
Index alulus in lass groups ofnon-hyperellipti urves of genus threeClaus Diem and Emmanuel ThoméNovember 13, 2007AbstratWe study an index alulus algorithm to solve the disrete logarithm problem (DLP)in degree 0 lass groups of non-hyperellipti urves of genus 3 over �nite �elds. We presenta heuristi analysis of the algorithm whih indiates that the DLP in degree 0 lass groupsof non-hyperellipti urves of genus 3 an be solved in an expeted time of Õ(q). Thisheuristi result relies on one heuristi assumption whih is studied experimentally.We also present experimental data whih show that a variant of the algorithm is fasterthan the Rho method even for small group sizes, and we address pratial limitations ofthe algorithm.Key words: Index alulus, non-hyperellipti urves, lass groups, JaobiansMSC2000: Primary: 11Y16; Seondary 14G50, 94A601 IntrodutionIn addition to the disrete logarithm problem (DLP) in ellipti urves and degree 0 lass groups(also named Piard groups or Jaobian groups) of hyperellipti urves, it has reently beenproposed by various authors to use the DLP in degree 0 lass groups of non-hyperellipti urvesof genus 3 over �nite �elds as a primitive for publi-key ryptographi protools. Partiularfamilies of suh urves proposed for ryptography inlude Piard urves [5, 11, 18, 26℄ and moregenerally C3,4-urves [3, 4℄. For these families of urves, e�ort has been put into providinge�ient onstrution means and expliit formulae for omputations in the degree 0 lass group.In spite of these e�orts, for a �xed group size, the omputational requirements for the setupof ryptosystems based on suh urves (either diretly via point ounting or through otheronstrution methods) remains higher than for urves of genus 1 or 2, and the arithmeti inthe degree 0 lass group remains slower. Moreover, we are not aware of any ryptographiprotool exploiting speial properties of non-hyperellipti urves of genus 3, giving for somepurposes a ompelling reason to use suh urves rather than urves of genus 1 or 2.We argue in this work that, still in omparison with urves of genus 1 or 2 with a degree 0lass group of omparable group size, both from an asymptoti as well as from a pratialstandpoint, the disrete logarithm problem is onsiderably easier or, equivalently, the groupsize has to be onsiderably inreased in order to keep the same level of seurity. This impliesthat given the urrent knowledge about the disrete logarithm problem in degree 0 lass1



2 Diem, Thomégroups of urves, the DLP in degree 0 lass groups of non-hyperellipti urves of genus 3 isnot a reommended primitive for publi-key ryptographi systems.In [9℄, an index alulus algorithm with double large prime variation whih is well-suitedfor the solution of the DLP in lass groups of urves over �nite �elds represented by planemodels of small degree has been introdued. Using the fat that any non-hyperellipti genus 3urve is isomorphi to a plane quarti, a heuristi analysis of the algorithm in [9℄ gives rise to:Asymptotially for q −→ ∞, the DLP in degree 0 lass groups of non-hyperellipti genus 3urves over Fq an be solved in an expeted time of Õ(q).Here, the Õ-notation aptures logarithmi fators.The heuristi expeted running time of Õ(q) should be ompared with the expeted runningtime of �generi methods� like the Rho method: As asymptotially for q −→ ∞, degree 0 lassgroups of genus 3 urves over Fq have ∼ q3 elements, generi methods to solve the DLP have a(heuristi) expeted running time of Θ(q3/2) group operations, provided that the group orderis nearly prime.In this work, we study the appliation of variants of the algorithm in [9℄ to non-hyperelliptigenus 3 urves in detail. We
• prove a ruial heuristi assumption from the analysis in [9℄ (Assumption 1 in [9℄),
• study the remaining heuristi assumption experimentally,
• present experimental data whih show that a pratial variant of the algorithm is indeedfaster than the Rho method even for relatively small group orders and address pratiallimitations of this variant on urrent o�-the-shelf hardware.The algorithm is given in Setion 3. The heuristi expeted running time is derived inSetion 4, with a ruial ingredient of the heuristi analysis being proved in Setion 5. InSetion 6 the remaining heuristi assumption is studied experimentally. Finally, in Setion 7a variant of the algorithm whih is well suited for pratial omputations is given and studiedexperimentally.2 Setting and terminologyThis work an be read from the point of view of the exposition in Chapters I and II of [21℄as well as from the point of view of sheme theory as in [14℄. For Setion 5, familiarity withlinear systems, funtion �eld theory and Galois theory is required.We use the following terminology and notations, following the usual terminology in shemetheory: The projetive n-spae over a �eld k is denoted by Pn

k . Given a urve C (whih is alwaysassumed to be projetive, smooth and geometrially irreduible) over a perfet �eld k, a losedpoint P of C (denoted P ∈ C) is a Galois orbit of points in C(k). If λ|k is a �eld extension,we denote the urve obtained by base-hange to λ by Cλ (that is, Cλ is denoted C/λ in [21℄).Moreover, when speaking of a divisor D on C, we impliitly assume that D is k-rational.Via the anonial embedding, any non-hyperellipti genus 3 urve C over Fq is isomorphi toa non-singular quarti in P2
Fq
. Conversely any non-singular plane quarti is a non-hyperelliptigenus 3 urve, and the linear system ut out by lines is the anonial linear system [14,Example IV.5.2.1.℄. We �x a homogeneous oordinate system X,Y,Z on P2

Fq
and assumethat the urve is given by an equation F (X,Y,Z) = 0, where F (X,Y,Z) is a homogeneous



Index alulus for non-hyperellipti urves of genus 3 3polynomial of degree 4. We assume that the order of the degree 0 lass group is known. Inryptographi appliations this is always the ase, and by Pila's variant of Shoof's algorithm[20℄, it an be omputed in polynomial time in log(q).We denote the degree 0 divisor lass group of C over Fq by Cl0(C). If D is a divisor, wedenote the orresponding divisor lass by [D].Let us �x some P0 ∈ C(Fq); by the Hasse-Weil bound suh a point exists if q ≥ 36.Following [15℄, we all an e�etive divisor D on C maximally redued along P0 if D − P0 isnot linearly equivalent to an e�etive divisor. By the Riemann-Roh Theorem, maximallyredued e�etive divisors have degree ≤ 3 (see [15, Proposition 8.2.℄). We have a bijetion
D 7→ [D]− [deg(D)] · [P0] between the divisors maximally redued along P0 and the elementsof the degree 0 lass group.There are various natural ways to represent divisors and divisor lasses on non-hyperelliptigenus 3 urves. To make things preise, we assume that the input elements for the algorithmare given by e�etive divisors maximally redued along a �xed point P0, and the divisorsthemselves are given in free representation, that is, as formal sums of losed points.It is well known that with this representation the arithmeti in the degree 0 lass groupan be arried out in randomized polynomial time in log q (this follows for example from thealgorithms in [15℄ for the omputation of Riemann-Roh spaes in a funtion �eld / idealtheoreti setting). In [1, 3, 4, 11, 12℄ e�ient speial purpose algorithms for various lassesof non-hyperellipti genus 3 urves have been developed. These algorithms are however ofno relevane for our work: On the one hand, for a theoretial analysis the algorithms in [15℄su�e. On the other hand, for a pratial variant of our algorithm we only use the additionin the degree 0 lass group to �nd one multiple of eah of the two input elements whih isrepresented by a ompletely split divisor. For this we only need about 12 additions in total.3 The algorithmIn this setion, we �rst give an overview about basi strategies for index alulus in the ontextof non-hyperellipti genus 3 urves. Then we present one possible algorithm whih lends itselfwell to a heuristi analysis and gives rise to the heuristi omplexity result stated in theintrodution.Let C be a non-singular plane quarti, given by F (X,Y,Z) = 0. Let a, b ∈ Cl0(C) with
b ∈ 〈a〉. The goal is to ompute an x ∈ N with x·a = b. The general approah of index alulusfor urves of small genus is as follows: One �xes a fator base F = {F1, F2, . . .} ⊆ C(Fq).Then one generates relations between the elements of F and a, b (and possibly one other �xeddivisor). If one has obtained enough relations, one solves the disrete logarithm problem of awith respet to b with an algorithm from sparse linear algebra.Let us for simpliity assume that #Cl0(C) is square-free and Cl0(C) is generated by a.There are two natural ways to generate relations:1. Let P0 ∈ C(Fq) be a �xed point.One onsiders a random linear ombination αa + βb of the input elements, whih onerepresents by a divisor of the form D − deg(D) · P0 with D e�etive and maximallyredued along P0. This gives rise to the relation

[Dα,β] − deg(Dα,β) · [P0] = αa + βb . (1)



4 Diem, Thomé2. Let D∞ be the intersetion of C with the line Z = 0 (with multipliities); D∞ is a divisoron C of degree 4.One selets a pair of distint points Fi, Fj ∈ F and onsiders the line L through Fi and
Fj . Let D be the intersetion of L with C (with multipliities). Then D = Fi +Fj +Di,jwith some e�etive divisor Di,j of degree 2. By onstrution, D is linearly equivalent to
D∞, and one has the relation

[Fi] + [Fj ] + [Di,j ] − [D∞] = 0 . (2)In a basi index alulus one would now require that Dα,β or Di,j split ompletely into pointsof the fator base.We expand the algorithm with a double large prime variation. This means that we alsouse relations whih involve up to two elements of L := C(Fq)−F , the set of the so-alled largeprimes. Analogously to the usual terminology realled in [13℄ we de�ne:De�nition 1. A relation of the form (1) or (2) is alled a Full, FP or PP relation if Dα,βor Di,j splits ompletely into elements of C(Fq) and it ontains zero, one or two large primes,respetively.In a double large prime variation, one onsiders FP and PP relations as edges in a graphof large prime relations on the vertex set L ∪̇ {∗}, where ∗ is a speial vertex. An FP relationinvolving one large prime P orresponds to an edge ∗�P , while a PP relation involving twolarge primes P and Q orresponds to an edge P�Q. As detailed in [13℄, this graph is usedto obtain reombined relations involving only elements of the fator base and a, b (and againpossibly one other �xed divisor). Again one solves the DLP by sparse linear algebra.Generating the graph and the reombined relations an be done by using relations of theform (1) or relations of the form (2) (or both). As argued in [9℄, the use of relations of theform (2), rather than merely the use of relations of the form (1), leads to a onsiderably fasteralgorithm. The intuitive reason for this is that Di,j has degree 2 whereas with a probabilityonverging to 1 for q −→ ∞, Dα,β has degree 3. (This follows from Cl0(C) ∼ q3 and the fatthat there are only∼ q2 e�etive divisors of degree 1 and 2.) The use of relations of the form (2)leads however to several stumbling bloks towards a rigorous analysis. Even though with thealgorithm presented in this setion we try to overome this di�ulty, the forthoming analysisin Setion 4 relies on a heuristi assumption, whih is studied experimentally in Setion 6.Reall the following de�nition.De�nition 2. Let G be an undireted graph, and let ∗ be a vertex in G. Then a shortest pathtree with root ∗ is a tree T on a subset of the set of verties of G with the following properties:
• The verties in T are the verties in G onneted to ∗.
• Let V be a vertex onneted to ∗ in G. The distane from V to ∗ in G is equal to thedistane between V and ∗ in T .Notation 3. The set of verties of a tree T is also denoted by T .A shortest-path tree an be onstruted by a breadth-�rst searh, desribed for instanein [8℄. A trivial extension allows to build a tree of limited depth: only verties in G within a�xed distane of the root are onsidered. This is used in the algorithm below.



Index alulus for non-hyperellipti urves of genus 3 5The following algorithm is the algorithm presented in [9℄ applied to plane quartis withthe di�erenes that the size of the fator base is redued by a fator of √2, only a tree ofdepth ≤ log2(q) is onstruted, and the ondition in Step 4 is relaxed. As in [9℄ we assumefor simpliity that the degree 0 lass group has prime order. If it is not of prime order butyli or the group struture is known, one should modify Steps 5 and 6 aording to thedesriptions in [10℄ and [13℄.The algorithmInput: A non-hyperellipti urve C of genus 3 over Fq, given by a homogeneous equation F (X,Y,Z)
= 0 of degree 4, the group order ℓ := #Cl0(C) (a prime number) and two elements a, b ∈
Cl0(C) (a 6= 0).1. Enumerate C(Fq) and hoose a fator base F = {F1, F2, . . .} uniformly at random from theset of all subsets of C(Fq) with ⌈2√q

⌉ elements (if C(Fq) has fewer elements, terminate).Let L := C(Fq) −F .2. Construt a graph G on L ∪̇ {∗} as follows:For all i < j doCompute the line L through Fi and Fj .Let D = Fi + Fj + Di,j be the intersetion divisor of C with L (with multipliities).If Di,j splits into points P,Q of C(Fq), if at least one of these points lies in L, and ifthe orresponding edge (P�Q, P�∗, or ∗�Q) does not yet our in the graph, insert theedge in the graph.3. With a breadth-�rst searh, onstrut a tree T in G with root ∗, limiting the depth to log2(q).4. If T has fewer than q5/6 verties, go bak to 1.5. Construt a sparse matrix R over Z/ℓZ as follows:For i = 1, . . . ,#F + 1 doRepeatChoose uniformly and independently randomly αi and βi and ompute the uniquee�etive divisor D maximally redued along F1 with [D]−deg(D) · [F1] = αia+βib.Until D splits into elements of F ∪ T .Use the tree T to replae these elements by sums of elements of F ∪ {D∞}.This substitution leads to the relation ∑j ri,j[Fj ] + ri[D∞] = αia + βib. Store (ri,j)jas the i-th row of R.6. Compute a non-zero vetor γ over Z/ℓZ with γR = 0 with an algorithmfrom sparse linear algebra.7. If ∑i γiβi ∈ (Z/ℓZ)∗, let x := −
∑

i γiαi
∑

i γiβi
, otherwise go bak to 5.Output x.Proposition 4. If the algorithm outputs x, we have x · a = b.Proof. Easy; see also [9℄. �



6 Diem, Thomé4 Heuristi analysisThe enumeration in Step 1 of the algorithm an be performed in an expeted time of Õ(q) byiterating over the (X,Z)-oordinates and onsidering the possible Y -oordinates. After this,a fator base as in Step 1 an also be found in an expeted time of Õ(q).Given i, j, the omputation of Di,j is an easy algorithmi task. One �rst omputes the line
L : aX + bY + cZ = 0 through Fi and Fj . Using the equation for L, it is su�ient to omputeeither the (X,Z) or (Y,Z) oordinates of Di,j. Without loss of generality, assume for examplethat b = 1, suh that the (X,Z) oordinates of D are the roots of F (X,−aX − cZ,Z), whihhas degree 4. Sine two known roots are the (X,Z) oordinates of Fi and Fj , the remaining
(X,Z) oordinates are obtained by solving a quadrati equation. This implies that given i, j,the divisor Di,j an be omputed in randomized polynomial time in log q, hene Step 2 anbe performed in an expeted time of Õ(q).The limited breadth-�rst searh in Step 3 has a omplexity bounded by the omplexityof the omplete breadth-�rst searh, whih is Õ(q) (the graph has O(q) verties, and O(q)edges). Hene Step 3, as previous steps, an be performed in an expeted time of Õ(q).Let us postpone for later investigation the probability of passing the test in Step 4.For estimating the omplexity of Steps 5�7, we �rst prove two lemmata yielding the prob-ability that D splits over F ∪ T .Lemma 5. Let C be a non-hyperellipti urve of genus 3 over Fq, let P0 ∈ C(Fq), and let
S ⊂ C(Fq) suh that #S ∈ Ω(q5/6). Then there are Ω(q5/2) e�etive divisors D whih splitompletely into sums of elements of S and are maximally redued along P0.Proof. The assumption on S implies that there are (#S+2

3

)

∈ Ω(q5/2) e�etive divisors ofdegree 3 on C whih are ompletely split into sums of elements of S. We wish to estimate thenumber of suh divisors whih are maximally redued along P0.For any e�etive divisor D on C, let Dred be the unique divisor maximally redued along
P0 suh that Dred +(deg(D)−deg(Dred)) ·P0 is linearly equivalent to D. The map D 7→ Dredis injetive for non-speial divisors D of degree 3. The following lemma shows that the numberof speial divisors of degree 3 on C is in o(q5/2), whih proves the laim. �Lemma 6. The number of speial linear systems of degree 3 on a urve of genus 3 over Fq is
∼ q, and the number of speial divisors of degree 3 is ∼ q2.Proof. Let K be a anonial divisor on C (e.g. K = D∞ if the urve is non-hyperellipti andgiven by a plane quarti).For P ∈ C(Fq), the linear system |K − P | is obviously a speial linear system of degree 3.On the other hand, if |D| is a speial linear system of degree 3, then |K − D| is non-empty.Clearly the point P ∈ C(Fq) with |P | = |K − D| is unique.We therefore have a bijetion between C(Fq) and the speial linear systems of degree 3 on
C. This proves the �rst assertion.By the Riemann-Roh Theorem, for every point P ∈ C(Fq), |K − P | has (projetive)dimension dim(|P |) + 1 = 1. Together with the �rst assertion, this implies the seond asser-tion. �Proposition 7. Let C be a non-hyperellipti genus 3 urve over Fq, F a fator base of size
O(q1/2), and T a tree with root ∗ on a subset of L ∪̇ {∗} (with L := C(Fq) − F) suh that T



Index alulus for non-hyperellipti urves of genus 3 7has Ω(q5/6) verties and a depth of O(log(q)O(1)). Let us assume that the order of Cl0(C) isprime. Let a, b ∈ Cl0(C) with a 6= 0. Then following Steps 5�7 of the algorithm, one an solvethe DLP with respet to a and b in an expeted time of Õ(q).Proof. In Step 5 α, β ∈ Z/ℓZ is drawn uniformly and independently at random, and thereforeso is αa + βb ∈ Cl0(C).By Lemma 5 and the fat that #Cl0(C) ∼ q3, suh a ombination has then a probabilityof Ω(q−1/2) to split ompletely into elements of F ∪ T . Furthermore, sine the depth of T isin O(log(q)O(1)), we onlude that Step 5 has a omplexity of Õ(q1/2 · #F) = Õ(q).The bound on the depth of T also implies that rows of the relation matrix have no morethan O(log(q)O(1)) elements. As the matrix has size Θ(
√

q)×Θ(
√

q), Step 6 an thus also beperformed in an expeted time of Õ(q) (see [10, Theorem 3℄).Finally, as argued in [10℄, if γ is the vetor obtained in Step 6, ∑i γiβi is uniformlyrandomly distributed over the group Z/ℓZ. Step 7 therefore sueeds with probability 1− 1
ℓ . �Remark. This proposition also holds if Cl0(C) is yli or its struture is known provided thatthe algorithm is modi�ed aording to the desriptions in [10℄ and [13℄.Estimating the size of the tree TIt remains to prove that Step 4 of the algorithm is passed with su�iently high probability. Inorder to derive the desired result that the expeted running time of the algorithm is in Õ(q),we would need to prove that with a probability of Ω( 1

log(q)O(1) ), the set of verties of the graphof large prime relations whih have distane ≤ (log(q))2 to ∗ ontains ≥ q5/6 elements.We do not know how to prove this result, and therefore our analysis relies on a heuristiomparison with appropriate random graphs in standard models. Reall that random graphsare mostly studied for two models in the literature. The �rst one is the Bernoulli (or binomial)random graph G(n, p). A set of n verties is �xed, and eah unordered pair of distint vertiesappears (independently of the other pairs) with a probability p as an edge of the graph. Theseond one is the uniform random graph G(n,m). Again, a set of n verties is �xed, and theset of edges is drawn uniformly from the set of subsets of unordered pairs of distint vertieswith m elements. Here and in the following, we use the notations of [16℄.In the following paragraphs, we examine the properties whih the graph of large primerelations would enjoy if it were a random graph either in the Bernoulli or uniform model. Let
E be the expeted number of edges in the graph of large prime relations at the end of Step 2.As a �rst approah, we ompare our graph with a Bernoulli random graph G(#(L ∪̇ {∗}), p),where p := E

(#(L∪̇{∗})
2 )

. Note that just as our graph, this random graph has an expeted numberof E edges.As usual we all a set S with a �xed point ∗ ∈ S a pointed set. We all a graph on apointed vertex set (V, ∗) a pointed graph; if G is a graph on V , we denote the orrespondingpointed graph by (G, ∗). These de�nitions extend naturally to random graphs (where we stillview ∗ as being �xed). The following proposition follows from results in [16℄ and [7℄:Proposition 8. For two positive onstants c1 and c2, onsider the following properties ofgraphs G and pointed graphs (G, ∗) on a set of n verties:
• (Qc1,c2) There exists a onneted subgraph of G of size ≥ c1n and diameter ≤ c2 log(n).



8 Diem, Thomé
• (Q∗

c1,c2) There exists a onneted subgraph of G of size ≥ c1n, diameter ≤ c2 log(n)ontaining ∗.Let c > 1 be a onstant. Then there exist positive onstants c1, c2 suh that for p ≥ c
n theBernoulli random graph G(n, p) satis�es property Qc1,c2 with a probability onverging to 1 for

n −→ ∞ and the pointed Bernoulli random graph (G(n, p), ∗) satis�es property Q∗
c1,c2 with aprobability of Ω(1) for n −→ ∞.Proof. By [16, Theorem 5.4℄, there exists a positive onstant c1 suh that with a probabilityonverging to 1 for n −→ ∞, the graph has a �giant onneted omponent� of size ≥ c1n. Bythe results of [7℄, there exists a positive onstant c2 suh that with a probability onvergingto 1 for n −→ ∞, the graph has diameter ≤ c2 log(n). This proves the statement on Bernoullirandom graphs.For the seond statement, let us �rst assume that ∗ is hosen uniformly and independentlyof the other hoies (rather than �xed beforehand). Then the statement follows beause theprobability that property Q∗

c1,c2 is satis�ed is ≥ c1 times the probability that property Qc1,c2is satis�ed. The statement on pointed Bernoulli random graphs follows beause the property
Qc1,c2 is invariant under graph isomorphism. �In Setion 5, we will prove the following proposition.Proposition 9. The expeted number E of edges in the graph of large prime relations is ∼ q.The expeted number of edges around vertex ∗ is ∼ 4

3q1/2.This proposition implies that the probability p is ∼ q
q2/2

= 2
q . As #(L ∪̇ {∗}) ∼ q, it isreasonable to assume that the onlusion of Proposition 8 is also satis�ed for the graph oflarge prime relations at the end of Step 2.We note however that there are of ourse essential di�erenes between our graph and aBernoulli random graph G(#(L ∪̇ {∗}), p). In partiular:

• The set of verties L ∪̇ {∗} = (C(Fq) ∪̇ {∗}) −F of the random graph is not �xed (butits ardinality is), and the set of edges is uniquely determined by the set of verties.
• Regarded as a graph on C(Fq) ∪̇ {∗}, many pairs of verties are never drawn, and theprobability that a partiular edge is drawn is not independent of other edges beingdrawn.
• The expeted value of the number of edges around the speial vertex ∗ is muh largerthan for the orresponding Bernoulli random graph.Note that the third point suggests that with a very large probability ∗ is ontained in thelargest onneted omponent of the graph. Together with Proposition 8 one might onjeturethat there are c1 and c2 suh that our graph has property Q∗

c1,c2 with a probability onvergingto 1 for q −→ ∞. We do however not need this ondition for our heuristi analysis.So far we have onsidered the expeted number of edges and ompared the graph of largeprime relations with a Bernoulli random graph. To give further heuristi evidene that Step 4is passed with su�iently high probability, we now would like to ompare our graph with auniform random graph. Analogously to Bernoulli random graphs we have the following result.Proposition 10. Let c > 1 be a onstant. Then the onlusions of Proposition 8 also holdfor the uniform random graph G(n,m) (and the orresponding pointed uniform random graph)with m ≥ cn
2 .



Index alulus for non-hyperellipti urves of genus 3 9Proof. Both properties are monotone. (If G1 ⊂ G2 are graphs on the set of verties {1, . . . , n}and G1 satis�es Qc1,c2 (resp. Q∗
c1,c2) then G2 also satis�es Qc1,c2 (resp. Q∗

c1,c2).)Beause of this we only have to prove the statement for m(n) = ⌈ cn
2 ⌉.Let p := m(n)

(n
2)

. We wish to prove the statement for m(n) by applying the general �om-parison result� [16, Proposition 1.15℄ to the Bernoulli random graph G(n, p) on the one handand to the uniform random graph G(n,m) on the other hand.Note �rst that as the property Qc1,c2 is monotone it is in partiular onvex (that is, if
G1 ⊆ G2 ⊆ G3 are three graphs on the set of verties {1, . . . , n} and both G1 and G3 satisfy
Qc1,c2 then G2 also satis�es Qc1,c2).Let c1 and c2 be suh that the �rst property of Proposition 8 is satis�ed. Note that as p ≥

cn
n(n−1) = c

n−1 ≥ c
n this means in partiular that the Bernoulli random graph G(n, p) satis�esproperty Qc1,c2 with a probability onverging to 1 for n −→ ∞. With [16, Proposition 1.15℄we onlude that Qc1,c2 also holds for the uniform random graph G(m,n) with a probabilityonverging to 1 for n −→ ∞.Again the statement on Q∗

c1,c2 follows easily. �In ontrast to Proposition 10, for any c < 1, there exists a positive onstant c1 suh thatwith a probability onverging to 1 for n −→ ∞, all omponents of the uniform random graph
G(n,m) with m ≤ cn

2 ontain fewer than c1 log(n) verties. This follows again from [16,Theorem 5.4℄ together with [16, Proposition 1.15℄.This dihotomy of uniform random graphs is alled �phase transformation�. The followingproposition guarantees that with a probability of Ω(1), the random graphs onstruted inthe algorithm have a number of edges whih is �above the phase transformation�, and thusthe onlusions of Propositions 8 and 10 apply to the uniform random graph with the samenumber of verties and edges. This gives further heuristi evidene that the onlusions ofthese propositions also apply to the graph of large prime relations at the end of Step 2.Proposition 11. If the fator base F is hosen uniformly at random from the set of all subsetsof C(Fq) with ⌈2q1/2⌉ elements, with a probability of Ω(1) we have more than 2
3q edges in thegraph of large prime relations.Proof. Let c be the number of lines drawn through two fator base elements whih give riseto FP or PP relations. Then c ≤ 2(

√
q + 1)2. By letting the fator base vary, the quantity

c
2(
√

q+1)2 beomes a random variable with values in [0, 1]. Let us all this random variable X.Then the probability in question is greater than or equal to P := P(X > 1
3). We have

E(X) ≤ P(X ≤ 1

3
) · 1

3
+ P(X >

1

3
) · 1 = (1 − P )

1

3
+ P,hene: P ≥ E(X) − 1/3

2/3
.By Proposition 9 we have E(X) ∼ 1

2 for q −→ ∞, thus lim inf P(X > 1
3) ≥ 1/6

2/3 = 1
4 , wherethe limes inferior is taken over all urves. �The above omparisons of the graph of large prime relations with Bernoulli and uniformrandom graphs motivate that the onlusions of Propositions 8 and 10 are valid for the graphof large prime relations at the end of Step 2. The derivation of the omplexity result relies onthe following weaker assumption.



10 Diem, ThoméHeuristi Assumption 12. With a probability of Ω( 1
log(q)O(1) ), the set of verties of the graphof large prime relations whih have distane ≤ (log(q))2 to ∗ ontains ≥ q5/6 elements.This assumption implies that the expeted number of iterations of Steps 1 � 4 until Step 4 ispassed is in O(log(q)O(1)). Putting this together with Proposition 7 and the initial argumentsof this setion, we �nally have:Heuristi Result 13. One an solve the DLP in degree 0 lass groups of non-hyperelliptigenus 3 urves in an expeted time of Õ(q), provided that the lass group is yli or the groupstruture is known.The result holds rigorously for any lass of non-hyperellipti urves of genus 3 for whihHeuristi Assumption 12 is satis�ed and the lass group is yli or the group struture isknown.Again on a heuristi basis one should expet this result to hold even if one alulatesdisrete logarithms in proper subgroups of the degree 0 lass groups. One then obtains theheuristi result stated in the introdution: One an alulate the DLP in degree 0 lass groupsof non-hyperellipti genus 3 urves in an expeted time of Õ(q).5 On the number of edges in the graph of large prime relationsAs above, let C be a non-hyperellipti genus 3 urve over Fq, given as a plane quarti.The purpose of this setion is to prove Proposition 9 in the previous setion. For this, we�rst derive the following result.Proposition 14. The number of lines in P2

Fq
interseting the urve in 4 distint Fq-rationalpoints is in

1

24
q2 + O(q3/2) .Remark. A reformulation of this proposition is:If we hoose a tuple of distint points of C(Fq) uniformly at random, the probability thatthe line running through P and Q intersets C in 4 distint Fq-rational points is in

1

2
+ O(q−1/2) .Indeed, by the Hasse-Weil bound, there are ∼ q2 ordered tuples of points of C(Fq), andevery line whih intersets C in 4 distint Fq-rational points is de�ned by 4 · 3 = 12 di�erentsuh tuples.The proof is based on an e�etive Chebotarev density theorem in the �geometri� or�funtion �eld theoreti� setting.As above, let D∞ be the intersetion of C with Z = 0. Let us now �x a point P ∈ C(Fq). Wewish to estimate the number of lines over Fq interseting the urve C in 4 distint Fq-rationalpoints one of whih is P .By assoiating to eah line in P2

Fq
over Fq its intersetion divisor with C one obtains abijetion between the set of lines in P2

Fq
over Fq and the linear system |D∞|, the anoniallinear system. Now, under this bijetion, the lines passing through P are in bijetion with the



Index alulus for non-hyperellipti urves of genus 3 11divisors in |D∞| ontaining P . By subtrating P , these divisors are in turn in bijetion withthe divisors in the omplete linear system |D∞ − P | (over Fq). We thus wish to estimate thenumber of ompletely split divisors in this linear system.The omplete linear system |D∞ − P | is base-point free, has degree 3 and (projetive)dimension 1. It thus gives rise to a overing C −→ P1
Fq

of degree 3 (unique up to an auto-morphism of P1
Fq
). We reall that the divisors in |D∞ − P | are (by de�nition of the overing

C −→ P1
Fq
) exatly the preimages of the points in P1(Fq). We have the following proposition.Proposition 15.

• If the overing C −→ P1
Fq

assoiated to |D∞ − P | has an automorphism of order 3, thenumber of ompletely split divisors in |D∞ − P | is in
1

3
q + O(q1/2) .

• If the overing C −→ P1
Fq

does not have an automorphism of order 3 but the overing
C

Fq
−→ P1

Fq
over Fq has suh an automorphism, there are no ompletely split divisors in

|D∞ − P |.
• If the overing C

Fq
−→ P1

Fq
over Fq does not have an automorphism of order 3, then thenumber of ompletely split divisors in |D∞ − P | is in

1

6
q + O(q1/2) .Proof. Note �rst that the extension Fq(C)|Fq(P

1) is separable. Indeed, as the extension degreeis prime, if it was not separable it would be purely inseparable. This would however implythat g(C) = g(P1
Fq

) = 0 (see [23, III.9.2 () (2) and (3)℄ or [14, IV, Proposition 2.5℄).The ompletely split divisors in |D∞ − P | are in bijetion with the elements in P1(Fq)whih are ompletely split in C.We onsider the three ases in the statement separately.Let us �rst assume that the overing C −→ P1
Fq

has an automorphism of order 3. Then it isa Galois overing in the sense that the assoiated extension of funtion �elds is Galois. By thee�etive Chebotarev theorem in [19℄ the number of elements in P1(Fq) whih are ompletelysplit is in 1
3q + O(q1/2).Now let us assume that we are in either the seond or the third ase. Let M be the Galoislosure of the extension of funtion �elds Fq(C)|Fq(P

1). Then M |Fq(P
1) is a Galois extensionwith Galois group isomorphi to S3. Moreover, let L be the unique quadrati extension of

Fq(P
1) in M . In the seond ase, we have L = Fq2(P1) and M = Fq2(C), and in the third ase,

Fq is the exat onstant �eld of M .In the following, we use the same notation for losed points of the urves and the orre-sponding plaes of the funtion �elds.For a plae Q of Fq(P
1) of degree 1 whih is unrami�ed in Fq(C) (and thus in M), we havethe following possibilities:

• Q splits ompletely in M and thus also in Fq(C) and L.
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• Q splits as Q1+Q2 in M , where the Qi are distint plaes of degree 3. Then the splitting�elds of both Q1 and Q2 are L (the unique sub�eld of M of index 3). In partiular, Qis inert in Fq(C).
• Q splits as Q1 + Q2 + Q3 in M , where the Qi are distint plaes of degree 2. Then thedeomposition groups of Q1, Q2, Q3 are of order 2, and (as always in a Galois extension)they form a omplete onjugay lass. This means that these groups are equal to thethree subgroups of order 2. Thus exatly one of the deomposition �elds is equal to

Fq(C). In partiular, Q splits as P1 + P2 in Fq(C) where P1 and P2 are plaes of degree1 and 2 respetively.Note here that Q annot be inert in M beause M |Fq(P
1) is not yli. We see in partiularthat Q splits ompletely in Fq(C) if and only if it splits ompletely in M .Now, if L = Fq2(P1) (seond ase), every plae of Fq(P

1) of degree 1 is inert in L, thusit annot split ompletely in M . If Fq is the exat onstant �eld of M (third ase), again bythe e�etive Chebotarev theorem in [19℄, the number of plaes of Fq(P
1) of degree 1 whih areompletely split in M is in 1

6q + O(q1/2) (the other two numbers orresponding to the itemsabove are in 1
3q + O(q1/2) and 1

2q + O(q1/2) respetively). �By [22℄, the ardinality of the automorphism group of C
Fq

is bounded by 16 ·g(C)4 = 1296.There are thus at most 647 subgroups of the automorphism group of order 3. This impliesthat there are, up to automorphisms of P1
Fq
, at most 647 distint overings C

Fq
−→ P1

Fq
oforder 3 with an automorphism of order 3. In terms of linear systems this means that there areat most 647 base point free linear systems of degree 3 and dimension 1 on C

Fq
whih de�nea overing to P1

Fq
whih has a non-trivial automorphism. This means that there are at most

647 ∈ O(1) points P ∈ C(Fq) for whih in Proposition 15 we are in the �rst or seond ase.We are interested in the number of divisors in |D∞| whih split ompletely into 4 distint
Fq-rational points.Every divisor in |D∞| whih ontains a double point is de�ned by a line whih is tangentialto the urve. This implies that there are at most #C(Fq) ∼ q suh divisors. Keeping in mindthat every divisor in the anonial system |D∞| whih splits into 4 distint Fq-rational pointsours in exatly 4 systems of the form |D∞ − P |, we obtain:Proposition 16. The number of divisors in |D∞| whih split into 4 distint Fq-rational pointsis in

1

24
q2 + O(q3/2) .Proposition 14 is a reformulation of this proposition. We now show how one an useProposition 14 to derive Proposition 9.De�nition 17. For some line L in P2

Fq
for whih the intersetion with the urve C onsists of

Fq-rational points, let
aL, bL, cLbe the probabilities (over the possible fator base hoies) that L gives rise to a Full, FP orPP relation respetively.The following proposition ontains slightly more information than we need for the proofof Proposition 9.



Index alulus for non-hyperellipti urves of genus 3 13Proposition 18. For all lines L for whih the intersetion with C onsists of 4 distint Fq-rational points, we have:
aL ∼ 16

q2
, bL ∼ 32

q3/2
, cL ∼ 24

q
.Moreover, for all lines L for whih the intersetion with C onsists of 3 distint Fq-rationalpoints (one of whih is a double point), we have

aL ∼ 8

q3/2
, bL ∼ 12

q
, cL = 0 .Proof. Let L be a line interseting C in s distint Fq-rational points. The probability that afator base F is hosen suh that # (L ∩ F) = r is

1
(#C(Fq)

⌈2q1/2⌉
)

(

s

r

)(

#C(Fq) − s

⌈2q1/2⌉ − r

)

∈
(

s

r

)

(

2q1/2 + O(1)

q + O(
√

q)

)r

⊆
(

s

r

)

(

2q1/2

q

(

1 + O(q−1/2)
)

)r

⊆
(

s

r

)

(

2q−1/2
)r

·
(

1 + O(q−1/2)
)

.For the line L to be onsidered by the relation olletion step, we must have r ≥ 2. Therefore,when s − r is 0, 1 or 2 respetively, the estimate above gives the probabilities aL, bL, cL,exept that cL is 0 if s = 3. (Note for the last assertion that in the algorithm only lines whihpass through two di�erent points of the fator base are onsidered.) The resulting equivalentsfollow. �Proposition 9 is now a onsequene of the following proposition.Proposition 19. If we hoose the fator base F uniformly at random from the set of allsubsets of C(Fq) with ⌈2q1/2⌉ elements, the expeted values B,C of FP, PP relations satisfyasymptotially for q −→ ∞:
B ∈ 4

3
q1/2(1 + O(q−1/2)) , C ∈ q(1 + O(q−1/2)) .Proof. We have

B =
∑

L

bL , C =
∑

L

cL ,where the sums run over all lines in P2
Fq

whih interset the urve in Fq-rational points.Combining Proposition 14, the proof of Proposition 18, and the fat that the number of lineswhose intersetion with the urve ontain a double point is in O(q), the laims follow. �6 Experimental study of the heuristi assumptionThe analysis in Setion 4 relies on Heuristi Assumption 12. In order to test this assumption,for eah of the base �elds F219 to F224 , we built 160 graphs of large prime relations, built from10 (pseudo-)randomly hosen fator bases over 16 random urves of genus 3 given by arbitraryplane quartis. We thereby disarded FP relations, that is, we only onsidered PP relations.The reason for this is that the number of FP relations is asymptotially negligible, but FPrelations might lead to distortions whih hide phenomena ourring for q −→ ∞.



14 Diem, ThoméWe made a omparison with the same number of instanes of Bernoulli random graphs
G(q, p), where p = 2

q . As disussed after Proposition 9, suh graphs have an expeted numberof edges ∼ q. The graph instanes are onstruted by �rst hoosing the number of edgesaording to the orresponding binomial distribution (approximated by a normal distribution),and then piking an instane of a uniform random graph.Note that a omparison following more losely the statement of Heuristi Assumption 12would be to onstrut, for eah urve, instanes of the Bernoulli random graph G(L ∪̇ {∗}, p),where p is suh that the expeted number of edges is exatly the same as the number Cde�ned in Proposition 19. However, for omputing exatly C we would have to determine theexat number of lines in P2
Fq

whih lead to ompletely split divisors; we are not aware of anysu�iently fast method for this task.Our omparison riteria are both derived from the properties stated in Proposition 8, aswell as the usage of the graph of large prime relations in the algorithm.Given a graph G and a vertex x, we de�ne:
Nk(x) = {y ∈ G, dG(x, y) ≤ k} ,

tree_depth(x, S) = min {k #Nk(x) ≥ S} ,

cc_depth(x) = max {k Nk(x) ) Nk−1(x)} .It is easily seen that when x belongs to a onneted omponent Γ, we have
cc_depth(x) ≤ diameter(Γ) ≤ 2cc_depth(x).Based on this, we use cc_depth as a rough (indiret) measure of the diameter of the giantonneted omponent.Furthermore, we also measure tree_depth(x, q5/6), as the aordane of this quantity be-tween the graph of large prime relations and the random graph ase ensures the suess ofStep 4 of the algorithm of Setion 3.Table 1 gathers these measurements. For eah set of graphs, as well as for the orrespondinginstanes of Bernoulli random graphs, we give the extremal values as well as the observedmean for tree_depth(x, q5/6) and cc_depth(x) for verties x piked at random within thegiant onneted omponent. The size of the giant onneted omponent is also given, inmillions of verties. Finally, we give the average number of edges present in the graphs, as aratio ompared to the expeted value q. Table 1 shows no notieable deviation between thegraph of large prime relations and the orresponding random graph.7 Pratial aspets and omputationsFor pratial implementation of the algorithm, the following modi�ations were made.

• The fator base is not hosen at random. Instead, we pik all the Fq-rational points whoseabsissa has an integer representation within the interval [0, B], where B is ⌈2√q
⌉ or anearby bound (experiments were made with B =

⌈

4
3

√
2q
⌉, whih was su�ient). Thenmultiples of the input elements are omputed whih are represented by ompletely splitdivisors. (For this, about 6 multiples have to be omputed for eah input element.) Theorresponding points of C(Fq) are inserted into the fator base.
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q tree_depth(x, q5/6) cc_depth(x) giant .. (in millions) #edges/q

219
real 14 . . .16.8 . . . 26 29 . . .34.7 . . . 47 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00random 14 . . .16.8 . . . 26 30 . . .34.5 . . . 42 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00

220
real 15 . . .17.6 . . . 28 32 . . .36.4 . . . 49 0.83 . . .0.83 . . . 0.84 0.99 . . .1.00 . . . 1.00random 15 . . .17.6 . . . 28 32 . . .36.5 . . . 48 0.83 . . .0.83 . . . 0.83 0.99 . . .1.00 . . . 1.00

221
real 15 . . .18.4 . . . 30 33 . . .38.2 . . . 48 1.67 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00random 16 . . .18.4 . . . 29 33 . . .38.1 . . . 48 1.66 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00

222
real 16 . . .19.2 . . . 28 35 . . .39.8 . . . 51 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00random 16 . . .19.1 . . . 28 35 . . .39.7 . . . 50 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00

223
real 17 . . .20.0 . . . 29 37 . . .41.7 . . . 53 6.67 . . .6.68 . . . 6.68 1.00 . . .1.00 . . . 1.00random 17 . . .20.0 . . . 34 36 . . .41.6 . . . 55 6.67 . . .6.67 . . . 6.68 1.00 . . .1.00 . . . 1.00

224
real 18 . . .20.8 . . . 31 39 . . .43.3 . . . 53 13.35 . . .13.36 . . . 13.37 1.00 . . .1.00 . . . 1.00random 18 . . .20.8 . . . 29 38 . . .43.3 . . . 52 13.35 . . .13.36 . . . 13.36 1.00 . . .1.00 . . . 1.00Table 1: Comparison of the graph of large prime relations with a Bernoulli random graph

• The relations used for the matrix onstrution in Step 5 of the algorithm are the sameas relations used for building the graph (following the non-simpli�ed algorithm in [13℄).
• As the problem size grows, it beomes umbersome to deal with the whole graph formemory reasons. Sine the previous modi�ation implies that we are interested in ylesourring in this graph (as desribed in [13℄), we �rst perform a ��ltering� pass: All PPrelations are gathered, and used to identify a smaller set of relations ontaining a smallersubgraph with su�iently many yles. This ��ltering� step is done in the spirit of e.g. [6℄.We have been able to arry out disrete logarithm omputations in the degree 0 lassgroup of the C3,4 urve de�ned by Y 4 + Y 3 + Y 2 + X2Y + X3 + X + 1 = 0 over the �eld F231 .Choosing a urve with a model de�ned over F2 avoids the problem of omputing the grouporder, whih is readily obtained. The group order has 93 bits, and it has a 90-bit prime fator.The implementation has been arried out in C/C++ and run on 2.4GHz Opteron proessors.A pair of distint points Fi, Fj ∈ F is proessed in 3.4 miroseonds, yielding the satisfyingpae of 6.7 miroseonds per PP relation. This is the only step of the algorithm whih issensible to the hoie of the urve, and if the C3,4 urve is replaed by a random non-singularplane quarti, a PP relation is produed in 8.1 miroseonds on average. In omparison, astep of the algorithm in [13℄ applied to hyperellipti urves of genus 3 is performed in 5.0miroseonds on the same hardware, but sueeds in produing a PP relation only with aprobability of roughly 2#F

q .Most proesses dealing with the relations produed and the graph of large prime relationsare dominated by the input/output osts, as indiated by Table 2. Indeed, the graph onsid-ered has roughly 2 · 109 edges, and about as many verties. This motivates the prime need forredution of the graph to a smaller subgraph ontaining su�iently many yles. We isolatedroughly 380 million relations, yielding about 200 000 reombined relations. This was morethan enough, and made it possible to selet only the lightest relations.We eventually produed a 87 803 × 87 803 matrix with an average of 352 non-zero oe�-ients per row. The linear system has been solved using the blok Wiedemann algorithm injust below a day, using 4 dual-CPU mahines. The solutions were heked using Magma.In omparison with this index alulus experiment, we extrapolate on the feasibility of suhan attak using Pollard's Rho method, or the parallel ollision searh algorithm from [25℄. For



16 Diem, ThoméStage Wall-lok time Time spent on I/ORelation olletion (1 CPU) 8h ≈ 50%Relation �ltering (1 CPU) 1day ≥ 95%Linear algebra (4×2 CPUs) 1day ≤ 5%Table 2: Running times for di�erent stages of the omputation(one C3,4 urve over F231 with a model over F2)suh an attak, fast arithmeti in the degree 0 lass group is required. Let us ount only�eld multipliations: algorithms from [12, 3℄ require between 130 and 170 multipliations peroperation in the degree 0 lass group.1 Approximately √π#G/2 operations in the degree 0lass group G would be required to ompute one disrete logarithm, hene at least 1.6·1016 �eldmultipliations. In omparison, our implementation requires on average 86 �eld multipliationsto obtain one PP relation (and no exeptional e�ort has been put into trimming down thisnumber), therefore the total ost of the relation ollision step is 1.7 · 1011 �eld multipliations.This implies that the parallel ollision searh method an be expeted to require about 105times as muh CPU time as the relation olletion step in our implementation, hene anestimated ost of about 370 000 hours on one CPU.It should be noted that Pollard's Rho method is also surpassed by the presented algorithmeven for tiny experiments. Over the �eld F217 , all the steps of the disrete logarithm om-putation by the index alulus approah an be performed in approximately 5 seonds, whilePollard's Rho method would require approximately 10 minutes.We wish to extrapolate from our index alulus omputation to the feasibility of ompu-tations in larger groups. The limiting fator is thereby that we allow resoures (in hardwareand time) omparable to the latest fatorization reord: the fatorization of RSA-200 withthe General Number Field Sieve [2℄. Note that for this reord, both for the relation olletionand the linear algebra, only o�-the-shelf hardware was used. (Aording to [2℄, the relationolletion ould have been performed on a single 2.2 GHz AMD Opteron CPU in 55 years.The linear algebra took plae on a luster of 40 dual-CPU 2.2 GHz AMD Opteron omputersonneted with gigabit ethernet and took three months.)The relation olletion step sales with no di�ulty. For a �eld size of q = 237 (henea group size near 2111), it ould be ompleted in just above three weeks on one mahine,inluding input/output overhead. However the overhead indued by relation �ltering and theexpetable overhead of linear algebra are not so easily overome. The amount of PP relationsto be onsidered (1.3 · 1011) and the size of the linear system to be solved (740 000 unknowns)are omparable in magnitude to reent works. The above mentioned fatorization reordshandled 3 · 109 partial relations, and for the reords for �nite �eld disrete logarithms [17, 24℄,linear systems of this size have already been solved.These reords indiate that taking into aount the overhead for managing the data size,the presented algorithm an probably be employed until approximately a group size of 2111,using hardware and time omparable to the resoures used in the fatorization of RSA-200.1These �gures are valid for odd harateristi. We assume that the ost for harateristi 2 would be similar.
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