).

Finally, we show that lim infn→∞ ‖xn‖X > 0. Passing to a subsequence, we
have from (3.2) and (3.4) as n →∞:

‖λfn‖Lp([−1,0],X) ≤ ‖u 1
m

(·)− λfn‖Lp([−1,0],X) + ‖u 1
m
‖Lp([−1,0],X)

= ‖u 1
m
‖Lp([−1,0],X) + o(1)

= ‖u 1
m

(·)− 1
λ

u2 1
m
‖Lp([−1,0],X) +

1
|λ|
‖u2 1

m
‖Lp([−1,0],X) + o(1)

=
1
|λ|
‖u2 1

m
‖Lp([−1,0],X) + o(1) = . . .

=
1

|λ|m−1
‖u1‖Lp([−1,0],X) + o(1) =

1
|λ|m−1

‖u‖Lp([0,1],X) + o(1).

This implies, by (3.7) and representation (3.6), that

‖λmfn‖Lp([−1,0],X) ≤ M‖xn‖X + o(1)

for M := supt∈[0,1] ‖et(B+Φµ)‖. Thus, ‖xn‖ → 0 would contradict (a).
Hence, {xn}∞n=1 is an asymptotic eigenvector for e

1
m (B+Φµ) corresponding to

λ ∈ σa(e
1
m (B+Φµ)). �

Remark 3.2. Let Φ be as in (1.4) and N ∈ N. Rewriting Φ as Φ =
∑Nm

j=1 Cjδ− j
Nm

by adding zero operators Cj , when appropriate and applying Proposition 3.1 with
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mN instead of m, we have the following: If a nonzero λ ∈ σa(T ( 1
mN )), then

λ ∈ σa(e
1

mN (B+Φµ)) for every µ satisfying e
µ

mN = λ.

We will now formulate the following characteristic equation for T ( 1
m ).

Proposition 3.3. Let Φ be as in (1.4) and assume that (1.6) holds for every λ ∈ C.
Then the following relation holds for λ 6= 0:

λ ∈ σ(T ( 1
m )) ⇐⇒ λ ∈ σ(e

1
m (B+Φµ)) for all/some µ with e

1
m µ = λ.

Proof. By Proposition 3.1 we only have to prove the implication “⇐”. Let λ ∈
σ(e

1
m (B+Φµ)) for some µ with e

µ
m = λ. By assumption (1.6) there exists ν ∈

σ(B + Φµ) with λ = e
ν
m . Since ν

m = µ
m + 2πik for some k ∈ Z, we have

Φν =
∑m

j=1
Cje

−j ν
m =

∑m

j=1
Cje

−j µ
m = Φµ.

Therefore ν ∈ σ(B + Φν), which means, by Lemma 2.5, that ν ∈ σ(A). By the
spectral inclusion theorem for strongly continuous semigroups, this implies λ =
e

ν
m ∈ e

1
m σ(A) ⊂ σ(T ( 1

m )). �

Proof of Theorem 1.1. In view of Remark 3.2 and the spectral mapping theorem
for polynomials, it is enough to prove (1.1) for t = 1

m . By the spectral inclusion
theorem for strongly continuous semigroups, we only have to prove in (1.1) the
inclusion “⊂”. Fix a nonzero λ ∈ σ(T ( 1

m )). By the spectral mapping theorem for
the residual spectrum, we may assume that λ ∈ σa(T ( 1

m )). Take any µ satisfying
e

µ
m = λ. By Proposition 3.1 and assumption (1.6), we have:

λ ∈ σ(e
1
m (B+Φµ)) = e

1
m σ(B+Φµ) .

Therefore, there exists ν ∈ σ(B + Φµ) such that e
1
m ν = λ. As in the proof of

Proposition 3.3, we have ν
m = µ

m + 2πik for some k ∈ Z and Φµ = Φν . Therefore,
ν ∈ σ(B + Φν). By Lemma 2.5, ν ∈ σ(A) and we thus conclude λ ∈ e

1
m σ(A).

Finally, equality (1.2) follows by the fact that if the spectrum of T (t) for
one t > 0 does not intersect a circle centered at zero, then it will not intersect
the correspondingly rescaled circle for any other t > 0, which can be seen by an
appropriate modification of [5, Proposition V.1.15]. �
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